Lifestyle Factors and Energy Intakes with Risks of Breast Cancer among Pre- and Post- Menopausal Women in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Recruitment
2.2. Clinical Characters and Dietary Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Porter, P. “Westernizing” women’s risks? Breast cancer in lower-income countries. N. Engl. J. Med. 2008, 358, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.C.; Chang, C.J.; Hsu, C.; Cheng, C.C.; Chiu, C.F.; Cheng, A.L. Significant difference in the trends of female breast cancer incidence between Taiwanese and Caucasian Americans: Implications from age-period-cohort analysis. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1986–1990. [Google Scholar] [CrossRef] [PubMed]
- Ushijima, K. Current status of gynecologic cancer in Japan. J. Gynecol. Oncol. 2009, 20, 67–71. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, Y.C.; Chiang, C.J.; Lu, Y.S.; Kuo, K.T.; Huang, C.S.; Cheng, W.F.; Lai, M.S.; You, S.L.; Cheng, A.L. The emerging epidemic of estrogen-related cancers in young women in a developing Asian country. Int. J. Cancer 2012, 130, 2629–2637. [Google Scholar] [CrossRef]
- Yoo, K.Y.; Kim, Y.; Park, S.K.; Kang, D. Lifestyle, genetic susceptibility and future trends of breast cancer in Korea. Asian Pac. J. Cancer Prev. 2006, 7, 679–682. [Google Scholar]
- Health Promotion Administration, Ministry of Health and Welfare. Taiwan Cancer Registry Report. Available online: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=119 (accessed on 15 December 2022).
- Leong, S.P.; Shen, Z.Z.; Liu, T.J.; Agarwal, G.; Tajima, T.; Paik, N.S.; Sandelin, K.; Derossis, A.; Cody, H.; Foulkes, W.D. Is breast cancer the same disease in Asian and Western countries? World J. Surg. 2010, 34, 2308–2324. [Google Scholar] [CrossRef]
- Lin, C.H.; Yap, Y.S.; Lee, K.H.; Im, S.A.; Naito, Y.; Yeo, W.; Ueno, T.; Kwong, A.; Li, H.; Huang, S.M.; et al. Contrasting Epidemiology and Clinicopathology of Female Breast Cancer in Asians vs the US Population. J. Natl. Cancer Inst. 2019, 111, 1298–1306. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; American Institute for Cancer Research: Washington, DC, USA, 2007; pp. 219–220. [Google Scholar]
- Amadou, A.; Ferrari, P.; Muwonge, R.; Moskal, A.; Biessy, C.; Romieu, I.; Hainaut, P. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: A systematic review and dose-response meta-analysis. Obes. Rev. 2013, 14, 665–678. [Google Scholar] [CrossRef]
- Pan, S.Y.; DesMeules, M. Energy intake, physical activity, energy balance, and cancer: Epidemiologic evidence. Methods Mol. Biol. 2009, 472, 191–215. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Persepective. Cntinuous Update Project Expert Report 2018. Available online: https://www.wcrf.org/diet-activity-and-cancer (accessed on 23 December 2022).
- Byers, T.; Sedjo, R.L. Does intentional weight loss reduce cancer risk? Diabetes Obes. Metab. 2011, 13, 1063–1072. [Google Scholar] [CrossRef]
- Zhang, F.F.; John, E.M.; Knight, J.A.; Kaur, M.; Daly, M.; Buys, S.; Andrulis, I.L.; Stearman, B.; West, D.; Terry, M.B. Total energy intake and breast cancer risk in sisters: The Breast Cancer Family Registry. Breast Cancer Res. Treat. 2013, 137, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Ziegler, R.G.; Dunn, B.; Stolzenberg-Solomon, R.; Lacey, J.V., Jr.; Huang, W.Y.; Schatzkin, A.; Reding, D.; Hoover, R.N.; Hartge, P.; et al. Association of energy intake and energy balance with postmenopausal breast cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol. Biomark. Prev. 2006, 15, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Dirx, M.J.; Voorrips, L.E.; Goldbohm, R.A.; van den Brandt, P.A. Baseline recreational physical activity, history of sports participation, and postmenopausal breast carcinoma risk in the Netherlands Cohort Study. Cancer 2001, 92, 1638–1649. [Google Scholar] [CrossRef]
- Malin, A.; Matthews, C.E.; Shu, X.O.; Cai, H.; Dai, Q.; Jin, F.; Gao, Y.T.; Zheng, W. Energy balance and breast cancer risk. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1496–1501. [Google Scholar] [CrossRef]
- Silvera, S.A.; Jain, M.; Howe, G.R.; Miller, A.B.; Rohan, T.E. Energy balance and breast cancer risk: A prospective cohort study. Breast Cancer Res. Treat. 2006, 97, 97–106. [Google Scholar] [CrossRef]
- Xiao, Y.; Xia, J.; Li, L.; Ke, Y.; Cheng, J.; Xie, Y.; Chu, W.; Cheung, P.; Kim, J.H.; Colditz, G.A.; et al. Associations between dietary patterns and the risk of breast cancer: A systematic review and meta-analysis of observational studies. Breast Cancer Res. 2019, 21, 16. [Google Scholar] [CrossRef]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Huang, M.C.; Lin, K.D.; Chen, H.J.; Wu, Y.J.; Chang, C.I.; Shin, S.J.; Hung, H.C.; Lee, C.H.; Huang, Y.F.; Hsu, C.C. Validity of a Short Food Frequency Questionnaire Assessing Macronutrient and Fiber Intakes in Patients of Han Chinese Descent with Type 2 Diabetes. Int. J. Environ. Res. Public Health 2018, 15, 1142. [Google Scholar] [CrossRef]
- Kazemi, A.; Barati-Boldaji, R.; Soltani, S.; Mohammadipoor, N.; Esmaeilinezhad, Z.; Clark, C.C.T.; Babajafari, S.; Akbarzadeh, M. Intake of Various Food Groups and Risk of Breast Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2021, 12, 809–849. [Google Scholar] [CrossRef]
- National Cholesterol Education Program; Expert Panel on Detection; Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hutterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [PubMed]
- Mussi, V.; Fanzio, P.; Repetto, L.; Firpo, G.; Scaruffi, P.; Stigliani, S.; Tonini, G.P.; Valbusa, U. DNA-functionalized solid state nanopore for biosensing. Nanotechnology 2010, 21, 145102. [Google Scholar] [CrossRef] [PubMed]
- Neilson, H.K.; Farris, M.S.; Stone, C.R.; Vaska, M.M.; Brenner, D.R.; Friedenreich, C.M. Moderate-vigorous recreational physical activity and breast cancer risk, stratified by menopause status: A systematic review and meta-analysis. Menopause 2017, 24, 322–344. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Q.; Zhang, Y.; Xie, Q.; Tan, X. Physical Activity and Risk of Breast Cancer: A Meta-Analysis of 38 Cohort Studies in 45 Study Reports. Value Health 2019, 22, 104–128. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M. Physical activity and cancer prevention: From observational to intervention research. Cancer Epidemiol. Biomark. Prev. 2001, 10, 287–301. [Google Scholar]
- Wang, S.; Yang, T.; Qiang, W.; Shen, A.; Zhao, Z.; Chen, X.; Xi, C.; Liu, H.; Guo, F. Effectiveness of physical exercise on the cardiovascular system in breast cancer patients: A systematic review and meta-analysis of randomized controlled trials. Complement Ther. Clin. Pract. 2021, 44, 101426. [Google Scholar] [CrossRef]
- Touvier, M.; Fassier, P.; His, M.; Norat, T.; Chan, D.S.; Blacher, J.; Hercberg, S.; Galan, P.; Druesne-Pecollo, N.; Latino-Martel, P. Cholesterol and breast cancer risk: A systematic review and meta-analysis of prospective studies. Br. J. Nutr. 2015, 114, 347–357. [Google Scholar] [CrossRef]
- von Eckardstein, A.; Hersberger, M.; Rohrer, L. Current understanding of the metabolism and biological actions of HDL. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 147–152. [Google Scholar] [CrossRef]
- Emaus, A.; Veierod, M.B.; Furberg, A.S.; Espetvedt, S.; Friedenreich, C.; Ellison, P.T.; Jasienska, G.; Andersen, L.B.; Thune, I. Physical activity, heart rate, metabolic profile, and estradiol in premenopausal women. Med. Sci. Sports Exerc. 2008, 40, 1022–1030. [Google Scholar] [CrossRef]
- Endogenous, H.; Breast Cancer Collaborative, G.; Key, T.J.; Appleby, P.N.; Reeves, G.K.; Travis, R.C.; Alberg, A.J.; Barricarte, A.; Berrino, F.; Krogh, V.; et al. Sex hormones and risk of breast cancer in premenopausal women: A collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol. 2013, 14, 1009–1019. [Google Scholar] [CrossRef]
- Furberg, A.S.; Jasienska, G.; Bjurstam, N.; Torjesen, P.A.; Emaus, A.; Lipson, S.F.; Ellison, P.T.; Thune, I. Metabolic and hormonal profiles: HDL cholesterol as a plausible biomarker of breast cancer risk. The Norwegian EBBA Study. Cancer Epidemiol. Biomark. Prev. 2005, 14, 33–40. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, W.; Dai, Z.; Wang, M.; Tian, T.; Liu, X.; Kang, H.; Guan, H.; Zhang, S.; Dai, Z. Association between body mass index and breast cancer risk: Evidence based on a dose-response meta-analysis. Cancer Manag. Res. 2018, 10, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Dirx, M.J.; Zeegers, M.P.; Dagnelie, P.C.; van den Bogaard, T.; van den Brandt, P.A. Energy restriction and the risk of spontaneous mammary tumors in mice: A meta-analysis. Int. J. Cancer 2003, 106, 766–770. [Google Scholar] [CrossRef]
- Klurfeld, D.M.; Welch, C.B.; Davis, M.J.; Kritchevsky, D. Determination of degree of energy restriction necessary to reduce DMBA-induced mammary tumorigenesis in rats during the promotion phase. J. Nutr. 1989, 119, 286–291. [Google Scholar] [CrossRef]
- Michels, K.B.; Ekbom, A. Caloric restriction and incidence of breast cancer. JAMA 2004, 291, 1226–1230. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Friedlander, N.J. Dietary fat, calories, and the risk of breast cancer in postmenopausal women: A prospective population-based study. J. Am. Coll. Nutr. 1993, 12, 390–399. [Google Scholar] [CrossRef]
- Hartman, T.J.; Gapstur, S.M.; Gaudet, M.M.; Shah, R.; Flanders, W.D.; Wang, Y.; McCullough, M.L. Dietary Energy Density and Postmenopausal Breast Cancer Incidence in the Cancer Prevention Study II Nutrition Cohort. J. Nutr. 2016, 146, 2045–2050. [Google Scholar] [CrossRef]
- Lope, V.; Martin, M.; Castello, A.; Ruiz, A.; Casas, A.M.; Baena-Canada, J.M.; Antolin, S.; Ramos-Vazquez, M.; Garcia-Saenz, J.A.; Munoz, M.; et al. Overeating, caloric restriction and breast cancer risk by pathologic subtype: The EPIGEICAM study. Sci. Rep. 2019, 9, 3904. [Google Scholar] [CrossRef]
- O’Dea, J.P.; Wieland, R.G.; Hallberg, M.C.; Llerena, L.A.; Zorn, E.M.; Genuth, S.M. Effect of dietery weight loss on sex steroid binding sex steroids, and gonadotropins in obese postmenopausal women. J. Lab. Clin. Med. 1979, 93, 1004–1008. [Google Scholar]
- Smith, A.T.; Clemmons, D.R.; Underwood, L.E.; Ben-Ezra, V.; McMurray, R. The effect of exercise on plasma somatomedin-C/insulinlike growth factor I concentrations. Metabolism 1987, 36, 533–537. [Google Scholar] [CrossRef]
- McKeown-Eyssen, G. Epidemiology of colorectal cancer revisited: Are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol. Biomark. Prev. 1994, 3, 687–695. [Google Scholar]
- Shin, S.; Fu, J.; Shin, W.K.; Huang, D.; Min, S.; Kang, D. Association of food groups and dietary pattern with breast cancer risk: A systematic review and meta-analysis. Clin. Nutr. 2023, 42, 282–297. [Google Scholar] [CrossRef]
- Johansson, L.; Solvoll, K.; Bjorneboe, G.E.; Drevon, C.A. Under- and overreporting of energy intake related to weight status and lifestyle in a nationwide sample. Am. J. Clin. Nutr. 1998, 68, 266–274. [Google Scholar] [CrossRef]
Characteristics | Control (n = 297) | Case (n = 285) | p 2 | OR (95% CI) 3 |
---|---|---|---|---|
Demographic and clinical characters | ||||
Age | 50.5 ± 12.1 | 55.7 ± 10.2 | <0.001 | |
Education (year) | ||||
>12 | 222 (75.0) | 158 (55.4) | 1 | |
≤12 | 74 (25.0) | 127 (44.6) | <0.001 | 2.41 (1.70–3.43) |
Marriage status | ||||
Unmarried or other | 114 (38.4) | 79 (27.7) | 1 | |
married | 183 (61.6) | 206 (72.3) | 0.006 | 1.62 (1.15–2.30) |
Family history of breast cancer | ||||
No | 248 (83.5) | 241 (84.6) | 1 | |
Yes | 49 (16.5) | 44 (15.4) | 0.727 | 0.92 (0.59–1.44) |
Smokers | ||||
No | 287 (96.6) | 263 (92.3) | 1 | |
Yes | 10 (3.4) | 22 (7.7) | 0.021 | 2.40 (1.12–5.16) |
Alcohol drinking | ||||
No | 285 (96.0) | 264 (92.6) | 1 | |
Yes | 12 (4.0) | 21 (7.4) | 0.083 | 1.89 (0.91–3.92) |
Physical activity | ||||
Yes | 160 (53.9) | 116 (40.7) | 1 | |
No | 137 (46.1) | 169 (59.3) | 0.001 | 1.70 (1.23–2.36) |
Weight | 55.8 ± 9.1 | 58.9 ± 10.1 | <0.001 | |
BMI (kg/m2) | ||||
<23.0 | 188 (63.5) | 144 (50.5) | 1 | |
23.0–27.5 | 84 (28.4) | 91 (31.9) | 1.41 (0.98–2.04) | |
≥ 27.5 | 24 (8.1) | 50 (17.5) | 0.001 | 2.72 (1.60–4.63) |
Age at menarche (year) | ||||
>12 | 267 (90.2) | 250 (87.7) | 1 | |
≤12 | 29 (9.8) | 35 (12.3) | 0.339 | 1.29 (0.77–2.17) |
Oral contraceptive | ||||
No | 185 (94.9) | 218 (93.6) | 1 | |
Yes | 9 (4.6) | 10 (4.3) | 0.356 | 0.87(0.37–2.33) |
Menopausal status | ||||
Pre-menopausal | 184 (62.0) | 134 (47.0) | 1 | |
Post-menopausal | 113 (38.0) | 151 (53.0) | <0.001 | 1.84(1.32–2.55) |
Menopausal status × BMI | ||||
Pre-menopausal × BMI < 27.5 | 172 (58.1) | 120 (42.1) | 1 | |
Pre-menopausal × BMI ≥ 27.5 | 12 (4.1) | 14 (4.9) | 1.67(0.75–3.74) | |
Post-menopausal × BMI < 27.5 | 100 (33.8) | 115 (40.4) | 1.65(1.16–2.35) | |
Post-menopausal × BMI ≥ 27.5 | 12 (4.1) | 36 (12.6) | <0.001 | 4.30(2.15–8.60) |
Receptor type | ||||
ER+, HER2+ | 27 (11.3) | |||
ER+, HER2− | 172 (72.0) | |||
ER−, HER2+ | 21 (8.8) | |||
ER−, HER2− | 19 (7.9) | |||
Blood lipid | ||||
Triglyceride (mg/dL) | 96.1 ± 49.9 | 115.6 ± 78.9 | <0.001 | |
<150 | 259 (87.5) | 230 (80.7) | 1 | |
≥150 | 37 (12.5) | 55 (19.3) | 0.025 | 1.67(1.06–2.63) |
Cholesterol (mg/dL) | 188.5 ± 39.1 | 189.4 ± 37.8 | 0.776 | |
<200 | 190 (64.2) | 192 (67.4) | 1 | |
≥200 | 106 (35.8) | 93 (32.6) | 0.420 | 0.87(0.62–1.22) |
HDL-C (mg/dL) | 58.4 ± 12.5 | 54.5 ± 12.0 | <0.001 | |
≥40 | 283 (95.6) | 260 (91.2) | 1 | |
<40 | 13 (4.4) | 25 (8.8) | 0.033 | 2.09(1.05–4.18) |
LDL-C (mg/dL) | 111.4 ± 33.1 | 113.2 ± 31.4 | 0.495 | |
<130 | 217 (73.3) | 202 (70.9) | 1 | |
≥130 | 79 (26.7) | 83 (29.1) | 0.513 | 1.13(0.79–1.62) |
Nutrient intakes 4 | ||||
Total Energy (kcal/day) | 1365.2 ± 496.0 | 1362.3 ± 403.5 | 0.939 | |
Protein (g/day) | 51.4 ± 23.9 | 47.9 ± 15.0 | 0.021 |
Pre-Menopausal | Post-Menopausal | |||||
---|---|---|---|---|---|---|
No. of Control/Case | Model 1 2 aOR (95% CI) | p | No. of Control/Case | Model 2 3 aOR (95% CI) | p | |
BMI (kg/m2) | 184/134 | 0.98 (0.91–1.07) | 0.679 | 113/151 | 1.10 (1.01–1.20) | 0.023 |
Physical activity | ||||||
Yes | 89/46 | 1 | 71/70 | 1 | ||
No | 95/88 | 2.10 (1.21–3.65) | 0.008 | 42/81 | 1.58 (0.88–2.84) | 0.122 |
High-fat & sugar dietary pattern | ||||||
Tertile 1 | 30/34 | 1 | 61/69 | 1 | ||
Tertile 2 | 58/48 | 0.91 (0.44–1.89) | 0.809 | 35/53 | 1.33 (0.70–2.53) | 0.378 |
Tertile 3 | 96/52 | 0.70 (0.34–1.45) | 0.336 | 17/29 | 1.25 (0.56–2.78) | 0.589 |
p for trend 4 | 0.287 | 0.451 | ||||
Plant-based dietary pattern | ||||||
Tertile 1 | 58/58 | 1 | 24/54 | 1 | ||
Tertile 2 | 63/40 | 0.40 (0.20–0.77) | 0.007 | 39/52 | 0.43 (0.20–0.93) | 0.033 |
Tertile 3 | 63/36 | 0.23 (0.11–0.49) | <0.001 | 50/45 | 0.28 (0.12–0.65) | 0.003 |
p for trend 4 | <0.001 | 0.002 | ||||
Animal protein dietary pattern | ||||||
Tertile 1 | 64/37 | 1 | 41/52 | 1 | ||
Tertile 2 | 63/44 | 1.18 (0.60–2.30) | 0.631 | 40/47 | 0.85 (0.43–1.66) | 0.625 |
Tertile 3 | 57/53 | 1.44 (0.69–3.03) | 0.331 | 32/52 | 0.99 (0.47–2.07) | 0.980 |
p for trend 4 | 0.396 | 0.922 | ||||
Age at menarche (year) | ||||||
>12 | 160/112 | 1 | 107/138 | 1 | ||
≤12 | 23/22 | 2.49 (1.10–5.64) | 0.029 | 6/13 | 2.18 (0.70–6.75) | 0.178 |
Triglyceride (mg/dL) | ||||||
<150 | 174/117 | 1 | 85/113 | 1 | ||
≥150 | 9/17 | 2.26 (0.80–6.40) | 0.126 | 28/38 | 0.55 (0.27–1.11) | 0.092 |
HDL-C (mg/dL) | ||||||
≥40 | 179/120 | 1 | 104/140 | 1 | ||
<40 | 4/14 | 6.74 (1.76–25.83) | 0.005 | 9/11 | 0.85 (0.28–2.55) | 0.766 |
Smoking | ||||||
No | 178/121 | 1 | 109/142 | 1 | ||
Yes | 6/13 | 1.08(0.30–3.89) | 0.910 | 4/9 | 1.22(0.29–5.16) | 0.791 |
Alcohol drinking | ||||||
No | 180/121 | 1 | 105/143 | 1 | ||
Yes | 4/13 | 4.51(1.18–17.29) | 0.028 | 8/8 | 0.95(0.27–3.41) | 0.943 |
Energy intake (kcal/day) | ||||||
<1000 | 34/22 | 1 | 27/22 | 1 | ||
1000–1199 | 33/19 | 1.20 (0.47–3.06) | 0.699 | 32/33 | 1.92 (0.80–4.58) | 0.142 |
1200–1399 | 32/25 | 1.91 (0.76–4.79) | 0.169 | 22/39 | 4.06 (1.60–10.30) | 0.003 |
≥1400 | 85/67 | 1.68 (0.70–4.02) | 0.241 | 32/57 | 5.55 (2.04–15.11) | 0.001 |
p for trend 4 | 0.192 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.-C.; Huang, T.-T.; Feng, H.-C.; Chen, I.-C.; Chang, C.-I.; Wang, T.-N.; Kuo, W.-H.; Wang, M.-Y.; Tsai, L.-W.; Li, S.-Y.; et al. Lifestyle Factors and Energy Intakes with Risks of Breast Cancer among Pre- and Post- Menopausal Women in Taiwan. Nutrients 2023, 15, 3900. https://doi.org/10.3390/nu15183900
Huang M-C, Huang T-T, Feng H-C, Chen I-C, Chang C-I, Wang T-N, Kuo W-H, Wang M-Y, Tsai L-W, Li S-Y, et al. Lifestyle Factors and Energy Intakes with Risks of Breast Cancer among Pre- and Post- Menopausal Women in Taiwan. Nutrients. 2023; 15(18):3900. https://doi.org/10.3390/nu15183900
Chicago/Turabian StyleHuang, Meng-Chuan, Tz-Ting Huang, Hsin-Chun Feng, I-Chun Chen, Chiao-I Chang, Tsu-Nai Wang, Wen-Hung Kuo, Ming-Yang Wang, Li-Wei Tsai, Szu-Yi Li, and et al. 2023. "Lifestyle Factors and Energy Intakes with Risks of Breast Cancer among Pre- and Post- Menopausal Women in Taiwan" Nutrients 15, no. 18: 3900. https://doi.org/10.3390/nu15183900
APA StyleHuang, M. -C., Huang, T. -T., Feng, H. -C., Chen, I. -C., Chang, C. -I., Wang, T. -N., Kuo, W. -H., Wang, M. -Y., Tsai, L. -W., Li, S. -Y., Huang, C. -S., Lu, Y. -S., & Lin, C. -H. (2023). Lifestyle Factors and Energy Intakes with Risks of Breast Cancer among Pre- and Post- Menopausal Women in Taiwan. Nutrients, 15(18), 3900. https://doi.org/10.3390/nu15183900