The Role of Dietary Protein in Body Weight Regulation among Active-Duty Military Personnel during Energy Deficit: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Data Extraction Eligibility Criteria
2.3. Quality and Risk of Bias Assessment
2.4. Data Analysis
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Primary Outcomes
3.4.1. Protein and Weight Loss
3.4.2. Protein and Changes in Fat Mass
3.4.3. Protein and Changes in Fat-Free Mass
3.5. Secondary Outcomes
3.5.1. Protein Supplementation and Weight Maintenance
3.5.2. Protein Supplementation, Body Composition, and Optimization of Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Booth, C.K.; Coad, R.A.; Forbes-Ewan, C.H.; Thomson, G.F.; Niro, P.J. The physiological and psychological effects of combat ration feeding during a 12-day training exercise in the tropics. Mil. Med. 2003, 168, 63–70. [Google Scholar] [CrossRef]
- Fallowfield, J.L.; Delves, S.K.; Hill, N.E.; Cobley, R.; Brown, P.; Lanham-New, S.A.; Frost, G.; Brett, S.J.; Murphy, K.G.; Montain, S.J. Energy expenditure, nutritional status, body composition and physical fitness of Royal Marines during a 6-month operational deployment in Afghanistan. Br. J. Nutr. 2014, 112, 821–829. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Kopylov, A.T.; Sinitsyna, A.A.; Stepanov, A.A.; Izotov, A.A.; Butkova, T.V.; Chingin, K.; Klyuchnikov, M.S.; Kaysheva, A.L. Sports Nutrition: Diets, Selection Factors, Recommendations. Nutrients 2021, 13, 3771. [Google Scholar] [CrossRef]
- Tassone, E.C.; Baker, B.A. Body weight and body composition changes during military training and deployment involving the use of combat rations: A systematic literature review. Br. J. Nutr. 2017, 117, 897–910. [Google Scholar] [CrossRef]
- Popper, R.; Smits, G.; Meiselman, H.L.; Hirsch, E. Eating in combat: A survey of U.S. Marines. Mil. Med. 1989, 154, 619–623. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Berryman, C.E.; Karl, J.P.; Lieberman, H.R.; Orr, J.S.; Margolis, L.M.; Caldwell, J.A.; Young, A.J.; Montano, M.A.; Evans, W.J.; et al. Physiological and psychological effects of testosterone during severe energy deficit and recovery: A study protocol for a randomized, placebo-controlled trial for Optimizing Performance for Soldiers (OPS). Contemp. Clin. Trials 2017, 58, 47–57. [Google Scholar] [CrossRef]
- Tanofsky-Kraff, M.; Sbrocco, T.; Theim, K.R.; Cohen, L.A.; Mackey, E.R.; Stice, E.; Henderson, J.L.; McCreight, S.J.; Bryant, E.J.; Stephens, M.B. Obesity and the US military family. Obesity 2013, 21, 2205–2220. [Google Scholar] [CrossRef]
- Csizmar, G.T.; Irwin, M. Efficacy of Weight Loss Interventions in United States Active Duty Military Populations: A Systematic Review. Mil. Med. 2021, 186, 1093–1099. [Google Scholar] [CrossRef]
- Malkawi, A.M.; Meertens, R.M.; Kremers, S.P.J.; Sleddens, E.F.C. Dietary, physical activity, and weight management interventions among active-duty military personnel: A systematic review. Mil. Med. Res. 2018, 5, 43. [Google Scholar] [CrossRef]
- Margolis, L.M.; Murphy, N.E.; Martini, S.; Spitz, M.G.; Thrane, I.; McGraw, S.M.; Blatny, J.M.; Castellani, J.W.; Rood, J.C.; Young, A.J. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance. Appl. Physiol. Nutr. Metab. 2014, 39, 1395–1401. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Sepowitz, J.J.; Deuster, P.A. US Military Dietary Protein Recommendations: A Simple But Often Confused Topic. J. Spec. Oper. Med. 2015, 15, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Wycherley, T.P.; Moran, L.J.; Clifton, P.M.; Noakes, M.; Brinkworth, G.D. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 1281–1298. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; Cao, J.J.; Margolis, L.M.; Sauter, E.R.; Whigham, L.D.; McClung, J.P.; Rood, J.C.; Carbone, J.W.; Combs, G.F., Jr.; Young, A.J. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: A randomized controlled trial. FASEB J. 2013, 27, 3837–3847. [Google Scholar] [CrossRef] [PubMed]
- Longland, T.M.; Oikawa, S.Y.; Mitchell, C.J.; Devries, M.C.; Phillips, S.M. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: A randomized trial. Am. J. Clin. Nutr. 2016, 103, 738–746. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Margolis, L.M.; Orr, J.S. Optimized dietary strategies to protect skeletal muscle mass during periods of unavoidable energy deficit. FASEB J. 2015, 29, 1136–1142. [Google Scholar] [CrossRef]
- Departments of the Army, Tennessee, and the Air Force (Ed.) Nutrition and Menu Standards for Human Performance Optimization; Army Publishing Directorate: Fort Belvoir, VA, USA, 2017. [Google Scholar]
- Page, M.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffmann, T.; Mulrow, C.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.M. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef]
- Korakakis, V.; Whiteley, R.; Tzavara, A.; Malliaropoulos, N. The effectiveness of extracorporeal shockwave therapy in common lower limb conditions: A systematic review including quantification of patient-rated pain reduction. Br. J. Sports Med. 2018, 52, 387–407. [Google Scholar] [CrossRef]
- Hooper, P.; Jutai, J.W.; Strong, G.; Russell-Minda, E. Age-related macular degeneration and low-vision rehabilitation: A systematic review. Can. J. Ophthalmol. 2008, 43, 180–187. [Google Scholar] [CrossRef]
- Askew, E.; Munro, I.; Sharp, M.; Siegel, S.; Popper, R.; Rose, M.; Hoyt, R.; Martin, J.; Reynolds, K.; Lieberman, H. Nutritional Status and Physical and Mental Performance of Special Operations Soldiers Consuming the Ration, Lightweight, or the Meal, Ready-To-Eat Military Field Ration during a 30-Day Field Training Exercise; US Army Research Institute of Environmental Medicine: Natick, MA, USA, 1987. [Google Scholar]
- Pasiakos, S.M.; Montain, S.J.; Young, A.J. Protein supplementation in US military personnel. J. Nutr. 2013, 143, 1815S–1819S. [Google Scholar] [CrossRef]
- Berryman, C.E.; Sepowitz, J.J.; McClung, H.L.; Lieberman, H.R.; Farina, E.K.; McClung, J.P.; Ferrando, A.A.; Pasiakos, S.M. Supplementing an energy adequate, higher protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance. J. Appl. Physiol. 2017, 122, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Alemany, J.A.; Nindl, B.C.; Kellogg, M.D.; Tharion, W.J.; Young, A.J.; Montain, S.J. Effects of dietary protein content on IGF-I, testosterone, and body composition during 8 days of severe energy deficit and arduous physical activity. J. Appl. Physiol. 2008, 105, 58–64. [Google Scholar] [CrossRef] [PubMed]
- McAdam, J.S.; McGinnis, K.D.; Beck, D.T.; Haun, C.T.; Romero, M.A.; Mumford, P.W.; Roberson, P.A.; Young, K.C.; Lohse, K.R.; Lockwood, C.M. Effect of whey protein supplementation on physical performance and body composition in army initial entry training soldiers. Nutrients 2018, 10, 1248. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; Austin, K.G.; Lieberman, H.R.; Askew, E.W. Efficacy and safety of protein supplements for US Armed Forces personnel: Consensus statement. J. Nutr. 2013, 143, 1811S–1814S. [Google Scholar] [CrossRef]
- Ferrando, A.A. Increased protein intake in military special operations. J. Nutr. 2013, 143, 1852S–1856S. [Google Scholar] [CrossRef]
- Friedl, K. Protein and amino acids: Physiological optimization for current and future military operational scenarios. In The Role of Protein and Amino Acids in Sustaining and Enhancing Performance; National Academies Press: Washington, DC, USA, 1999; pp. 85–91. [Google Scholar]
- Marriott, B.M.; Carlson, S.J. Committee on Military Nutrition Research Recommendations and Conclusions. In Nutritional Needs in Cold and in High-Altitude Environments: Applications for Military Personnel in Field Operations; National Academies Press (US): Cambridge, MA, USA, 1996. [Google Scholar]
- Carbone, J.W.; McClung, J.P.; Pasiakos, S.M. Recent advances in the characterization of skeletal muscle and whole-body protein responses to dietary protein and exercise during negative energy balance. Adv. Nutr. 2019, 10, 70–79. [Google Scholar] [CrossRef]
- Helms, E.R.; Zinn, C.; Rowlands, D.S.; Brown, S.R. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: A case for higher intakes. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 127–138. [Google Scholar] [CrossRef]
- Carbone, J.W.; Pasiakos, S.M. Dietary Protein and Muscle Mass: Translating Science to Application and Health Benefit. Nutrients 2019, 11, 1136. [Google Scholar] [CrossRef]
- Lockwood, C.M.; Roberts, M.D.; Dalbo, V.J.; Smith-Ryan, A.E.; Kendall, K.L.; Moon, J.R.; Stout, J.R. Effects of hydrolyzed whey versus other whey protein supplements on the physiological response to 8 weeks of resistance exercise in college-aged males. J. Am. Coll. Nutr. 2017, 36, 16–27. [Google Scholar] [CrossRef]
- Cribb, P.J.; Williams, A.D.; Carey, M.F.; Hayes, A. The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 494–509. [Google Scholar] [CrossRef]
- Gwin, J.A.; Church, D.D.; Wolfe, R.R.; Ferrando, A.A.; Pasiakos, S.M. Muscle Protein Synthesis and Whole-Body Protein Turnover Responses to Ingesting Essential Amino Acids, Intact Protein, and Protein-Containing Mixed Meals with Considerations for Energy Deficit. Nutrients 2020, 12, 2457. [Google Scholar] [CrossRef] [PubMed]
- Wardle, S.L.; O’Leary, T.J.; McClung, J.P.; Pasiakos, S.M.; Greeves, J.P. Feeding female soldiers: Consideration of sex-specific nutrition recommendations to optimise the health and performance of military personnel. J. Sci. Med. Sport 2021, 24, 995–1001. [Google Scholar] [CrossRef] [PubMed]
Reference, Year | Country | Type of Study | Final Sample (n) | Participants | Time Period | Study Length | Age (Yrs.) | Protein Dose | EI Measure | Body Weight Measure |
---|---|---|---|---|---|---|---|---|---|---|
Askew et al., 1987 [21] | U.S.A. | Experimental between groups (Pre/Post) | 34 | 2nd and 3rd Battalions | September 1986–October 1986 | 30 days | 27 | 112 g/day vs. 64 g/day | Self-report and nutrient analyses system (USARIEM), calculated from TEEE | BW (SECA Scale), FFM and FM (underwater weighing) |
Alemany et al., 2008 [24] | U.S.A. | Mixed-model, repeated measures | 34 | U.S. Marine Corps infantry officer candidates | 2006 | 8 days | 24.5 ± 0.3 | 0.9 g/per kg/d vs. 0.5 g/per kg/d | Observed (wrappers) and MRE nutrient database, DLW | BW (digital scale), FFM, FM (DXA) |
Berryman et al., 2016 [23] | U.S.A. | RCT | 63 | U.S. Marines | January 2014–March 2015 | 45 days | 25 ± 3 | 7 g/day, 84 g/day, or 133 g/day supplement | 24 h dietary recall and database analysis, DLW | BW (Digital Scale), FFM, FM (DEXA) |
Booth et al., 2003 [1] | Australia | Experimental btw groups | 37 | Airfield defense guards | April 1999 | 12 days | 22 | 63 g/day, 88 g/day, or 116 g/day | Observed (wrappers) and database analysis, DLW | BW (SECA Scale), FFM and FM (BIA) |
Fallowfield et al., 2004 [2] | U.K. | Within-subject, repeated measures | 176 | Royal Marines stationed in U.K. for deployment to Afghanistan | March 2010–October 2010 | 6 months | 28 ± 7 | 125 g/day vs. 95 g/day | Self-report (food diary) and analysis, DLW | BW (Scale), Body Comp (skinfolds (eight sites) and circumferential girths (six sites)) |
Margolis et al., 2014 [10] | Norway | Longitudinal observational | 21 | Norwegian conscripted soldiers | 2012 | 7 days | 20 ± 1 | 1.59 g/kg/day, 1.71 g/kg/day | Observed (wrappers and food logs) and analysis, DLW | BW (Digital Scale) |
McAdam et al., 2018 [25] | U.S.A. | Repeated measures, double-blind, parallel groups | 69 | U.S. Army soldiers | 2017 | 8 weeks | 19 ± 1 | 0.5 g vs. 38 g (2xd protein supplement) | Self-report (diet recall), ED estimation from previous work | BW (Scale), FFM, FM (7-site skinfold) |
Pasiakos et al., 2013 [13] | U.S.A. | RCT | 39 | Military personnel from the U.S. Army | 2012 | 31 days | 21 ± 1 | 0.8 g/kg/day, 1.6 g/kg/day, or 2.4 g/kg/day | Objective (dietitian/metabolic kitchen prepared meals), indirect calorimetry | BW (digital scale), FFM, FM (DXA) |
First Author, Year Maximum Points Available | Reporting 11 Points | External Validity 3 Points | Internal Validity–Bias 7 Points | Internal Validity–Confounding 6 Points | Power 1 Point | Total | Quality Rating α |
---|---|---|---|---|---|---|---|
Randomized studies (maximum score = 28) | |||||||
Alemany et al., 2008 [24] | 11 | 1 | 6 | 5 | 1 | 24 | Good |
Berryman et al., 2016 [23] | 11 | 1 | 7 | 6 | 1 | 26 | Excellent |
Booth et al., 2003 [1] | 10 | 1 | 5 | 5 | 1 | 22 | Good |
McAdam et al., 2018 [25] | 9 | 1 | 7 | 6 | 1 | 24 | Good |
Pasiakos et al., 2013 [13] | 11 | 0 | 5 | 5 | 1 | 22 | Good |
Non-randomized studies (maximum score = 25) | |||||||
Askew et al., 1987 [21] | 9 | 1 | 5 | 3 | 1 | 19 | Fair |
Fallowfield et al., 2004 [2] | 9 | 3 | 5 | 3 | 1 | 21 | Good |
Margolis et al., 2014 [10] | 8 | 1 | 5 | 3 | 1 | 18 | Fair |
Reference, Year | Protein Groups | ED Length | TDEI (kcal) | TDEE (kcal) | ED (kcal/d) | BW (kg) | FM (kg) | FFM (kg) | BF% | Key Findings | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Mean | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||
Askew et al., 1987 [21] | MRE VI 112 g/day | 30 days | 2782 of 3600 | 3250 | −467 | Pre Post %Change | 74.8 73.6 −1.6 | 2.1 1.7 | 11.9 10.4 −12.6 | 1.0 0.9 | 62.9 63.1 0.3 | 1.0 1.9 | 15.6 13.9 −10.9 | 0.8 1.0 | Decrease in FFM for RLW-30 * |
RLW-30 64 g/day | 1946 of 1976 | 3275 | −1946 | Pre Post %Change | 79.3 75.3 −5.0 | 1.8 1.5 | 13.2 10.6 −19.7 | 1.0 0.8 | 65.8 64.3 −2.3 | 0.9 0.8 | 16.5 13.9 −15.7 | 0.8 0.7 | |||
Alemany et al., 2008 [24] | MRE 0.9 g/kg/day | 8 days | 1530 ρ | 3800/d ρ | −2318 ρ | Pre Post %Change | 83.0 79.0 −4.8 α | 9.6 8.9 | 13.9 12.5 −10.1 α | 3.1 3.8 | 69.2 67.5 −2.4 α | 4.7 8.3 | 16.6 15.3 −7.8α | 3.6 4.2 | Protein dose (O) effect on FFM loss |
MRE 0.5 g/kg/day | 1530 ρ | 3944/d ρ | −2318 ρ | Pre Post %Change | 81.6 78.5 −3.8 α | 5.9 5.7 | 12.5 11.0 −11.0 α | 3.2 2.7 | 69.1 67.8 −1.8 α | 8.3 7.7 −1.9 α | 15.1 13.3 −11.9 α | 3.3 3.0 | |||
Berryman et al., 2016 [23] | CON 6 g/day Sup, 2.0 g/kg/day Total | 7 days | 300, REFED (4506) | NR | −4203 | Pre Post %Change | 85.3 85.2 −0.1 α | 8.4 7.5 | NR 14.2 | NR 3.5 | NR 67.4 | NR 5.4 | NR | NR | CON, MOD, or HIGH Sup (O) on any outcome measure POST-REFED |
MOD 66 g/day Sup, 2.0 g/kg/day Total | 300, REFED (4612) | NR | −4203 | Pre Post %Change | 83.1 83.3 +0.2 α | 11.0 10.1 | NR 13.7 | NR 4.5 | NR 66.2 | NR 7.7 | NR | NR | |||
HIGH 94 g/day Sup, 3.5 g/kg/day Total | 300, REFED (4337) | NR | −4203 | Pre Post %Change | 83.0 83.1 +0.1 α | 8.8 8.0 | NR 12.8 | NR 3.2 | NR 66.9 | NR 6.4 | NR | NR | |||
Booth et al., 2003 [1] | Full CRP 88 g/day | 2200 of 3897 | 3650ε | NR | Pre Post %Change | 76.1 74.6 −1.7 | 10 8.6 | NR NR | NR NR | NR NR | NR NR | 16 12.7 −20 | 7.2 6.1 | 1800 kcal/d ration, 54% Carb, 16% Protein, 30% Fat was sufficient to maintain nutritional status (O) | |
One-half CRP 63 g/day | 1600 of 2155 | 3650 ε | NR | Pre Post %Change | 72 70.1 −2.6 | 8.8 8.1 | NR NR | NR NR | NR NR | NR NR | 14.3 11.4 −18 | 4.0 4.0 | |||
Fresh 116 g/day | 2850 of 3600 | 3650 ε | NR | Pre Post %Change | 83 82 | 10.5 10.5 | NR NR | NR NR | NR NR | NR NR | 19.5 18.2 −2.0 | 5.2 6.3 | |||
Fallowfield et al., 2004 [2] | Repeated measures (Pre, Mid, Post) | 6 months | Pre 3033 κ Mid 2531 κ Post 2685 κ | 3626 κ | −1043 κ | Pre Mid Post %Change | 82.4 78.5 80.9 −1.8 α | 9.1 8.0 8.3 | NR NR NR −1.7 β | NR NR NR | NR NR NR −1.9 β | NR NR NR | 17.2 15.9 16.0 −7.0 α | 4.9 4.6 4.2 | BW, FM, FFM and BC decrease *, FFM increase Post |
Margolis et al., 2014 [10] | MTT 1.59 g/kg/day | 4 days | 3098 of 3800 | 5480 | −2382 | Pre Post %Change | 82.7 80.5 −2.6 α | 9.7 8.1 | NR NR | NR NR | NR NR | NR NR | NR NR | NR NR | 2× RDA protein not sufficient for protein balance maintenance during severe ED |
SKI 1.71 g/kg/day | 3 days | 3461 of 5100 | 6851 | −3390 | Pre Post %Change | 80.5 80.2 −0.4 α | 8.1 7.9 | NR NR | NR NR | NR NR | NR NR | NR NR | NR NR | ||
McAdam et al., 2018 [25] | WP 38.6 g x2/d Sup, 2.8 g/kg/day Total | 8 weeks | Pre-NS 2825 Post-NS 2930 Post-SI 3516 | NM | −595 Est. | Pre-NS Post-SI %Change | 73.4 73.2 −0.2 α | 12.7 10.5 | 13.5 8.9 −34.0 α | 6.1 4.2 | 60.0 64.2 +7.0 α | 7.9 7.5 | NR NR | NR NR | WP—Push up (+), FM (−) * compared to CHO. FFM, sit-up, run (O) |
CHO 0.5 g x2/d Sup, 1.6 g/kg/day Total | Pre-NS 2624 Post-NS 2766 Post-SI 3348 | NM | −595 Est. | Pre-NS Post-SI %Change | 72.3 73.2 +1.2 α | 10.9 7.9 | 12.2 9.5 −22.1 α | 6.1 3.9 | 60.1 63.7 +6.0 α | 7.3 6.1 | NR NR | NR NR | |||
Pasiakos et al., 2013 [13] | RDA 0.8 g/kg/day | 21 days | 1883 | 485 ε | −40% ψ | Pre Post %Change | 78 74.5 −4.5 α | 3 ^ 0.3 ^ | NR NR −1.6 β | NR NR | NR NR −2.3 β | NR NR | NR NR −1.3 β | NR NR | 2× RDA sparred FFM, decrease FM compared to RDA |
2× RDA 1.6 g/kg/day | 1820 | 498 ε | −40%ψ | Pre Post %Change | 76 73.3 −3.6 α | 3 ^ 0.2 ^ | NR NR −1.9 β | NR NR | NR NR −0.8 β | NR NR | NR NR −1.8 β | NR NR | |||
3× RDA 2.4 g/kg/day | 1766 | 498 ε | −40% ψ | Pre Post %Change | 77 73.7 −4.3 α | 2 ^ 0.3 ^ | NR NR −1.9 β | NR NR | NR NR −1.2 β | NR NR | NR NR −1.9 β | NR NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, R.E., 3rd; Casperson, S.L.; Kho, H.; Flack, K.D. The Role of Dietary Protein in Body Weight Regulation among Active-Duty Military Personnel during Energy Deficit: A Systematic Review. Nutrients 2023, 15, 3948. https://doi.org/10.3390/nu15183948
Anderson RE 3rd, Casperson SL, Kho H, Flack KD. The Role of Dietary Protein in Body Weight Regulation among Active-Duty Military Personnel during Energy Deficit: A Systematic Review. Nutrients. 2023; 15(18):3948. https://doi.org/10.3390/nu15183948
Chicago/Turabian StyleAnderson, Robert E., 3rd, Shanon L. Casperson, Hannah Kho, and Kyle D. Flack. 2023. "The Role of Dietary Protein in Body Weight Regulation among Active-Duty Military Personnel during Energy Deficit: A Systematic Review" Nutrients 15, no. 18: 3948. https://doi.org/10.3390/nu15183948
APA StyleAnderson, R. E., 3rd, Casperson, S. L., Kho, H., & Flack, K. D. (2023). The Role of Dietary Protein in Body Weight Regulation among Active-Duty Military Personnel during Energy Deficit: A Systematic Review. Nutrients, 15(18), 3948. https://doi.org/10.3390/nu15183948