Epidemiological Trends in Cardiovascular Disease Mortality Attributable to Modifiable Risk Factors and Its Association with Sociodemographic Transitions across BRICS-Plus Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Variables Understudy
2.3. Statistical Analysis
2.3.1. Joinpoint Regression for Trend Analysis (1990–2019)
2.3.2. Estimation of Age Period Cohort Effects on CVD Mortality
3. Results
3.1. Trends of Cause-Specific CVD Mortality
3.2. Trends of CVD Mortality Attributable to Modifiable Risk Factors
3.3. Age-Specific CVD Burden Attributable to Modifiable Risk Factors
3.4. Age-Period-Cohort Effects on CVD Mortality across the BRICS-Plus Countries
3.5. Impact of Sociodemographic Transitions on CVD Mortality across the BRICS-Plus Countries
4. Discussion
4.1. Overall CVD Mortality
4.2. CVD Mortality Attributable to Modifiable Risk Factors
4.3. Age-Period-Cohort Effects on CVD Mortality across the BRICS-Plus Countries
4.4. Sociodemographic Transitions and CVD Mortality across the BRICS-Plus Countries
4.5. Limitations
5. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAPC | Average annual percentage change |
ASMR | Age-standardized mortality rate |
BMI | Body mass-index |
BRICS-Plus | Brazil, Russia, India, China, South Africa, and 30 other countries |
China-ASEAN FTA | China-ASEAN Free Trade Area |
CVD | Cardiovascular disease |
EEU | Eurasian Economic Union |
GBD | Global Burden of Disease |
IHD | Ischemic heart diseases |
IS | Ischemic stroke |
ML | Maximum Likelihood |
RR | Rate ratio |
SAARC | South Asian Association for Regional Cooperation |
SACU | South African Customs Union |
SDI | Sociodemographic index |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Roth Gregory, A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera Semaw, F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Cini, K.; Dong, B.; Ma, Y.; Ma, J.; Burgner, D.P. Patton GC: Time trends in cardiovascular disease mortality across the BRICS: An age-period-cohort analysis of key nations with emerging economies using the global burden of disease study 2017. Circulation 2020, 141, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Lissovolik, Y. BRICS-plus: Alternative globalization in the making. Valdai Pap. 2017, 69, 1–12. [Google Scholar]
- Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 2019, 16, 203–212. [Google Scholar] [CrossRef]
- Ribeiro, A.L.P.; Duncan, B.B.; Brant, L.C.; Lotufo, P.A.; Mill, J.G.; Barreto, S.M. Cardiovascular health in Brazil: Trends and perspectives. Circulation 2016, 133, 422–433. [Google Scholar] [CrossRef]
- Reddy, P.; Sewpaul, R.; Sifunda, S.; James, S.; Yach, D.; Resnicow, K.; Mthembu, Z.; Mbewu, A. A decade of tobacco control: The South African case of politics, health policy, health promotion and behaviour change. S. Afr. Med. J. 2013, 103, 835–840. [Google Scholar] [CrossRef]
- Chestnov, O. Global Action Plan for the Prevention and Control of Noncommunicable Diseases; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Bin, W.; Le, Z.; Mubarik, S.; Fu, G.; Wang, Y. Prediction of cardiovascular diseases mortality-and disability-adjusted life-years attributed to modifiable dietary risk factors from 1990 to 2030 among East Asian countries and the world. Front. Nutr. 2022, 9, 898978. [Google Scholar]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [PubMed]
- Kyu, H.H.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, B.; Plummer, M.; Laara, E.; Hills, M.; Carstensen, M.B.J. ApfsaiePoC: Package ‘Epi’, R 2.44; Foundation for Statistical Computing: Vienna, Austria, 2013.
- Dicker, D.; Nguyen, G.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1684–1735. [Google Scholar] [CrossRef] [PubMed]
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef]
- Husain, M.J.; Datta, B.K.; Kostova, D.; Joseph, K.T.; Asma, S.; Richter, P.; Jaffe, M.G.; Kishore, S.P. Access to cardiovascular disease and hypertension medicines in developing countries: An analysis of essential medicine lists, price, availability, and affordability. J. Am. Heart Assoc. 2020, 9, e015302. [Google Scholar] [CrossRef]
- Brunner, H.; Cockcroft, J.R.; Deanfield, J.; Donald, A.; Ferrannini, E.; Halcox, J.; Kiowski, W.; Lüscher, T.F.; Mancia, G.; Natali, A.; et al. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J. Hypertens. 2005, 23, 233–246. [Google Scholar] [CrossRef]
- Amiri, P.; Mohammadzadeh-Naziri, K.; Abbasi, B.; Cheraghi, L.; Jalali-Farahani, S.; Momenan, A.A.; Amouzegar, A.; Hadaegh, F.; Azizi, F. Smoking habits and incidence of cardiovascular diseases in men and women: Findings of a 12 year follow up among an urban Eastern-Mediterranean population. BMC Public. Health 2019, 19, 1042. [Google Scholar] [CrossRef]
- Miller, V.; Webb, P.; Cudhea, F.; Shi, P.; Zhang, J.; Reedy, J.; Erndt-Marino, J.; Coates, J.; Mozaffarian, D. Global dietary quality in 185 countries from 1990 to 2018 show wide differences by nation, age, education, and urbanicity. Nat. Food 2022, 3, 694–702. [Google Scholar] [CrossRef]
- Murray, C.J. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis forthe Global Burden of Disease Study. Lancet 2019, 393, 1958–1972. [Google Scholar]
- Jousilahti, P.; Laatikainen, T.; Salomaa, V.; Pietilä, A.; Vartiainen, E.; Puska, P. 40-year CHD mortality trends and the role of risk factors in mortality decline: The North Karelia project experience. Glob. Heart 2016, 11, 207–212. [Google Scholar] [CrossRef]
- Ford, E.S.; Capewell, S. Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: Public health versus clinical care. Annu. Rev. Public. Health 2011, 32, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Devlin, H.M.; Smith, B.; Imperatore, G.; Thomas, W.; Lobelo, F.; Ali, M.K.; Norris, K.; Gruss, S.; Bardenheier, B. Effect of lifestyle interventions on cardiovascular risk factors among adults without impaired glucose tolerance or diabetes: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0176436. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018, 5, 135. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, S.; Sang, S.; Luo, L.; Yu, C. Age–period–cohort analysis of stroke mortality in China: Data from the Global Burden of Disease Study 2013. Stroke 2017, 48, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, P.S.; Anderson, W.F. Proportional hazards models and age–period–cohort analysis of cancer rates. Stat. Med. 2010, 29, 1228–1238. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef]
- Yazdanyar, A.; Newman, A.B. The burden of cardiovascular disease in the elderly: Morbidity, mortality, and costs. Clin. Geriatr. Med. 2009, 25, 563–577. [Google Scholar] [CrossRef]
- Stefler, D.; Azarova, A.; Irdam, D.; Scheiring, G.; Murphy, M.; McKee, M.; King, L.; Bobak, M. Smoking, alcohol and cancer mortality in Eastern European men: Findings from the PrivMort retrospective cohort study. Int. J. Cancer 2018, 143, 1128–1133. [Google Scholar] [CrossRef]
- Starodubov, V.I.; Marczak, L.B.; Varavikova, E.; Bikbov, B.; Ermakov, S.P.; Gall, J.; Glenn, S.D.; Griswold, M.; Idrisov, B.; Kravchenko, M. The burden of disease in Russia from 1980 to 2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1138–1146. [Google Scholar] [CrossRef]
- Nichol, J. Health-Related Issues in Russia and Eurasia: Context and Issues for Congress. Russ. China Eurasia 2011, 27, 367. [Google Scholar]
- Rechel, B.; McKee, M. Health reform in central and eastern Europe and the former Soviet Union. Lancet 2009, 374, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, P.; Meslé, F.; Shkolnikov, V.M.; Andreev, E.; Fihel, A.; Pechholdova, M.; Vallin, J. The recent mortality decline in Russia: Beginning of the cardiovascular revolution? Popul. Dev. Rev. 2014, 40, 107–129. [Google Scholar] [CrossRef]
- Movsisyan, N.K.; Vinciguerra, M.; Medina-Inojosa, J.R.; Lopez-Jimenez, F. Cardiovascular Diseases in Central and Eastern Europe: A Call for More Surveillance and Evidence-Based Health Promotion. Ann. Glob. Health 2020, 86, 21. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Country Cooperation Strategy at a Glance: Lesotho; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Tseole, N.P. Understanding Modifiable Risk Factors for Non-Communicable Diseases among Adult Men in Maseru, Lesotho. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2018. [Google Scholar]
- Angeles-Agdeppa, I.; Sun, Y.; Tanda, K.V. Dietary pattern and nutrient intakes in association with non-communicable disease risk factors among Filipino adults: A cross-sectional study. Nutr. J. 2020, 19, 79. [Google Scholar] [CrossRef]
- Bellew, B.; Antonio, M.; Limpin, M.; Alzona, L.; Trinidad, F.; Dorotheo, U.; Yapchiongco, R.; Garcia, R.; Anden, A. Alday: Addressing the tobacco epidemic in the Philippines: Progress since ratification of the WHO FCTC. Public. Health Action. 2013, 3, 103–108. [Google Scholar] [CrossRef]
- Lim, S.S.; Allen, K.; Bhutta, Z.A.; Dandona, L.; Forouzanfar, M.H.; Fullman, N.; Gething, P.W.; Goldberg, E.M.; Hay, S.I.; Holmberg, M.; et al. Measuring the health-related Sustainable Development Goals in 188 countries: A baseline analysis from the Global Burden of Disease Study 2015. Lancet 2016, 388, 1813–1850. [Google Scholar] [CrossRef]
- Omram, A.R. The epidemiologic transition: A theory of the epidemiology of population change. Bull. World Health Organ. 2001, 79, 161–170. [Google Scholar]
- Jagannathan, R.; Patel, S.A.; Ali, M.K.; Narayan, K. Global updates on cardiovascular disease mortality trends and attribution of traditional risk factors. Curr. Diabetes Rep. 2019, 19, 1–12. [Google Scholar] [CrossRef]
- Li, Z.; Lin, L.; Wu, H.; Yan, L.; Wang, H.; Yang, H.; Li, H. Global, regional, and national death, and disability-adjusted life-years (DALYs) for cardiovascular disease in 2017 and trends and risk analysis from 1990 to 2017 using the global burden of disease study and implications for prevention. Front. Public Health 2021, 9, 559751. [Google Scholar] [CrossRef]
CVD | ASMR/100,000 | Deaths, n × 1000 | ||||
---|---|---|---|---|---|---|
1990 (95%UI) | 2019 (95%UI) | AAPC (95%CI) | 1990 (95%UI) | 2019 (95%UI) | AAPC (95%CI) | |
BRICS-Plus countries | 367 (407, 326) | 296 (346, 248) | −0.7 (−0.8, −0.6) | 6197 (6798, 5610) | 11,310 (12896, 9704) | 2.1 (1.9, 2.3) |
SACU | ||||||
Botswana | 366 (448, 302) | 334 (425, 258) | −0.3 (−0.4, −0.2) | 1.6 (2.1, 1.3) | 3.5 (4.5, 2.6) | 2.6 (2.4, 2.7) |
Eswatini | 350 (405, 293) | 339 (441, 258) | −0.1 (−0.4, 0.2) | 0.8 (0.9, 0.6) | 1.5 (2.1, 1.1) | 2.0 (1.8, 2.3) |
Lesotho | 305 (354, 261) | 399 (497, 311) | 0.9 (0.8, 1.0) | 2.5 (2.9, 2.1) | 4.1 (5.1, 3.1) | 1.6 (1.4, 1.7) |
Namibia | 370 (425, 313) | 316 (381, 263) | −0.5 (−0.7, −0.4) | 2.2 (2.5, 1.8) | 3.7 (4.5, 3.1) | 1.8 (1.6, 2.0) |
South Africa | 225 (244, 202) | 222 (236, 203) | −0.1 (−0.6, 0.6) | 42 (46, 38) | 82 (87, 76) | 2.3 (1.7, 2.9) |
SAARC | ||||||
Afghanistan | 716 (829, 608) | 583 (681, 473) | −0.7 (−0.8, −0.6) | 44 (52, 37) | 61 (75, 49) | 1.1 (1.0, 1.2) |
Bangladesh | 335 (374, 290) | 283 (341, 220) | −0.4 (−0.9, 0.1) | 138 (154, 119) | 324 (394, 250) | 3.2 (2.8, 3.7) |
Bhutan | 280 (343, 220) | 246 (286, 198) | −0.5 (−0.5, −0.4) | 0.5 (0.7, 0.4) | 1.2 (1.4, 0.9) | 2.6 (2.5, 2.7) |
India | 332 (371, 297) | 256 (292, 220) | −1.0 (−1.6, −0.3) | 1201 (1328, 1080) | 2574 (2940, 2215) | 2.7 (1.9, 3.4) |
Maldives | 446 (481, 414) | 205 (239, 174) | −2.7 (−3.0, −2.4) | 0.3 (0.3, 0.2) | 0.5 (0.6, 0.4) | 1.6 (1.4, 1.9) |
Nepal | 267 (332, 218) | 245 (286, 199) | −0.3 (−0.4, −0.2) | 21 (26, 17) | 46 (54, 37) | 2.7 (2.5, 2.8) |
Pakistan | 329 (381, 279) | 357 (423, 307) | 0.3 (0.3, 0.4) | 172 (197, 147) | 341 (405, 291) | 2.4 (2.3, 2.4) |
Sri Lanka | 346 (372, 318) | 215 (270, 163) | −1.6 (−2.0, −1.3) | 30 (32, 27) | 46 (59, 35) | 1.5 (1.2, 1.9) |
China-ASEAN FTA | ||||||
Brunei Darussalam | 441 (475, 404) | 266 (296, 240) | −1.7 (−2.2, −1.2) | 0.3 (0.3, 0.2) | 0.5 (0.5, 0.4) | 1.6 (1.4, 1.8) |
Cambodia | 359 (412, 313) | 312 (349, 265) | −0.5 (−0.5, −0.4) | 13 (15, 12) | 30 (34, 25) | 2.7 (2.6, 2.8) |
China | 381 (426, 341) | 276 (312, 239) | −1.1 (−1.4, −0.8) | 2423 (2712, 2165) | 4584 (5209, 3955) | 2.2 (1.9, 2.6) |
Indonesia | 340 (375, 301) | 383 (418, 328) | 0.4 (0.4, 0.5) | 278 (304, 250) | 651 (721, 554) | 3.0 (2.9, 3.0) |
Laos | 428 (517, 348) | 379 (440, 318) | −0.4 (−0.5, −0.4) | 7.5 (9.1, 6.1) | 13 (16, 11) | 2.0 (2.0, 2.1) |
Malaysia | 347 (363, 326) | 255 (309, 207) | −1.0 (−1.7, −0.3) | 28 (29, 26) | 58 (71, 47) | 2.6 (1.7, 3.4) |
Myanmar | 477 (570, 400) | 352 (401, 313) | −1.1 (−1.1, −1.0) | 96 (116, 79) | 138 (159, 120) | 1.2 (1.1, 1.3) |
Philippines | 223 (246, 200) | 307 (356, 254) | 1.3 (0.8, 1.7) | 45 (53, 41) | 204 (241, 165) | 5.5 (5.1, 5.8) |
Singapore | 271 (280, 254) | 93 (100, 81) | −3.6 (−3.9, −3.3) | 5.1 (5.2, 4.8) | 6.8 (7.3, 6.1) | 1.1 (0.9, 1.3) |
Thailand | 219 (244, 196) | 118 (150, 90) | −2.1 (−2.5, −1.7) | 63 (71, 57) | 115 (147, 88) | 2.0 (1.7, 2.4) |
Viet Nam | 346 (405, 293) | 303 (348, 258) | −0.4 (−0.5, −0.4) | 124 (145, 104) | 240 (278, 202) | 2.3 (2.3, 2.4) |
EEU | ||||||
Armenia | 493 (510, 462) | 345 (396, 295) | −1.3 (−1.7, −0.8) | 10.6 (10.9, 10.1) | 13 (15, 11) | 0.7 (0.3, 1.1) |
Belarus | 489 (506, 459) | 463 (571, 381) | −0.2 (−0.7, 0.3) | 59 (61, 56) | 75 (92, 62) | 0.8 (0.3, 1.3) |
Kazakhstan | 513 (534, 485) | 476 (531, 421) | −0.3 (−0.6, 0.1) | 56 (58, 53) | 65 (73, 57) | 0.4 (−0.1, 0.8) |
Kyrgyzstan | 445 (470, 415) | 466 (517, 416) | 0.2 (−0.4, 0.8) | 12 (13, 12) | 17 (19, 15) | 1.1 (0.3, 1.8) |
Russia | 569 (584, 540) | 432 (485, 378) | −1.0 (−2.0, 0.1) | 890 (908, 856) | 1004 (1126, 880) | 0.4 (−0.6, 1.4) |
Mercosur | ||||||
Argentina | 335 (347, 315) | 183 (194, 168) | −2.0 (−2.5, −1.5) | 98 (101, 93) | 101 (107, 93) | 0.1 (−0.4, 0.6) |
Bolivia | 298 (354, 244) | 214 (265, 161) | −1.1 (−1.2, −1.0) | 8.2 (9.8, 6.6) | 15 (19, 11) | 2.3 (2.2, 2.3) |
Brazil | 355 (367, 332) | 175 (184, 158) | −2.4 (−2.6, −2.2) | 269 (277, 257) | 397 (417, 361) | 1.4 (1.1, 1.6) |
Paraguay | 244 (269, 211) | 187 (235, 147) | −0.8 (−1.4, −0.1) | 5.1 (5.5, 4.3) | 9.9 (12.4, 7.8) | 2.4 (1.8, 3.1) |
Uruguay | 302 (313, 282) | 161 (170, 146) | −2.1 (−2.5, −1.7) | 11 (11, 10) | 10 (10, 8) | −0.4 (−0.8, −0.1) |
Venezuela | 299 (312, 279) | 222 (279, 176) | −1.0 (−1.9, −0.1) | 25 (26, 24) | 61 (77, 48) | 3.0 (2.1, 3.9) |
Population | CVD (ASMR/100,000) | ||
---|---|---|---|
Dietary Risks (AAPC (95%CI) | High BMI (AAPC (95%CI) | Smoking (AAPC (95%CI) | |
BRICS-Plus countries | −1.0 (−1.1, −0.9) | 0.8 (0.7, 1.0) | −1.4 (−1.5, −1.3) |
SACU | |||
Botswana | −0.2 (−0.3, −0.1) | 2.1 (1.8, 2.5) | −0.9 (−1.0, −0.8) |
Eswatini | −0.3 (−0.6, −0.1) | 0.6 (0.1, 1.1) | −1.6 (−1.8, −1.3) |
Lesotho | 0.9 (0.8, 1.0) | 3.1 (2.9, 3.3) | 1.0 (0.8, 1.1) |
Namibia | −0.7 (−0.8, −0.6) | 0.6 (0.4, 0.8) | −1.8 (−2.0, −1.7) |
South Africa | −0.3 (−0.9, 0.4) | 0.4 (−0.2, 1.1) | −2.5 (−3.2, −1.8) |
SAARC | |||
Afghanistan | −0.9 (−0.9, −0.8) | 0.8 (0.5, 1.0) | 0.4 (0.3, 0.5) |
Bangladesh | −0.4 (−0.9, 0.1) | 3.2 (2.8, 3.7) | −1.4 (−1.8, −1.0) |
Bhutan | −0.4 (−0.5, −0.3) | 1.9 (1.8, 2.0) | −1.1 (−1.3, −1.0) |
India | −0.8 (−1.6, −0.1) | 2.4 (2.0, 2.7) | −1.4 (−2.0, −0.8) |
Maldives | −3.2 (−3.5, −2.9) | −0.3 (−0.5, −0.1) | −3.8 (−4.1, −3.5) |
Nepal | −0.2 (−0.4, −0.1) | 3.4 (3.3, 3.5) | −0.9 (−1.0, −0.8) |
Pakistan | 0.7 (0.6, 0.7) | 3.1 (2.9, 3.2) | −0.4 (−0.5, −0.3) |
Sri Lanka | −2.1 (−2.5, −1.6) | 0.7 (0.3, 1.0) | −3.8 (−4.3, −3.3) |
China-ASEAN FTA | |||
Brunei Darussalam | −1.9 (−2.4, −1.5) | −0.1 (−0.3, 0.1) | −3.6 (−3.9, −3.3) |
Cambodia | −0.9 (−1.0, −0.9) | 2.1 (2.0, 2.2) | −0.8 (−0.8, −0.7) |
China | −1.2 (−1.5, −0.9) | 0.9 (0.4, 1.4) | −0.7 (−1.2, −0.3) |
Indonesia | −0.1 (−0.2, −0.1) | 3.2 (3.2, 3.3) | 0.7 (0.7, 0.8) |
Laos | −1.1 (−1.2, −1.0) | 2.8 (2.7, 2.9) | −1.3 (−1.4, −1.2) |
Malaysia | −1.3 (−2.0, −0.7) | 0.6 (0.2, 1.0) | −1.5 (−2.2, −0.7) |
Myanmar | −1.8 (−1.8, −1.7) | 2.2 (2.0, 2.3) | −3.2 (−3.3, −3.1) |
Philippines | 1.1 (0.7, 1.6) | 4.3 (3.5, 5.1) | 1.5 (1.2, 1.8) |
Singapore | −4.1 (−4.3, −3.8) | −1.6 (−1.9, −1.4) | −5.3 (−5.6, −5.0) |
Thailand | −2.6 (−2.9, −2.2) | 0.9 (0.5, 1.3) | −3.4 (−4.2, −2.6) |
Viet Nam | −1.0 (−1.0, −0.9) | 3.3 (3.1, 3.5) | −0.3 (−0.3, −0.2) |
EEU | |||
Armenia | −1.5 (−1.8, −1.2) | 0.3 (−0.1, 0.6) | −1.4 (−1.7, −1.0) |
Belarus | −0.3 (−0.9, 0.3) | 0.6 (0.1, 1.2) | −0.1 (−1.2, 1.0) |
Kazakhstan | −0.9 (−1.2, −0.6) | 0.1 (−0.3, 0.4) | −1.0 (−1.4, −0.5) |
Kyrgyzstan | 0.3 (−0.4, 0.9) | 0.3 (−0.3, 0.9) | −0.2 (−0.7, 0.2) |
Russia | −1.3 (−2.4, −0.2) | 0.1 (−1.0, 1.0) | −0.1 (−1.2, 1.1) |
Mercosur | |||
Argentina | −2.6 (−2.9, −2.3) | −0.9 (−1.4, −0.5) | −3.0 (−3.3, −2.8) |
Bolivia | −1.2 (−1.4, −1.1) | 0.2 (0.1, 0.3) | −3.4 (−3.5, −3.3) |
Brazil | −2.9 (−3.1, −2.7) | −1.1 (−1.4, −0.8) | −4.1 (−4.3, −3.8) |
Paraguay | −1.1 (−1.8, −0.4) | 0.1 (−0.8, 0.9) | −1.7 (−2.4, −1.1) |
Uruguay | −2.8 (−3.2, −2.3) | −1.0 (−1.4, −0.7) | −2.6 (−3.1, −2.0) |
Venezuela | −1.2 (−1.7, −0.6) | −0.4 (−1.0, 0.1) | −3.0 (−3.6, −2.4) |
Population | Male (AAPC (95%CI) | Female (AAPC (95%CI) | ||||
---|---|---|---|---|---|---|
Dietary Risks | High BMI | Smoking | Dietary Risks | High BMI | Smoking | |
BRICS-Plus countries | −0.9 (−1.0, −0.8) | 1.2 (1.0,1.4) | −1.2 (−1.4, −1.1) | −1.1 (−1.2, −1.0) | 0.5 (0.3, 0.6) | −2.1 (−2.2, −2.0) |
SACU | ||||||
Botswana | −0.2 (−0.4, 0.1) | 3.2 (2.9, 3.5) | −0.7 (−1.0, −0.5) | −0.2 (−0.8, 0.3) | 1.6 (0.8, 2.6) | −1.1 (−1.9, −0.2) |
Eswatini | −0.2 (−0.4, −0.1) | 1.3 (0.9, 1.7) | −1.5 (−1.6, −1.3) | −0.4 (−0.7, −0.1) | −0.1 (−0.5, 0.4) | −1.4 (−1.6, −1.2) |
Lesotho | 0.7 (0.6, 0.8) | 3.7 (3.4, 4.1) | 1.1 (0.8, 1.3) | 1.0 (0.8, 1.3) | 2.6 (2.3, 2.9) | 1.0 (0.7, 1.3) |
Namibia | −0.4 (−0.5, −0.2) | 1.4 (1.2, 1.6) | −1.6 (−1.7, −1.4) | −1.0 (−1.1, −0.8) | 0.1 (−0.2, 0.2) | −2.1 (−2.3, −1.9) |
South Africa | −0.3 (−0.8, 0.1) | 1.1 (0.5, 1.6) | −2.2 (−2.8, −1.5) | −0.3 (−1.0, 0.4) | 0.1 (−0.7, 0.8) | −3.1 (−3.9, −2.3) |
SAARC | ||||||
Afghanistan | −1.0 (−1.1, −0.9) | 1.1 (0.9, 1.3) | 0.4 (0.3, 0.5) | −0.7 (−0.8, −0.6) | 0.5 (0.2, 0.8) | 0.8 (0.6, 1.0) |
Bangladesh | −0.2 (−0.7, 0.3) | 3.9 (3.5, 4.3) | −1.2 (−1.6, −0.7) | −0.7 (−1.4, −0.1) | 2.8 (2.4, 3.3) | −1.9 (−2.4, −1.5) |
Bhutan | −0.2 (−0.3, −0.1) | 2.5 (2.4, 2.7) | −1.1 (−1.2, −1.0) | −0.7 (−0.8, −0.7) | 1.4 (1.3, 1.5) | −1.8 (−2.0, −1.7) |
India | −0.7 (−1.4, −0.1) | 2.6 (2.1, 3.0) | −1.3 (−1.9, −0.6) | −0.8 (−1.7, 0.1) | 2.1 (1.7, 2.5) | −1.0 (−1.7, −0.3) |
Maldives | −2.8 (−3.1, −2.6) | 0.4 (0.2, 0.6) | −3.4 (−3.6, −3.1) | −3.7 (−4.3, −3.0) | −1.3 (−2.0, −0.6) | −5.2 (−6.0, −4.3) |
Nepal | 0.3 (0.2, 0.4) | 4.2 (4.1, 4.3) | −0.3 (−0.5, −0.2) | −1.0 (−1.1, −0.9) | 2.6 (2.4, 2.7) | −1.7 (−1.8, −1.7) |
Pakistan | 1.0 (0.9, 1.1) | 3.5 (3.4, 3.7) | −0.1 (−0.2, 0.1) | 0.3 (0.3, 0.4) | 2.6 (2.4, 2.7) | −0.9 (−1.0, −0.8) |
Sri Lanka | −2.0 (−2.5, −1.5) | 0.6 (0.1, 1.1) | −3.4 (−3.9, −2.8) | −1.8 (−2.4, −1.1) | 0.7 (0.3, 1.1) | −3.9 (−4.5, −3.3) |
China-ASEAN FTA | ||||||
Brunei Darussalam | −1.7 (−2.6, −0.8) | 0.2 (−0.5, 0.8) | −3.4 (−4.1, −2.6) | −1.9 (−2.3, −1.4) | −0.3 (−0.6, −0.1) | −3.8 (−4.1, −3.6) |
Cambodia | −0.7 (−0.8, −0.7) | 2.8 (2.7, 3.0) | −0.5 (−0.6, −0.5) | −1.1 (−1.2, −1.1) | 1.5 (1.4, 1.7) | −1.0 (−1.1, −1.0) |
China | −0.8 (−1.1, −0.5) | 1.5 (1.3, 1.7) | −0.7 (−1.0, −0.5) | −1.7 (−1.9, −1.4) | 0.2 (−0.1, 0.5) | −0.6 (−1.0, −0.2) |
Indonesia | 0.2 (0.1, 0.2) | 3.6 (3.5, 3.7) | 0.8 (0.7, 0.9) | −0.4 (−0.5, −0.4) | 2.9 (2.8, 3.1) | 0.7 (0.5, 0.8) |
Laos | −1.1 (−1.2, −1.1) | 3.2 (3.1, 3.4) | −1.3 (−1.3, −1.2) | −1.1 (−1.2, −1.0) | 2.4 (2.3, 2.5) | −1.9 (−2.0, −1.8) |
Malaysia | −1.2 (−2.1, −0.3) | 1.0 (0.6, 1.5) | −1.5 (−2.3, −0.7) | −1.5 (−2.2, −0.9) | 0.1 (−0.5, 0.5) | −2.3 (−3.1, −1.5) |
Myanmar | −1.5 (−1.6, −1.4) | 2.3 (2.2, 2.5) | −2.6 (−2.7, −2.5) | −2.0 (−2.0, −1.9) | 1.9 (1.8, 2.1) | −4.1 (−4.2, −4.0) |
Philippines | 1.5 (1.2, 1.7) | 4.5 (3.4, 5.6) | 1.8 (1.5, 2.1) | 0.7 (0.2, 1.1) | 4.0 (3.4, 4.7) | 0.9 (0.5, 1.3) |
Singapore | −3.9 (−4.3, −3.6) | −1.3 (−1.5, −1.1) | −5.3 (−5.5, −5.0) | −4.4 (−4.7, −4.0) | −2.2 (−2.6, −1.8) | −6.2 (−6.5, −5.9) |
Thailand | −2.5 (−3.3, −1.7) | 1.4 (0.9, 1.9) | −3.2 (−4.0, −2.4) | −2.8 (−3.1, −2.5) | 0.3 (−0.1, 0.5) | −5.1 (−5.4, −4.7) |
Viet Nam | −0.6 (−0.7, −0.6) | 4.1 (3.8, 4.3) | −0.2 (−0.3, −0.2) | −1.5 (−1.5, −1.4) | 2.3 (2.2, 2.4) | −1.3 (−1.4, −1.2) |
EEU | ||||||
Armenia | −1.3 (−1.7, −1.0) | 1.1 (0.8, 1.3) | −1.4 (−1.9, −0.9) | −1.7 (−2.0, −1.4) | −0.3 (−0.8, 0.1) | −2.5 (−2.9, −2.1) |
Belarus | −0.1 (−0.5, 0.4) | 1.4 (0.7, 2.0) | −0.1 (−0.7, 0.6) | −0.6 (−1.1, −0.2) | 0.1 (−0.3, 0.6) | −0.7 (−1.3, −0.1) |
Kazakhstan | −1.0 (−1.3, −0.6) | 0.4 (−0.1, 0.8) | −1.1 (−1.6, −0.7) | −0.9 (−1.2, −0.6) | −0.2 (−0.5, 0.1) | −1.2 (−1.6, −0.8) |
Kyrgyzstan | 0.1 (−0.7, 0.8) | 0.7 (0.2, 1.1) | −0.4 (−0.9, 0.1) | 0.3 (−0.3, 0.9) | 0.1 (−0.6, 0.7) | −0.3 (−0.9, 0.3) |
Russia | −1.4 (−2.4, −0.3) | 0.4 (−0.7, 1.5) | −0.6 (−1.7, 0.6) | −1.5 (−2.6, −0.4) | −0.4 (−1.4, 0.6) | 0.4 (−0.6, 1.4) |
Mercosur | ||||||
Argentina | −2.6 (−2.9, −2.3) | −1.0 (−1.4, −0.6) | −3.1 (−3.4, −2.8) | −2.6 (−3.0, −2.3) | −0.9 (−1.3, −0.6) | −2.9 (−3.2, −2.7) |
Bolivia | −1.4 (−1.5, −1.2) | 0.4 (0.3, 0.5) | −3.4 (−3.6, −3.3) | −1.2 (−1.4, −1.0) | −0.1 (−0.1, 0.1) | −3.8 (−4.0, −3.7) |
Brazil | −2.7 (−2.9, −2.5) | −0.9 (−1.1, −0.7) | −3.9 (−4.2, −3.6) | −3.0 (−3.2, −2.8) | −1.4 (−1.7, −1.1) | −4.2 (−4.5, −3.9) |
Paraguay | −0.7 (−1.4, 0.1) | 0.6 (−0.3, 1.5) | −1.4 (−2.1, −0.8) | −1.5 (−2.2, −0.8) | −0.5 (−1.3, 0.3) | −2.4 (−3.0, −1.7) |
Uruguay | −2.6 (−3.2, −2.0) | −1.0 (−1.4, −0.6) | −2.6 (−2.9, −2.2) | −2.9 (−3.3, −2.4) | −1.1 (−1.5, −0.7) | −2.4 (−2.7, −2.1) |
Venezuela | −0.9 (−1.7, −0.1) | −0.1 (−1.3, 1.1) | −2.7 (−3.5, −2.0) | −1.6 (−2.0, −1.2) | −0.9 (−1.4, −0.5) | −3.4 (−3.8, −3.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawsherwan; Mubarik, S.; Bin, W.; Le, Z.; Sang, M.; Lin, Y.; Zheng, J.; Wang, Y. Epidemiological Trends in Cardiovascular Disease Mortality Attributable to Modifiable Risk Factors and Its Association with Sociodemographic Transitions across BRICS-Plus Countries. Nutrients 2023, 15, 3757. https://doi.org/10.3390/nu15173757
Nawsherwan, Mubarik S, Bin W, Le Z, Sang M, Lin Y, Zheng J, Wang Y. Epidemiological Trends in Cardiovascular Disease Mortality Attributable to Modifiable Risk Factors and Its Association with Sociodemographic Transitions across BRICS-Plus Countries. Nutrients. 2023; 15(17):3757. https://doi.org/10.3390/nu15173757
Chicago/Turabian StyleNawsherwan, Sumaira Mubarik, Wang Bin, Zhang Le, Mangmang Sang, Yijun Lin, Jinrong Zheng, and Yan Wang. 2023. "Epidemiological Trends in Cardiovascular Disease Mortality Attributable to Modifiable Risk Factors and Its Association with Sociodemographic Transitions across BRICS-Plus Countries" Nutrients 15, no. 17: 3757. https://doi.org/10.3390/nu15173757
APA StyleNawsherwan, Mubarik, S., Bin, W., Le, Z., Sang, M., Lin, Y., Zheng, J., & Wang, Y. (2023). Epidemiological Trends in Cardiovascular Disease Mortality Attributable to Modifiable Risk Factors and Its Association with Sociodemographic Transitions across BRICS-Plus Countries. Nutrients, 15(17), 3757. https://doi.org/10.3390/nu15173757