Immunomodulatory Effect of Infectious Disease of a Breastfed Child on the Cellular Composition of Breast Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Milk Sampling
2.3. Flow Cytometry of Breast Milk
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Group
- (a)
- Mothers
- (b)
- Infants
- (c)
- Infection
3.2. Influence of Infection on the Immunological Composition of Milk
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ladomenou, F.; Moschandreas, J.; Kafatos, A.; Tselentis, Y.; Galanakis, E. Protective effect of exclusive breastfeeding against infections during infancy: A prospective study. Arch. Dis. Child. 2010, 95, 1004–1008. [Google Scholar] [CrossRef]
- Vennemann, M.; Bajanowski, T.; Brinkmann, B.; Jorch, G.; Yücesan, K.; Sauerland, C.; Mitchell, E.A.; GeSID Study Group. Does breastfeeding reduce the risk of sudden infant death syndrome? Pediatrics 2009, 123, 406–410. [Google Scholar] [CrossRef]
- Dee, D.; Li, R.; Lee, L.-C.; Grummer-Strawn, L.M. Associations between breastfeeding practices and young children’s language and motor skill development. Pediatrics 2007, 119, 92–98. [Google Scholar] [CrossRef]
- Picciano, M.F. Nutrient composition of human milk. Pediatr. Clin. N. Am. 2001, 48, 53–67. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef]
- Cabinian, A.; Sinsimer, D.; Tang, M.; Zumba, O.; Mehta, H.; Toma, A.; Sant’Angelo, D.; Laouar, Y.; Laouar, A. Transfer of Maternal Immune Cells by Breastfeeding: Maternal Cytotoxic T Lymphocytes Present in Breast Milk Localize in the Peyer’s Patches of the Nursed Infant. PLoS ONE 2016, 11, e0156762. [Google Scholar] [CrossRef]
- Hanson, L.A. The mother-offspring dyad and the immune system. Acta Paediatr. 2000, 89, 252–258. [Google Scholar] [CrossRef]
- Borysiewicz-Sańczyk, H.; Szczepański, M. Komórki mleka kobiecego. Post. Neonatol. 2009, 1, 13–18. [Google Scholar]
- Field, C.J. The immunological components of human milk and their effect on immune development in infants. J. Nutr. 2005, 135, 1–4. [Google Scholar] [CrossRef]
- Xanthou, M. Immune protection of human milk. Biol. Neonate 1998, 74, 121–133. [Google Scholar] [CrossRef]
- Trend, S.; de Jong, E.; Lloyd, M.L.; Kok, C.H.; Richmond, P.; Doherty, D.A.; Simmer, K.; Kakulas, F.; Strunk, T.; Currie, A. Leukocyte populations in human preterm and term breast milk identified by multicolour flow cytometry. PLoS ONE 2015, 10, e0135580. [Google Scholar] [CrossRef] [PubMed]
- Peroni, D.; Pescollderungg, L.; Piacentini, G.L.; Rigotti, E.; Maselli, M.; Watschinger, K.; Piazza, M.; Pigozzi, R.; Boner, A.L. Immune regulatory cytokines in the milk of lactating women from farming and urban environments. Pediatr. Allergy Immunol. 2010, 21, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Boix-Amorós, A.; Carmen Collado, M.; Van’t Land, B.; Calvert, A.; Le Doare, K.; Garssen, J.; Hanna, H.; Khaleva, E.; Peroni, D.G.; Geddes, D.T.; et al. Reviewing the evidence on breast milk composition and immunological outcomes. Nutr. Rev. 2019, 77, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Jean-Baptiste, F.; Franceschini, S.; Alexa, I.D.; Agostoni, C. Effects of maternal tobacco smoking on breast milk composition and infant development: A literature review. J. Bacteriol. Mycol. 2019, 7, 107–110. [Google Scholar] [CrossRef]
- Emmett, P.M.; Rogers, I.S. Properties of human milk and their relationship with maternal nutrition. Early Hum. Dev. 1997, 49, 7–28. [Google Scholar] [CrossRef]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; Lynch, B.P.; O’Doherty, J.V. Effect of maternal fish oil and seaweed extract supplementation on colostrum and milk composition, humoral immune response, and performance of suckled piglets. J. Anim. Sci. 2010, 88, 2988–2997. [Google Scholar] [CrossRef] [PubMed]
- Amoudruz, P.; Holmlund, U.; Schollin, J.; Sverremark-Ekström, E.; Montgomery, S.M. Maternal country of birth and previous pregnancies are associated with breast milk characteristics. Pediatr. Allergy Immunol. 2009, 20, 19–29. [Google Scholar] [CrossRef]
- Samuel, T.M.; Zhou, Q.; Giuffrida, F.; Munblit, D.; Verhasselt, V.; Thakkar, S.K. Nutritional and Non-nutritional Composition of Human Milk Is Modulated by Maternal, Infant, and Methodological Factors. Front. Nutr. 2020, 7, 576133. [Google Scholar] [CrossRef]
- Wawrzyniak, A.; Lipińska-Opałka, A.; Zdanowski, R.; Lewicki, S.; Murawski, P.; Kalicki, B. Evaluation of selected immunological parameters and the concentration of vitamin D in children with asthma. Case-control study. Cent. Eur. J. Immunol. 2017, 42, 101–106. [Google Scholar] [CrossRef]
- Gleeson, J.P.; Chaudhary, N.; Fein, K.C.; Doerfler, R.; Hredzak-Showalter, P.; Whitehead, K.A. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. Sci. Adv. 2022, 8, eabm6865. [Google Scholar] [CrossRef]
- Hassiotou, F.; Beltran, A.; Chetwynd, E.; Stuebe, A.M.; Twigger, A.-J.; Metzger, P.; Trengove, N.; Lai, C.T.; Filgueira, L.; Blancafort, P.; et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells 2012, 30, 2164–2174. [Google Scholar] [CrossRef]
- Dewey, K.G.; Heinig, M.J.; Nommsen-Rivers, L.A. Differences in morbidity between breast-fed and formula-fed infants. J. Pediatr. 1995, 126, 696–702. [Google Scholar] [CrossRef]
- Honorio-França, A.C.; Carvalho, M.P.; Isaac, L.; Trabulsi, L.R.; Carneiro-Sampaio, M.M. Colostral mononuclear phagocytes are able to kill enteropathogenic Escherichia coli opsonized with colostral IgA. Scand. J. Immunol. 1997, 46, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Beghetti, I.; Biagi, E.; Martini, S.; Brigidi, P.; Corvaglia, L.; Aceti, A. Human Milk’s Hidden Gift: Implications of the Milk Microbiome for Preterm Infants. Health Nutr. 2019, 11, 2944. [Google Scholar] [CrossRef] [PubMed]
- Sheheri, S.; Knox, C.L.; Liley, H.G.; Cowley, D.M.; Wright, J.R.; Henman, M.G.; Hewavitharana, A.K.; Charles, B.G.; Shaw, P.N.; Sweeney, E.L.; et al. Breastmilk-Saliva Interactions Boost Innate Immunity by Regulating the Oral Microbiome in Early Infancy. PLoS ONE 2015, 10, e0135047. [Google Scholar]
- Ramsay, D.T.; Kent, J.C.; Owens, R.A.; Hartmann, P.E. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics 2004, 113, 361–367. [Google Scholar] [CrossRef]
- Zhou, L.; Yoshimura, Y.; Huang, Y.; Suzuki, R.; Yokoyama, M.; Okabe, M.; Shimamura, M. Two independent pathways of maternal cell transmission to offspring: Through placenta during pregnancy and by breast-feeding after birth. Immunology 2000, 101, 570–580. [Google Scholar] [CrossRef]
- Michie, C.A. The long term effects of breastfeeding: A role for the cells in breast milk? J. Trop. Pediatr. 1998, 44, 2–3. [Google Scholar] [CrossRef]
- Kinder, J.; Jiang, T.T.; Ertelt, J.M.; Xin, L.; Strong, B.S.; Shaaban, A.F.; Way, S.S. Cross-Generational Reproductive Fitness Enforced by Microchimeric Maternal Cells. Cell 2015, 162, 505–515. [Google Scholar] [CrossRef]
- Hassiotou, F.; Hepworth, A.R.; Metzger, P.; Tat Lai, C.; Trengove, N.; Hartmann, P.E.; Filgueira, L. Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clin. Transl. Immunol. 2013, 2, e3. [Google Scholar] [CrossRef]
- Riskin, A.; Almog, M.; Peri, R.; Halasz, K.; Srugo, I.; Kessel, A. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr. Res. 2012, 71, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Bryan, D.L.; Hart, P.H.; Forsyth, K.D.; Gibson, R.A. Immunomodulatory constituents of human milk change in response to infant bronchiolitis. Pediatr. Allergy Immunol. 2007, 18, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Beyer, M.; Bartz, H.; Hörner, K.; Doths, S.; Koerner-Rettberg, C.; Schwarze, J. Sustained increases in numbers of pulmonary dendritic cells after respiratory syncytial virus infection. J. Allergy Clin. Immunol. 2004, 113, 127–133. [Google Scholar] [CrossRef]
- Goldman, A.S.; Goldblum, R.M. Transfer of maternal leukocytes to the infant by human milk. Curr. Top. Microbiol. Immunol. 1997, 222, 205–213. [Google Scholar] [PubMed]
- Tangye, S.G.; Good, K.L. Human IgM+CD27+ B Cells: Memory B Cells or “Memory” B Cells? J. Immunol. 2007, 179, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Matson, A.P.; Thrall, R.S.; Rafti, E.; Lingenheld, E.G.; Puddington, L. IgG transmitted from allergic mothers decreases allergic sensitization in breastfed offspring. Clin. Mol. Allergy 2010, 8, 9. [Google Scholar] [CrossRef]
- Brandtzaeg, P. The Mucosal Immune System and Its Integration with the Mammary Glands. J. Pediatr. 2010, 156, 8. [Google Scholar] [CrossRef]
- Centrum Nauki o Laktacji: Karmienie Piersią w Polsce. Raport 2015. Available online: https://cnol.kobiety.med.pl/wp-content/uploads/2019/01/Raport_Karmienie_Piersia_w_Polsce_20151.pdf (accessed on 3 September 2015).
- Kramer, M.S. Breast is best: The evidence. Early Hum. Dev. 2010, 86, 729–732. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Exclusive breastfeeding; Age of child 1–6 months; No chronic diseases in the child; Symptoms of respiratory tract infection in the child; No symptoms of respiratory tract infection in the mother. | Partial breastfeeding; Supplementary feeding with modified milk; Bottle feeding of breast milk; Symptoms of respiratory tract infection in the mother; Chronic disease in the mother; Current pharmacotherapy in the mother; Child’s age < 1 month or >6 months. |
Mothers | |||
Variable | Study Group (n = 26) | Control Group (n = 23) | p |
Age (years) | 33 ± 3 | 32 ± 3 | ns. |
Firstborn (n, %) | 1 (4%) | 11 (48%) | <0.05 |
Duration of pregnancy (weeks) | 39 ± 1 | 40 ± 1 | ns. |
Infants | |||
Variable | Study Group (n = 26) | Control Group (n = 23) | p |
Weight (g) | 3566 ± 303 | 3735 ± 510 | ns. |
Length (cm) | 55 ± 2 | 56 ± 3 | ns. |
CRP [mg/dL] | 1.47 ± 2.16 | - | - |
WBC [×109/L] | 13.08 ± 5.02 | - | - |
Lymphocytes | 6.78 ± 2.89 | - | - |
Lymphocytes [%] | 54.19 ± 18.04 | - | - |
Neutrophils | 3.96 ± 3.38 | - | - |
Neutrophils [%] | 29.99 ± 17.99 | - | - |
ERC [mm/h] | 19.63 ± 16.05 | - | - |
Variable | Study Group (n = 26) | Control Group (n = 23) | p |
---|---|---|---|
CD8+ [%] | 27.09 ± 14.15 | 16.32 ± 10.27 | 0.005 * |
CD4+ [%] | 32.72 ± 14.85 | 22.58 ± 11.35 | 0.012 * |
CD3+ [%] | 86.97 (77.09–91.80) | 75.57 (63.20–83.75) | 0.006 * |
CD19+ [%] | 3.62 (2.35–6.92) | 4.81 (2.82–7.19) | ns. |
CD16/56 [%] | 5.96 (2.91–8.21) | 9.22 (4.85–14.12) | ns. |
CD45+ [%] | 4.23 (3.21–8.00) | 5.37 (4.56–8.29) | ns. |
Neutrophils [%] | 10.28 (5.18–22.99) | 7.00 (3.19–21.24) | ns. |
Monocytes [%] | 34.74 (19.59–44.94) | 31.06 (15.22–42.55) | ns. |
Eosinophils [%] | 0.67 (0.38–1.39) | 0.78 (0.45–1.62) | ns. |
Variable | Correlation Ratio | |
---|---|---|
CRP | WBC | |
CD8+ | −0.176641 | −0.317352 |
CD4+ | 0.064060 | −0.154985 |
CD3+ | 0.168421 | −0.233185 |
CD19+ | 0.077621 | 0.424169 * |
CD16/56+ | −0.174016 | 0.191124 |
CD45+ | −0.154986 | 0.239003 |
Neutrophils | −0.188595 | 0.119661 |
Monocytes | 0.326095 | 0.330613 |
Eosinophils | 0.211600 | −0.042598 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaszewska, A.; Jeleniewska, A.; Porębska, K.; Królikowska, K.; Rustecka, A.; Lipińska-Opałka, A.; Będzichowska, A.; Zdanowski, R.; Aleksandrowicz, K.; Kloc, M.; et al. Immunomodulatory Effect of Infectious Disease of a Breastfed Child on the Cellular Composition of Breast Milk. Nutrients 2023, 15, 3844. https://doi.org/10.3390/nu15173844
Tomaszewska A, Jeleniewska A, Porębska K, Królikowska K, Rustecka A, Lipińska-Opałka A, Będzichowska A, Zdanowski R, Aleksandrowicz K, Kloc M, et al. Immunomodulatory Effect of Infectious Disease of a Breastfed Child on the Cellular Composition of Breast Milk. Nutrients. 2023; 15(17):3844. https://doi.org/10.3390/nu15173844
Chicago/Turabian StyleTomaszewska, Agata, Alicja Jeleniewska, Klaudia Porębska, Katarzyna Królikowska, Agnieszka Rustecka, Agnieszka Lipińska-Opałka, Agata Będzichowska, Robert Zdanowski, Karolina Aleksandrowicz, Małgorzata Kloc, and et al. 2023. "Immunomodulatory Effect of Infectious Disease of a Breastfed Child on the Cellular Composition of Breast Milk" Nutrients 15, no. 17: 3844. https://doi.org/10.3390/nu15173844
APA StyleTomaszewska, A., Jeleniewska, A., Porębska, K., Królikowska, K., Rustecka, A., Lipińska-Opałka, A., Będzichowska, A., Zdanowski, R., Aleksandrowicz, K., Kloc, M., & Kalicki, B. (2023). Immunomodulatory Effect of Infectious Disease of a Breastfed Child on the Cellular Composition of Breast Milk. Nutrients, 15(17), 3844. https://doi.org/10.3390/nu15173844