Fortification of Staple Foods for Household Use with Vitamin D: An Overview of Systematic Reviews
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction
2.3. Data Synthesis
3. Results
3.1. Description of Included Systematic Reviews
3.2. Effect of Vitamin D Fortification
3.2.1. Effect of Vitamin D Fortification on Serum 25(OH)D Concentrations
3.2.2. Effect of Vitamin D Fortification on Prevalence of Vitamin D Deficiency
3.2.3. Effect of Vitamin D Fortification on Parathormone and Bone Turnover Markers
3.2.4. Effect of Vitamin D Fortification on Anthropometric Parameters
3.2.5. Effect of Vitamin D Fortification on Glucose Metabolism
3.2.6. Effect of Vitamin D Fortification on Lipid Levels
3.2.7. Effect of Vitamin D Fortification on Serum Calcium and Other Adverse Effects
3.2.8. Other Reported Outcomes
3.3. Overview of the Individual Studies That Formed the Basis of the Systematic Reviews and the Resulting Overview of Reviews
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Shirvani, A.; Holick, M.F. Vitamin D for skeletal and non-skeletal health: What we should know. J. Clin. Orthop. Trauma 2019, 10, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Peters, B.S.E.; Martini, L.A. Nutritional aspects of the prevention and treatment of osteoporosis. Arq. Bras. De Endocrinol. Metabol. 2010, 54, 179–185. [Google Scholar] [CrossRef]
- DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004, 80, 1689S–1696S. [Google Scholar] [CrossRef]
- Lips, P.; van Schoor, N.M.; De Jongh, R.T. Diet, sun, and lifestyle as determinants of vitamin D status. Ann. N. Y. Acad. Sci. 2014, 1317, 92–98. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A global perspective for health. Derm. -Endocrinol. 2013, 5, 51–108. [Google Scholar] [CrossRef]
- Mithal, A.; Wahl, D.A.; Bonjour, J.P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj Fuleihan, G.; Josse, R.G.; Lips, P.; Morales-Torres, J. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int. 2009, 20, 1807–1820. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. Med. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Del Valle, H.; Yaktine, A.; Taylor, C.; Ross, A. Dietary Reference Intakes for Calcium and Vitamin D; The National Academics Press: Washington, DC, USA, 2011. [Google Scholar]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M.; et al. Global prevalence and disease burden of vitamin D deficiency: A roadmap for action in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef]
- Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.; Naska, A.; Neuhäuser-Berthold, M.; et al. Dietary Reference Values for Vitamin D. EFSA J. 2016, 14, e04547. [Google Scholar] [CrossRef]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
- Allen, L.; De Benoist, B.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Cashman, K.D. Vitamin D Deficiency: Defining, Prevalence, Causes, and Strategies of Addressing. Calcif. Tissue Int. 2020, 106, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Sarafin, K.; Durazo-Arvizu, R.; Tian, L.; Phinney, K.W.; Tai, S.; Camara, J.E.; Merkel, J.; Green, E.; Sempos, C.T.; Brooks, S.P. Standardizing 25-hydroxyvitamin D values from the Canadian Health Measures Survey. Am. J. Clin. Nutr. 2015, 102, 1044–1050. [Google Scholar] [CrossRef]
- Schleicher, R.L.; Sternberg, M.R.; Looker, A.C.; Yetley, E.A.; Lacher, D.A.; Sempos, C.T.; Taylor, C.L.; Durazo-Arvizu, R.A.; Maw, K.L.; Chaudhary-Webb, M.; et al. National Estimates of Serum Total 25-Hydroxyvitamin D and Metabolite Concentrations Measured by Liquid Chromatography–Tandem Mass Spectrometry in the US Population during 2007–2010. J. Nutr. 2016, 146, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Nouvenne, A.; Ticinesi, A.; Bonelli, P.; Salvagno, G.L.; Cervellin, G.; Guidi, G.C. The burden of vitamin D deficiency in a mediterranean country without a policy of food fortification. Acta Bio-Med. 2015, 86, 59–62. [Google Scholar]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Berisha, A.T.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Tsiaras, W.G.; Weinstock, M.A. Factors Influencing Vitamin D Status. Acta Derm. Venereol. 2011, 91, 115–124. [Google Scholar] [CrossRef]
- Kift, R.; Berry, J.; Vail, A.; Durkin, M.; Rhodes, L.; Webb, A. Lifestyle factors including less cutaneous sun exposure contribute to starkly lower vitamin D levels in U.K. South Asians compared with the white population. Br. J. Dermatol. 2013, 169, 1272–1278. [Google Scholar] [CrossRef]
- Marinov, D.B.; Dimitrova, T.T. Vitamin D Status and Dietary Habits Of Children with Adolescent Idiopathic Scoliosis in Varna. J. IMAB—Annu. Proceeding Sci. Pap. 2021, 27, 3589–3592. [Google Scholar] [CrossRef]
- Ganji, V.; Shi, Z.; Al-Abdi, T.; Al Hejap, D.; Attia, Y.; Koukach, D.; Elkassas, H. Association between food intake patterns and serum vitamin D concentrations in US adults. Br. J. Nutr. 2023, 129, 864–874. [Google Scholar] [CrossRef]
- Palacios, C.; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 2014, 144, 138–145. [Google Scholar] [CrossRef]
- Weaver, C.M.; Dwyer, J.; Fulgoni, V.L., III; King, J.C.; Leveille, G.A.; MacDonald, R.S.; Ordovas, J.; Schnakenberg, D. Processed foods: Contributions to nutrition. Am. J. Clin. Nutr. 2014, 99, 1525–1542. [Google Scholar] [CrossRef]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C.; Bischoff-Ferrari, H.A.; Obermayer-Pietsch, B.; Bianchi, M.L.; Stepan, J.; El-Hajj Fuleihan, G.; Bouillon, R. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: A position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019, 180, P23–P54. [Google Scholar] [CrossRef] [PubMed]
- Niedermaier, T.; Gredner, T.; Kuznia, S.; Schöttker, B.; Mons, U.; Lakerveld, J.; Ahrens, W.; Brenner, H.; On behalf of the PEN-Consortium. Vitamin D food fortification in European countries: The underused potential to prevent cancer deaths. Eur. J. Epidemiol. 2022, 37, 309–320. [Google Scholar] [CrossRef]
- Pollock, M.; Fernandes, R.M.; Becker, L.A.; Pieper, D.; Hartling, L. Overviews of Reviews. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Eds.; Cochrane: London, UK, 2022. [Google Scholar]
- Gates, M.; Gates, A.; Pieper, D.; Fernandes, R.M.; Tricco, A.C.; Moher, D.; Brennan, S.E.; Li, T.; Pollock, M.; Lunny, C.; et al. Reporting guideline for overviews of reviews of healthcare interventions: Development of the PRIOR statement. BMJ 2022, 378, e070849. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Avau, B.; Van Remoortel, H.; De Buck, E. Translation and validation of PubMed and Embase search filters for identification of systematic reviews, intervention studies, and observational studies in the field of first aid. J. Med. Libr. Assoc. 2021, 109, 599–608. [Google Scholar] [CrossRef]
- Montori, V.M.; Wilczynski, N.L.; Morgan, D.; Haynes, R.B. Optimal search strategies for retrieving systematic reviews from Medline: Analytical survey. BMJ 2005, 330, 68. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Hamel, C.; Wells, G.A.; Bouter, L.; Kristjansson, E.; Grimshaw, J.; Henry, D.; Boers, M. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J. Clin. Epidemiol. 2009, 62, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Cranney, A.; Horsley, T.; O’Donnell, S.; Weiler, H.; Puil, L.; Ooi, D.; Atkinson, S.; Ward, L.; Moher, D.; Hanley, D.; et al. Effectiveness and Safety of Vitamin D in Relation to Bone Health. Evid. Rep. Technol. Assess. 2007, 158, 1–235. [Google Scholar]
- Whiting, S.J.; Bonjour, J.-P.; Payen, F.D.; Rousseau, B. Moderate Amounts of Vitamin D3 in Supplements are Effective in Raising Serum 25-Hydroxyvitamin D from Low Baseline Levels in Adults: A Systematic Review. Nutrients 2015, 7, 2311–2323. [Google Scholar] [CrossRef] [PubMed]
- Tangestani, H.; Djafarian, K.; Emamat, H.; Arabzadegan, N.; Shab-Bidar, S. Efficacy of vitamin D fortified foods on bone mineral density and serum bone biomarkers: A systematic review and meta-analysis of interventional studies. Crit. Rev. Food Sci. Nutr. 2019, 60, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.V.; Borges, N.; Vieira, E.F. Vitamin d-fortified bread: Systematic review of fortification approaches and clinical studies. Food Chem. 2022, 372, 131325. [Google Scholar] [CrossRef]
- Soto-Méndez, M.J.; Rangel-Huerta, O.D.; Ruiz-López, M.D.; de Victoria, E.; Anguita-Ruiz, A.; Gil, A. Role of Functional For-tified Dairy Products in Cardiometabolic Health: A Systematic Review and Meta-Analyses of Randomized Clinical Trials. Adv. Nutr. 2019, 10, S251–S271. [Google Scholar] [CrossRef]
- OMahony, L.; Stepien, M.; Gibney, M.J.; Nugent, A.P.; Brennan, L. The Potential Role of Vitamin D Enhanced Foods in Improving Vitamin D Status. Nutrients 2011, 3, 1023–1041. [Google Scholar] [CrossRef]
- O’Donnell, S.; Cranney, A.; Horsley, T.; Weiler, H.A.; Atkinson, S.A.; Hanley, D.A.; Ooi, D.S.; Ward, L.; Barrowman, N.; Fang, M.; et al. Efficacy of food fortification on serum 25-hydroxyvitamin D concentrations: Systematic review. Am. J. Clin. Nutr. 2008, 88, 1528–1534. [Google Scholar] [CrossRef]
- Nikooyeh, B.; Neyestani, T.R. The effects of vitamin D-fortified foods on circulating 25(OH)D concentrations in adults: A systematic review and meta-analysis. Br. J. Nutr. 2021, 127, 1821–1838. [Google Scholar] [CrossRef]
- Nikooyeh, B.; Neyestani, T. Efficacy of Food Fortification with Vitamin D in Iranian Adults: A Systematic Review and Meta-Analysis. Nutr. Food Sci. Res. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Nikooyeh, B.; Ghodsi, D.; Neyestani, T.R. How Much Does Serum 25(OH)D Improve by Vitamin D Supplement and Fortified Food in Children? A Systematic Review and Meta-Analysis. J. Pediatr. Gastroenterol. Nutr. 2021, 74, e87–e97. [Google Scholar] [CrossRef] [PubMed]
- Niedermaier, T.; Gredner, T.; Kuznia, S.; Schöttker, B.; Mons, U.; Brenner, H. Potential of Vitamin D Food Fortification in Prevention of Cancer Deaths—A Modeling Study. Nutrients 2021, 13, 3986. [Google Scholar] [CrossRef] [PubMed]
- Lam, I.T.; Keller, H.H.; Pfisterer, K.; Duizer, L.; Stark, K.; Duncan, A.M. Micronutrient Food Fortification for Residential Care: A Scoping Review of Current Interventions. J. Am. Med. Dir. Assoc. 2016, 17, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Gasparri, C.; Perna, S.; Spadaccini, D.; Alalwan, T.; Girometta, C.; Infantino, V.; Rondanelli, M. Is vitamin D-fortified yogurt a value-added strategy for improving human health? A systematic review and meta-analysis of randomized trials. J. Dairy Sci. 2019, 102, 8587–8603. [Google Scholar] [CrossRef]
- Fonseca Santos, R.K.; Santos, C.B.; Reis, A.R.; Brandão-Lima, P.N.; de Carvalho, G.B.; Martini, L.A.; Pires, L.V. Role of Food Fortification with Vitamin D and Calcium in the Bone Remodeling Process in Postmenopausal Women: A Systematic Review of Randomized Controlled Trials. Nutr. Rev. 2021, 80, 826–837. [Google Scholar] [CrossRef]
- Emadzadeh, M.; Sahebi, R.; Khedmatgozar, H.; Sadeghi, R.; Farjami, M.; Sharifan, P.; Ravanshad, Y.; Ferns, G.A.; Ghayour-Mobarhan, M. A systematic review and meta-analysis of the effect of Vitamin D-fortified food on glycemic indices. BioFactors 2020, 46, 502–513. [Google Scholar] [CrossRef]
- Emadzadeh, M.; Rashidmayvan, M.; Sahebi, R.; Sadeghi, R.; Ferns, G.A.; Ghayour-Mobarhan, M. The effect of vitamin D fortified products on anthropometric indices: A systematic review and meta-analysis. Complement. Ther. Clin. Pract. 2020, 41, 101242. [Google Scholar] [CrossRef]
- Emadzadeh, M.; Mehdizadeh, A.; Sharifan, P.; Khoshakhlagh, M.; Sahebi, R.; Sadeghi, R.; Ferns, G.A.; Ghayour-Mobarhan, M. The Effects of Vitamin D Fortified Products on Bone Biomarkers: A Systematic Review and Meta-Analysis. Iran. J. Public Health 2022, 51, 278–291. [Google Scholar] [CrossRef]
- Dunlop, E.; Kiely, M.E.; James, A.P.; Singh, T.; Pham, N.M.; Black, L.J. Vitamin D Food Fortification and Biofortification In-creases Serum 25-Hydroxyvitamin D Concentrations in Adults and Children: An Updated and Extended Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2021, 151, 2622–2635. [Google Scholar] [CrossRef]
- Das, J.K.; Salam, R.A.; Kumar, R.; Bhutta, Z.A. Micronutrient fortification of food and its impact on woman and child health: A systematic review. Syst. Rev. 2013, 23, 2–67. [Google Scholar] [CrossRef]
- Cashman, K.D.; Kiely, M.E.; Andersen, R.; Grønborg, I.M.; Madsen, K.H.; Nissen, J.; Tetens, I.; Tripkovic, L.; Lanham-New, S.A.; Toxqui, L.; et al. Individual participant data (IPD)-level meta-analysis of randomised controlled trials with vitamin D-fortified foods to estimate Dietary Reference Values for vitamin D. Eur. J. Nutr. 2020, 60, 939–959. [Google Scholar] [CrossRef]
- Cranney, A.; Weiler, H.A.; O’Donnell, S.; Puil, L. Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am. J. Clin. Nutr. 2008, 88, 513S–519S. [Google Scholar] [CrossRef]
- Brooker, P.G.; Rebuli, M.A.; Williams, G.; Muhlhausler, B.S. Effect of Fortified Formula on Growth and Nutritional Status in Young Children: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 5060. [Google Scholar] [CrossRef] [PubMed]
- Brett, N.R.; Gharibeh, N.; Weiler, H.A. Effect of Vitamin D Supplementation, Food Fortification, or Bolus Injection on Vitamin D Status in Children Aged 2–18 Years: A Meta-Analysis. Adv. Nutr. 2018, 9, 454–464. [Google Scholar] [CrossRef]
- Brandão-Lima, P.N.; Santos, B.; da, C.; Aguilera, C.M.; Freire, A.R.S.; Martins-Filho, P.R.S.; Pires, L.V. Vitamin D Food Fortifi-cation and Nutritional Status in Children: A Systematic Review of Randomized Controlled Trials. Nutrients 2019, 11, 2766. [Google Scholar] [CrossRef] [PubMed]
- Black, L.J.; Seamans, K.M.; Cashman, K.D.; Kiely, M. An Updated Systematic Review and Meta-Analysis of the Efficacy of Vitamin D Food Fortification. J. Nutr. 2012, 142, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Al Khalifah, R.; Alsheikh, R.; Alnasser, Y.; Alsheikh, R.; Alhelali, N.; Naji, A.; Al Backer, N. The impact of vitamin D food fortification and health outcomes in children: A systematic review and meta-regression. Syst. Rev. 2020, 9, 144. [Google Scholar] [CrossRef]
- Aguiar, M.; Andronis, L.; Pallan, M.; Högler, W.; Frew, E. Preventing vitamin D deficiency (VDD): A systematic review of economic evaluations. Eur. J. Public Health 2017, 27, 292–301. [Google Scholar] [CrossRef]
- Akkermans, M.D.; Eussen, S.R.; van der Horst-Graat, J.M.; van Elburg, R.M.; van Goudoever, J.B.; Brus, F. A Micronutrient-Fortified Young-Child Formula Improves the Iron and Vitamin D Status of Healthy Young European Children: A Randomized, Double-Blind Controlled Trial. Am. J. Clin. Nutr. 2017, 105, 391–399. [Google Scholar] [CrossRef]
- Benjeddou, K.; Qandoussi, L.; Mekkaoui, B.; Rabi, B.; El Hamdouchi, A.; Raji, F.; Saeid, N.; Belghiti, H.; Elkari, K.; Aguenaou, H. Effect of multiple micronutrient fortified milk consumption on vitamin D status among school-aged children in rural region of Morocco. Appl. Physiol. Nutr. Metab. 2019, 44, 461–467. [Google Scholar] [CrossRef]
- Brett, N.R.; Lavery, P.; Agellon, S.; Vanstone, C.A.; Maguire, J.L.; Rauch, F.; Weiler, H.A. Dietary vitamin D dose-response in healthy children 2 to 8 y of age: A 12-wk randomized controlled trial using fortified foods. Am. J. Clin. Nutr. 2016, 103, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Brett, N.R.; Parks, C.A.; Lavery, P.; Agellon, S.; Vanstone, C.A.; Kaufmann, M.; Jones, G.; Maguire, J.L.; Rauch, F.; Weiler, H.A. Vitamin D status and functional health outcomes in children aged 2–8 y: A 6-mo vitamin D randomized controlled trial. Am. J. Clin. Nutr. 2018, 107, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Economos, C.D.; Moore, C.E.; Hyatt, R.R.; Kuder, J.; Chen, T.; Meydani, S.N.; Meydani, M.; Klein, E.; Biancuzzo, R.M.; Holick, M.F. Multinutrient-Fortified Juices Improve Vitamin D and Vitamin E Status in Children: A Randomized Controlled Trial. J. Acad. Nutr. Diet. 2014, 114, 709–717. [Google Scholar] [CrossRef]
- Graham, D.; Kira, G.; Conaglen, J.; McLennan, S.; Rush, E. Vitamin D status of Year 3 children and supplementation through schools with fortified milk. Public Health Nutr. 2008, 12, 2329–2334. [Google Scholar] [CrossRef]
- Houghton, L.A.; Gray, A.R.; Szymlek-Gay, E.A.; Heath, A.-L.M.; Ferguson, E.L. Vitamin D-Fortified Milk Achieves the Targeted Serum 25-Hydroxyvitamin D Concentration without Affecting That of Parathyroid Hormone in New Zealand Toddlers. J. Nutr. 2011, 141, 1840–1846. [Google Scholar] [CrossRef] [PubMed]
- Hower, J.; Knoll, A.; Ritzenthaler, K.L.; Steiner, C.; Berwind, R. Vitamin D fortification of growing up milk prevents decrease of serum 25-hydroxyvitamin D concentrations during winter: A clinical intervention study in Germany. Eur. J. Pediatr. 2013, 172, 1597–1605. [Google Scholar] [CrossRef]
- Khadgawat, R.; Marwaha, R.K.; Garg, M.K.; Ramot, R.; Oberoi, A.K.; Sreenivas, V.; Gahlot, M.; Mehan, N.; Mathur, P.; Gupta, N. Impact of vitamin D fortified milk supplementation on vitamin D status of healthy school children aged 10–14 years. Osteoporos. Int. 2013, 24, 2335–2343. [Google Scholar] [CrossRef]
- Kuriyan, R.; Thankachan, P.; Selvam, S.; Pauline, M.; Srinivasan, K.; Kamath-Jha, S.; Vinoy, S.; Misra, S.; Finnegan, Y.; Kurpad, A. V The Effects of Regular Consumption of a Multiple Micronutrient Fortified Milk Beverage on the Micronutrient Status of School Children and on Their Mental and Physical Performance. Clin. Nutr. 2016, 35, 190–198. [Google Scholar] [CrossRef]
- Madsen, K.H.; Rasmussen, L.B.; Andersen, R.; Molgaard, C.; Jakobsen, J.; Bjerrum, P.J.; Andersen, E.W.; Mejborn, H.; Tetens, I. Randomized Controlled Trial of the Effects of Vitamin D–Fortified Milk and Bread on Serum 25-Hydroxyvitamin D Concentrations in Families in Denmark during Winter: The VitmaD Study. Am. J. Clin. Nutr. 2013, 98, 374–382. [Google Scholar] [CrossRef]
- Neyestani, T.R.; Hajifaraji, M.; Omidvar, N.; Nikooyeh, B.; Eshraghian, M.R.; Shariatzadeh, N.; Kalayi, A.; Khalaji, N.; Zahedirad, M.; Abtahi, M.; et al. Calcium-vitamin D-fortified milk is as effective on circulating bone biomarkers as fortified juice and supplement but has less acceptance: A randomised controlled school-based trial. J. Hum. Nutr. Diet. 2014, 27, 606–616. [Google Scholar] [CrossRef]
- Öhlund, I.; Lind, T.; Hernell, O.; Silfverdal, S.-A.; Karlsland Åkeson, P. Increased vitamin D intake differentiated according to skin color is needed to meet requirements in young Swedish children during winter: A double-blind randomized clinical trial. Am. J. Clin. Nutr. 2017, 106, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Powers, H.J.; Stephens, M.; Russell, J.; Hill, M.H. Fortified breakfast cereal consumed daily for 12 wk leads to a significant improvement in micronutrient intake and micronutrient status in adolescent girls: A randomised controlled trial. Nutr. J. 2015, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Rich-Edwards, J.W.; Ganmaa, D.; Kleinman, K.; Sumberzul, N.; Holick, M.F.; Lkhagvasuren, T.; Dulguun, B.; Burke, A.; Frazier, A.L. Randomized trial of fortified milk and supplements to raise 25-hydroxyvitamin D concentrations in schoolchildren in Mongolia. Am. J. Clin. Nutr. 2011, 94, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hui, Z.; Dai, X.; Terry, P.; Zhang, Y.; Ma, M.; Wang, M.; Deng, F.; Gu, W.; Lei, S.; et al. Micronutrient Fortified Milk and Academic Performance among Chinese Middle School Students: A Cluster Randomized Controlled Trial. Nutrients 2017, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Moreira-lucas, T.S.; Duncan, A.M.; Rabasa-lhoret, R.; Vieth, R.; Gibbs, A.; Badawi, A.; Wolever, T.M. Effect of Vitamin D For-tified Cheese on Oral Glucose Tolerance in Individuals Exhibiting Marginal Vitamin D Status and an Increased Risk for De-veloping Type 2 Diabetes: A Double-Blind, Randomized Placebo-Controlled Clinical Trial. FASEB J. 2016, 30, 917.1. [Google Scholar]
- Adolphi, B.; Scholz-Ahrens, K.E.; de Vrese, M.; Açil, Y.; Laue, C.; Schrezenmeir, J. Short-Term Effect of Bedtime Consumption of Fermented Milk Supplemented with Calcium, Inulin-Type Fructans and Caseinphosphopeptides on Bone Metabolism in Healthy, Postmenopausal Women. Eur. J. Nutr. 2008, 48, 45–53. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Amer, O.E.; Khattak, M.N.; Sabico, S.; Ansari, M.G.A.; Al-Saleh, Y.; Aljohani, N.; Alfawaz, H.; Alokail, M.S. Effects of different vitamin D supplementation strategies in reversing metabolic syndrome and its component risk factors in adolescents. J. Steroid Biochem. Mol. Biol. 2019, 191, 105378. [Google Scholar] [CrossRef]
- Sivakumar, B.; Nair, K.M.; Sreeramulu, D.; Suryanarayana, P.; Ravinder, P.; Shatrugna, V.; Kumar, P.A.; Raghunath, M.; Vikas Rao, V.; Balakrishna, N.; et al. Effect of Micronutrient Supplement on Health and Nutritional Status of Schoolchildren: Biochemical Status. Nutrition 2006, 22, S15–S25. [Google Scholar] [CrossRef]
- Biancuzzo, R.M.; Young, A.; Bibuld, D.; Cai, M.H.; Winter, M.R.; Klein, E.K.; Ameri, A.; Reitz, R.; Salameh, W.; Chen, T.; et al. Fortification of orange juice with vitamin D2 or vitamin D3 is as effective as an oral supplement in maintaining vitamin D status in adults. Am. J. Clin. Nutr. 2010, 91, 1621–1626. [Google Scholar] [CrossRef]
- Bonjour, J.P.; Carrie, A.L.; Ferrari, S.; Clavien, H.; Slosman, D.; Theintz, G.; Rizzoli, R. Calcium-enriched foods and bone mass growth in prepubertal girls: A randomized, double-blind, placebo-controlled trial. J. Clin. Investig. 1997, 99, 1287–1294. [Google Scholar] [CrossRef]
- Bonjour, J.-P.; Benoit, V.; Pourchaire, O.; Ferry, M.; Rousseau, B.; Souberbielle, J.-C. Inhibition of markers of bone resorption by consumption of vitamin D and calcium-fortified soft plain cheese by institutionalised elderly women. Br. J. Nutr. 2009, 102, 962–966. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.-P.; Benoit, V.; Pourchaire, O.; Rousseau, B.; Souberbielle, J.-C. Nutritional approach for inhibiting bone resorption in institutionalized elderly women with vitamin D insufficiency and high prevalence of fracture. J. Nutr. Health Aging 2011, 15, 404–409. [Google Scholar] [CrossRef]
- Bonjour, J.-P.; Benoit, V.; Rousseau, B.; Souberbielle, J.-C. Consumption of Vitamin D-and Calcium-Fortified Soft White Cheese Lowers the Biochemical Marker of Bone Resorption TRAP 5b in Postmenopausal Women at Moderate Risk of Osteoporosis Fracture. J. Nutr. 2012, 142, 698–703. [Google Scholar] [CrossRef]
- Bonjour, J.P.; Benoit, V.; Payen, F.; Kraenzlin, M. Consumption of Yogurts Fortified in Vitamin D and Calcium Reduces Serum Parathyroid Hormone and Markers of Bone Resorption: A Double-Blind Randomized Controlled Trial in Institutionalized El-derly Women. J. Clin. Endocrinol. Metab. 2013, 98, 2915–2921. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.-P.; Benoit, V.; Atkin, S.; Walrand, S. Fortification of yogurts with vitamin D and calcium enhances the inhibition of serum parathyroid hormone and bone resorption markers: A double blind randomized controlled trial in women over 60 living in a community dwelling home. J. Nutr. Health Aging 2015, 19, 563–569. [Google Scholar] [CrossRef]
- Bonjour, J.P.; Dontot-Payen, F.; Rouy, E.; Walrand, S.; Rousseau, B. Evolution of Serum 25OHD in Response to Vitamin D3–Fortified Yogurts Consumed by Healthy Menopausal Women: A 6-Month Randomized Controlled Trial Assessing the Interactions between Doses, Baseline Vitamin D Status, and Seasonality. J. Am. Coll. Nutr. 2017, 37, 34–43. [Google Scholar] [CrossRef]
- Chee, W.S.S.; Suriah, A.R.; Chan, S.P.; Zaitun, Y.; Chan, Y.M. The effect of milk supplementation on bone mineral density in postmenopausal Chinese women in Malaysia. Osteoporos. Int. 2003, 14, 828–834. [Google Scholar] [CrossRef]
- Costan, A.R.; Vulpoi, C.; Mocanu, V. Vitamin D Fortified Bread Improves Pain and Physical Function Domains of Quality of Life in Nursing Home Residents. J. Med. Food 2014, 17, 625–631. [Google Scholar] [CrossRef]
- Daly, R.M.; Bass, S.; Nowson, C. Long-term effects of calcium–vitamin-D3-fortified milk on bone geometry and strength in older men. Bone 2006, 39, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Daly, R.M.; Brown, M.; Bass, S.; Kukuljan, S.; Nowson, C. Calcium- and Vitamin D3-Fortified Milk Reduces Bone Loss at Clinically Relevant Skeletal Sites in Older Men: A 2-Year Randomized Controlled Trial. J. Bone Miner. Res. 2005, 21, 397–405. [Google Scholar] [CrossRef]
- Daly, R.M.; Petrass, N.; Bass, S.; Nowson, C.A. The skeletal benefits of calcium- and vitamin D3–fortified milk are sustained in older men after withdrawal of supplementation: An 18-mo follow-up study. Am. J. Clin. Nutr. 2008, 87, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Daly, R.M.; Nowson, C.A. Long-Term Effect of Calcium-Vitamin D3 Fortified Milk on Blood Pressure and Serum Lipid Concentrations in Healthy Older Men. Eur. J. Clin. Nutr. 2009, 63, 993–1000. [Google Scholar] [CrossRef]
- De Jong, N.; Paw, M.J.C.A.; de Groot, L.C.; de Graaf, C.; Kok, F.J.; van Staveren, W.A. Functional Biochemical and Nutrient Indices in Frail Elderly People Are Partly Affected by Dietary Supplements but Not by Exercise. J. Nutr. 1999, 129, 2028–2036. [Google Scholar] [CrossRef] [PubMed]
- Fisk, C.M.; Theobald, H.E.; Sanders, T.A.B. Fortified Malted Milk Drinks Containing Low-Dose Ergocalciferol and Cholecalciferol Do Not Differ in Their Capacity to Raise Serum 25-Hydroxyvitamin D Concentrations in Healthy Men and Women Not Exposed to UV-B. J. Nutr. 2012, 142, 1286–1290. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E.; Lutz, L.J.; Rood, J.C.; Cable, S.J.; Pasiakos, S.M.; Young, A.J.; McClung, J.P. Calcium and vitamin D supplementation maintains parathyroid hormone and improves bone density during initial military training: A randomized, double-blind, placebo controlled trial. Bone 2014, 68, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Gaffney-Stomberg, E.; Nakayama, A.T.; Guerriere, K.I.; Lutz, L.J.; Walker, L.A.; Staab, J.S.; Scott, J.M.; Gasier, H.G.; McClung, J.P. Calcium and vitamin D supplementation and bone health in Marine recruits: Effect of season. Bone 2019, 123, 224–233. [Google Scholar] [CrossRef]
- Ganmaa, D.; Stuart, J.J.; Sumberzul, N.; Ninjin, B.; Giovannucci, E.; Kleinman, K.; Holick, M.F.; Willett, W.C.; Frazier, L.A.; Rich-Edwards, J.W. Vitamin D supplementation and growth in urban Mongol school children: Results from two randomized clinical trials. PLoS ONE 2017, 12, e0175237. [Google Scholar] [CrossRef]
- Grønborg, I.M.; Tetens, I.; Andersen, E.W.; Kristensen, M.; Larsen, R.E.K.; Tran, T.L.L.; Andersen, R. Effect of Vitamin D Fortified Foods on Bone Markers and Muscle Strength in Women of Pakistani and Danish Origin Living in Denmark: A Randomised Controlled Trial. Nutr. J. 2019, 18, 82. [Google Scholar] [CrossRef] [PubMed]
- Grønborg, I.M.; Tetens, I.; Christensen, T.; Andersen, E.W.; Jakobsen, J.; Kiely, M.; Cashman, K.D.; Andersen, R. Vitamin D-fortified foods improve wintertime vitamin D status in women of Danish and Pakistani origin living in Denmark: A randomized controlled trial. Eur. J. Nutr. 2019, 59, 741–753. [Google Scholar] [CrossRef]
- Hayes, A.; Duffy, S.; O’grady, M.; Jakobsen, J.; Galvin, K.; Teahan-Dillon, J.; Kerry, J.; Kelly, A.; O’doherty, J.; Higgins, S.; et al. Vitamin D–enhanced eggs are protective of wintertime serum 25-hydroxyvitamin D in a randomized controlled trial of adults. Am. J. Clin. Nutr. 2016, 104, 629–637. [Google Scholar] [CrossRef]
- Hennigar, S.R.; Gaffney-Stomberg, E.; Lutz, L.J.; Cable, S.J.; Pasiakos, S.M.; Young, A.J.; McClung, J.P. Consumption of a Calcium and Vitamin D-Fortified Food Product Does Not Affect Iron Status during Initial Military Training: A Randomised, Double-Blind, Placebo-Controlled Trial. Br. J. Nutr. 2015, 115, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Heravifard, S.; Neyestani, T.R.; Nikooyeh, B.; Alavi-Majd, H.; Houshiarrad, A.; Kalayi, A.; Shariatzadeh, N.; Zahedirad, M.; Tayebinejad, N.; Salekzamani, S.; et al. Regular Consumption of Both Vitamin D– and Calcium- and Vitamin D–Fortified Yogurt Drink Is Equally Accompanied by Lowered Blood Lipoprotein (a) and Elevated Apoprotein A1 in Subjects with Type 2 Diabetes: A Randomized Clinical Trial. J. Am. Coll. Nutr. 2013, 32, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, M.; Lekamwasam, S.; Liyanage, C. Long-term cereal-based nutritional supplementation improved the total spine bone mineral density amongst Sri Lankan preschool children: A randomized controlled study. J. Pediatr. Endocrinol. Metab. 2010, 23, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.C.; Guldan, G.S.; Woo, J.; Yu, R.; Tse, M.M.; Sham, A.; Cheng, J. A Prospective Study of the Effects of 1-Year Calcium-Fortified Soy Milk Supplementation on Dietary Calcium Intake and Bone Health in Chinese Adolescent Girls Aged 14 to 16. Osteoporos. Int. 2005, 16, 1907–1916. [Google Scholar] [CrossRef]
- Itkonen, S.T.; Skaffari, E.; Saaristo, P.; Saarnio, E.M.; Erkkola, M.; Jakobsen, J.; Cashman, K.D.; Lamberg-Allardt, C. Effects of Vitamin D2-Fortified Breadv. Supplementation with Vitamin D2 or D3 on Serum 25-Hydroxyvitamin D Metabolites: An 8-Week Randomised-Controlled Trial in Young Adult Finnish Women. Br. J. Nutr. 2016, 115, 1232–1239. [Google Scholar] [CrossRef]
- Jääskeläinen, T.; Itkonen, S.T.; Lundqvist, A.; Erkkola, M.; Koskela, T.; Lakkala, K.; Dowling, K.G.; Hull, G.L.; Kröger, H.; Karppinen, J.; et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: Evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am. J. Clin. Nutr. 2017, 105, 1512–1520. [Google Scholar] [CrossRef]
- Jafari, T.; Faghihimani, E.; Feizi, A.; Iraj, B.; Javanmard, S.H.; Esmaillzadeh, A.; Fallah, A.A.; Askari, G. Effects of vitamin D-fortified low fat yogurt on glycemic status, anthropometric indexes, inflammation, and bone turnover in diabetic postmenopausal women: A randomised controlled clinical trial. Clin. Nutr. 2016, 35, 67–76. [Google Scholar] [CrossRef]
- Jakobsen, J.; Knuthsen, P. Stability of vitamin D in foodstuffs during cooking. Food Chem. 2014, 148, 170–175. [Google Scholar] [CrossRef]
- Johnson, J.; Mistry, V.; Vukovich, M.D.; Hogie-Lorenzen, T.; Hollis, B.; Specker, B. Bioavailability of Vitamin D from Fortified Process Cheese and Effects on Vitamin D Status in the Elderly. J. Dairy Sci. 2005, 88, 2295–2301. [Google Scholar] [CrossRef]
- Kanellakis, S.; Moschonis, G.; Tenta, R.; Schaafsma, A.; van den Heuvel, E.G.H.M.; Papaioannou, N.; Lyritis, G.; Manios, Y. Changes in Parameters of Bone Metabolism in Postmenopausal Women Following a 12-Month Intervention Period Using Dairy Products Enriched with Calcium, Vitamin D, and Phylloquinone (Vitamin K1) or Menaquinone-7 (Vitamin K2): The Postmenopausal Health Study II. Calcif. Tissue Int. 2012, 90, 251–262. [Google Scholar] [CrossRef]
- Keane, E.M.; Rochfort, A.; Cox, J.; McGovern, D.; Coakley, D.; Walsh, B. Vitamin-D-Fortified Liquid Milk—A Highly Effective Method of Vitamin D Administration for House-Bound and Institutionalised Elderly. Gerontology 1992, 38, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Keane, E.M.; Healy, M.; O’Moore, R.; Coakley, D.; Walsh, J.B. Vitamin D-Fortified Liquid Milk: Benefits for the Elderly Com-munity-Based Population. Calcif. Tissue Int. 1998, 62, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Kruger, M.C.; Booth, C.L.; Coad, J.; Schollum, L.M.; Kuhn-Sherlock, B.; Shearer, M.J. Effect of Calcium Fortified Milk Supplementation with or without Vitamin K on Biochemical Markers of Bone Turnover in Premenopausal Women. Nutrition 2006, 22, 1120–1128. [Google Scholar] [CrossRef]
- Kruger, M.C.; Schollum, L.M.; Kuhn-Sherlock, B.; Hestiantoro, A.; Wijanto, P.; Li-Yu, J.; Agdeppa, I.; Todd, J.M.; Eastell, R. The effect of a fortified milk drink on vitamin D status and bone turnover in post-menopausal women from South East Asia. Bone 2010, 46, 759–767. [Google Scholar] [CrossRef]
- Kruger, M.C.; Chan, Y.M.; Lau, L.T.; Lau, C.C.; Chin, Y.S.; Kuhn-Sherlock, B.; Todd, J.M.; Schollum, L.M. Calcium and vitamin D fortified milk reduces bone turnover and improves bone density in postmenopausal women over 1 year. Eur. J. Nutr. 2017, 57, 2785–2794. [Google Scholar] [CrossRef]
- Kruger, M.C.; Ha, P.C.; Todd, J.M.; Kuhn-Sherlock, B.; Schollum, L.M.; Ma, J.; Qin, G.; Lau, E. High-Calcium, Vitamin D Fortified Milk Is Effective in Improving Bone Turnover Markers and Vitamin D Status in Healthy Postmenopausal Chinese Women. Eur. J. Clin. Nutr. 2012, 66, 856–861. [Google Scholar] [CrossRef]
- Kruger, M.C.; Chan, Y.M.; Lau, C.; Lau, L.T.; Chin, Y.S.; Kuhn-Sherlock, B.; Schollum, L.M.; Todd, J.M. Fortified Milk Supplementation Improves Vitamin D Status, Grip Strength, and Maintains Bone Density in Chinese Premenopausal Women Living in Malaysia. BioResearch Open Access 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Kukuljan, S.; Nowson, C.A.; Sanders, K.; Daly, R.M. Effects of resistance exercise and fortified milk on skeletal muscle mass, muscle size, and functional performance in middle-aged and older men: An 18-mo randomized controlled trial. J. Appl. Physiol. 2009, 107, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
- Kukuljan, S.; Nowson, C.A.; Bass, S.L.; Sanders, K.; Nicholson, G.C.; Seibel, M.J.; Salmon, J.; Daly, R.M. Effects of a Multi-Component Exercise Program and Calcium–Vitamin-D3-Fortified Milk on Bone Mineral Density in Older Men: A Randomised Controlled Trial. Osteoporos. Int. 2008, 20, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Kukuljan, S.; Nowson, C.A.; Sanders, K.M.; Nicholson, G.C.; Seibel, M.J.; Salmon, J.; Daly, R.M. Independent and Combined Effects of Calcium-Vitamin D3 and Exercise on Bone Structure and Strength in Older Men: An 18-Month Factorial Design Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2011, 96, 955–963. [Google Scholar] [CrossRef]
- Lau, E.M.C.; Woo, J.; Lam, V.; Hong, A. Milk Supplementation of the Diet of Postmenopausal Chinese Women on a Low Calcium Intake Retards Bone Loss. J. Bone Miner. Res. 2001, 16, 1704–1709. [Google Scholar] [CrossRef]
- Lehtonen-Veromaa, M.; Möttönen, T.; Leino, A.; Heinonen, O.J.; Rautava, E.; Viikari, J. Prospective study on food fortification with vitamin D among adolescent females in Finland: Minor effects. Br. J. Nutr. 2008, 100, 418–423. [Google Scholar] [CrossRef]
- Li, Q.; Xing, B. Vitamin D3-Supplemented Yogurt Drink Improves Insulin Resistance and Lipid Profiles in Women with Gestational Diabetes Mellitus: A Randomized Double Blinded Clinical Trial. Ann. Nutr. Metab. 2016, 68, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Lovell, A.L.; Davies, P.S.W.; Hill, R.J.; Milne, T.; Matsuyama, M.; Jiang, Y.; Chen, R.X.; Wouldes, T.A.; Heath, A.L.M.; Grant, C.C.; et al. Compared with Cow Milk, a Growing-Up Milk Increases Vitamin D and Iron Status in Healthy Children at 2 Years of Age: The Growing-Up Milk–Lite (GUMLi) Randomized Controlled Trial. J. Nutr. 2018, 148, 1570–1579. [Google Scholar] [CrossRef]
- Lu, J.; Pan, H.; Hu, X.; Huang, Z.; Zhang, Q. Effects of milk powder intervention on bone mineral density and indicators related to bone metabolism in Chinese adolescents. Osteoporos. Int. 2019, 30, 2231–2239. [Google Scholar] [CrossRef]
- Manios, Y.; Moschonis, G.; Trovas, G.; Lyritis, G.P. Changes in biochemical indexes of bone metabolism and bone mineral density after a 12-mo dietary intervention program: The Postmenopausal Health Study. Am. J. Clin. Nutr. 2007, 86, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Manios, Y.; Moschonis, G.; Panagiotakos, D.B.; Farajian, P.; Trovas, G.; Lyritis, G.P. Changes in biochemical indices of bone metabolism in post-menopausal women following a dietary intervention with fortified dairy products. J. Hum. Nutr. Diet. 2009, 22, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Manios, Y.; Moschonis, G.; Lyritis, G.P. Seasonal variations of vitamin D status in Greek postmenopausal women receiving enriched dairy products for 30 months: The Postmenopausal Health Study. Eur. J. Clin. Nutr. 2011, 65, 412–414. [Google Scholar] [CrossRef]
- Manios, Y.; Moschonis, G.; Mavrogianni, C.; van den Heuvel, E.; Singh-Povel, C.M.; Kiely, M.; Cashman, K.D. Reduced-Fat Gouda-Type Cheese Enriched with Vitamin D3 Effectively Prevents Vitamin D Deficiency during Winter Months in Post-menopausal Women in Greece. Eur. J. Nutr. 2016, 56, 2367–2377. [Google Scholar] [CrossRef]
- Mocanu, V.; Stitt, P.A.; Costan, A.R.; Voroniuc, O.; Zbranca, E.; Luca, V.; Vieth, R. Long-Term Effects of Giving Nursing Home Residents Bread Fortified with 125 μg (5000 IU) Vitamin D3 per Daily Serving. Am. J. Clin. Nutr. 2009, 89, 1132–1137. [Google Scholar] [CrossRef]
- Mocanu, V.; Vieth, R. Three-Year Follow-up of Serum 25-Hydroxyvitamin D, Parathyroid Hormone, and Bone Mineral Density in Nursing Home Residents Who Had Received 12 Months of Daily Bread Fortification with 125 μg of Vitamin D3. Nutr. J. 2013, 12, 137. [Google Scholar] [CrossRef]
- Mohammadi-Sartang, M.; Bellissimo, N.; de Zepetnek, J.O.T.; Brett, N.R.; Mazloomi, S.M.; Fararouie, M.; Bedeltavana, A.; Famouri, M.; Mazloom, Z. The effect of daily fortified yogurt consumption on weight loss in adults with metabolic syndrome: A 10-week randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 565–574. [Google Scholar] [CrossRef]
- Moreira-Lucas, T.S.; Duncan, A.M.; Rabasa-Lhoret, R.; Vieth, R.; Gibbs, A.L.; Badawi, A.; Wolever, T.M. Effect of vitamin D supplementation on oral glucose tolerance in individuals with low vitamin D status and increased risk for developing type 2 diabetes (EVIDENCE): A double-blind, randomized, placebo-controlled clinical trial. Diabetes Obes. Metab. 2016, 19, 133–141. [Google Scholar] [CrossRef]
- Moschonis, G.; Manios, Y. Skeletal site-dependent response of bone mineral density and quantitative ultrasound parameters following a 12-month dietary intervention using dairy products fortified with calcium and vitamin D: The Postmenopausal Health Study. Br. J. Nutr. 2006, 96, 1140–1148. [Google Scholar] [CrossRef]
- Moschonis, G.; Katsaroli, I.; Lyritis, G.P.; Manios, Y. The effects of a 30-month dietary intervention on bone mineral density: The Postmenopausal Health Study. Br. J. Nutr. 2010, 104, 100–107. [Google Scholar] [CrossRef]
- Moschonis, G.; Kanellakis, S.; Papaioannou, N.; Schaafsma, A.; Manios, Y. Possible Site-Specific Effect of an Intervention Combining Nutrition and Lifestyle Counselling with Consumption of Fortified Dairy Products on Bone Mass: The Postmenopausal Health Study II. J. Bone Miner. Metab. 2011, 29, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Mostafai, R.; Mohammadi, R.; Nachvak, S.M.; Rezaei, M.; Pasdar, Y.; Abdollahzad, H.; Rezvanmadani, F.; Moradi, S.; Morvaridzadeh, M.; Niazi, P.; et al. Fortified Yogurt with Vitamin D as a Cost-Effective Food to Prevent Diabetes: A Randomized Double-Blind Clinical Trial. J. Funct. Foods 2018, 42, 137–145. [Google Scholar] [CrossRef]
- Natri, A.-M.; Salo, P.; Vikstedt, T.; Palssa, A.; Huttunen, M.; Kärkkäinen, M.U.; Salovaara, H.; Piironen, V.; Jakobsen, J.; Lamberg-Allardt, C.J. Bread Fortified with Cholecalciferol Increases the Serum 25-HydroxyvitaminD Concentration in Women as Effectively as a Cholecalciferol Supplement. J. Nutr. 2006, 136, 123–127. [Google Scholar] [CrossRef]
- Neyestani, T.R.; Nikooyeh, B.; Alavi-Majd, H.; Shariatzadeh, N.; Kalayi, A.; Tayebinejad, N.; Heravifard, S.; Salekzamani, S.; Zahedirad, M. Improvement of Vitamin D Status via Daily Intake of Fortified Yogurt Drink Either with or without Extra Calcium Ameliorates Systemic Inflammatory Biomarkers, Including Adipokines, in the Subjects with Type 2 Diabetes. J. Clin. En-docrinol. Metab. 2012, 97, 2005–2011. [Google Scholar] [CrossRef]
- Neyestani, T.R.; Nikooyeh, B.; Kalayi, A.; Zahedirad, M.; Shariatzadeh, N. A Vitamin D-Calcium-Fortified Yogurt Drink De-creased Serum PTH but Did Not Affect Osteocalcin in Subjects with Type 2 Diabetes. Int. J. Vitam. Nutr. Res. 2015, 85, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Nikooyeh, B.; Neyestani, T.R.; Farvid, M.; Alavi-Majd, H.; Houshiarrad, A.; Kalayi, A.; Shariatzadeh, N.; Gharavi, A.; Heravifard, S.; Tayebinejad, N.; et al. Daily consumption of vitamin D– or vitamin D + calcium–fortified yogurt drink improved glycemic control in patients with type 2 diabetes: A randomized clinical trial. Am. J. Clin. Nutr. 2011, 93, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Nikooyeh, B.; Neyestani, T.R.; Zahedirad, M.; Mohammadi, M.; Hosseini, S.H.; Abdollahi, Z.; Salehi, F.; Razaz, J.M.; Shariatzadeh, N.; Kalayi, A.; et al. Vitamin D-Fortified Bread Is as Effective as Supplement in Improving Vitamin D Status: A Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2016, 101, 2511–2519. [Google Scholar] [CrossRef] [PubMed]
- Nissen, J.; Vogel, U.; Ravn-Haren, G.; Andersen, E.W.; Nexø, B.A.; Andersen, R.; Mejborn, H.; Madsen, K.H.; Rasmussen, L.B. Real-life use of vitamin D3-fortified bread and milk during a winter season: The effects of CYP2R1 and GC genes on 25-hydroxyvitamin D concentrations in Danish families, the VitmaD study. Genes Nutr. 2014, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- Nikooyeh, B.; Zargaraan, A.; Kalayi, A.; Shariatzadeh, N.; Zahedirad, M.; Jamali, A.; Khazraie, M.; Hollis, B.; Neyestani, T.R. Vitamin D-fortified cooking oil is an effective way to improve vitamin D status: An institutional efficacy trial. Eur. J. Nutr. 2019, 59, 2547–2555. [Google Scholar] [CrossRef]
- Palacios, S.; Castelo-Branco, C.; Cifuentes, I.; Von Helde, S.; Baró, L.; Tapia-Ruano, C.; Menéndez, C.; Rueda, C. Changes in bone turnover markers after calcium-enriched milk supplementation in healthy postmenopausal women: A randomized, double-blind, prospective clinical trial. Menopause 2005, 12, 63–68. [Google Scholar] [CrossRef]
- Panunzio, M.F.; Pisano, A.; Telesforo, P.; Tomaiuolo, P. Diet can increase 25-hydroxyvitamin-D3 plasma levels in the elderly: A dietary intervention trial. Nutr. Res. 2003, 23, 1177–1181. [Google Scholar] [CrossRef]
- Recker, R.R.; Heaney, R.P. The effect of milk supplements on calcium metabolism, bone metabolism and calcium balance. Am. J. Clin. Nutr. 1985, 41, 254–263. [Google Scholar] [CrossRef]
- Rosenblum, J.L.; Castro, V.M.; Moore, C.E.; Kaplan, L.M. Calcium and Vitamin D Supplementation Is Associated with De-creased Abdominal Visceral Adipose Tissue in Overweight and Obese Adults. Am. J. Clin. Nutr. 2012, 95, 101–108. [Google Scholar] [CrossRef]
- Salehi, S.; Sadeghi, F.; Akhlaghi, M.; Hanifpour, M.A.; Roshanzamir, M. Vitamin D3-fortified milk did not affect glycemic control, lipid profile, and anthropometric measures in patients with type 2 diabetes, a triple-blind randomized clinical trial. Eur. J. Clin. Nutr. 2018, 72, 1083–1092. [Google Scholar] [CrossRef]
- Sandmann, A.; Amling, M.; Barvencik, F.; König, H.H.; Bleibler, F. Economic Evaluation of Vitamin D and Calcium Food Fortification for Fracture Prevention in Germany. Public Health Nutr. 2015, 20, 1874–1883. [Google Scholar] [CrossRef]
- Shab-Bidar, S.; Neyestani, T.R.; Djazayery, A.; Eshraghian, M.-R.; Houshiarrad, A.; Gharavi, A.; Kalayi, A.; Shariatzadeh, N.; Zahedirad, M.; Khalaji, N.; et al. Regular consumption of vitamin D-fortified yogurt drink (Doogh) improved endothelial biomarkers in subjects with type 2 diabetes: A randomized double-blind clinical trial. BMC Med. 2011, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Shab-Bidar, S.; Neyestani, T.R.; Djazayery, A. Efficacy of Vitamin D3-Fortified-Yogurt Drink on Anthropometric, Metabolic, Inflammatory and Oxidative Stress Biomarkers According to Vitamin D Receptor Gene Polymorphisms in Type 2 Diabetic Patients: A Study Protocol for a Randomized Controlled Clinical Trial. BMC Endocr. Disord. 2011, 11, 12. [Google Scholar]
- Shab-Bidar, S.; Neyestani, T.R.; Djazayery, A. Vitamin D receptor Cdx-2-dependent response of central obesity to vitamin D intake in the subjects with type 2 diabetes: A randomised clinical trial. Br. J. Nutr. 2015, 114, 1375–1384. [Google Scholar] [CrossRef]
- Suzuki, Y.; Maruyama-Nagao, A.; Sakuraba, K.; Kawai, S. Milk fortified with vitamin D could reduce the prevalence of vitamin D deficiency among Japanese female college students. Arch. Osteoporos. 2014, 9, 188. [Google Scholar] [CrossRef] [PubMed]
- Tangpricha, V.; Koutkia, P.; Rieke, S.M.; Chen, T.C.; Perez, A.A.; Holick, M.F. Fortification of orange juice with vitamin D: A novel approach for enhancing vitamin D nutritional health. Am. J. Clin. Nutr. 2003, 77, 1478–1483. [Google Scholar] [CrossRef]
- Tenta, R.; Moschonis, G.; Koutsilieris, M.; Manios, Y. Calcium and vitamin D supplementation through fortified dairy products counterbalances seasonal variations of bone metabolism indices: The Postmenopausal Health Study. Eur. J. Nutr. 2010, 50, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Toxqui, L.; Blanco-Rojo, R.; Wright, I.; Pérez-Granados, A.M.; Vaquero, M.P. Changes in Blood Pressure and Lipid Levels in Young Women Consuming a Vitamin D-Fortified Skimmed Milk: A Randomised Controlled Trial. Nutrients 2013, 5, 4966–4977. [Google Scholar] [CrossRef]
- Toxqui, L.; Pérez-Granados, A.M.; Blanco-Rojo, R.; Wright, I.; Msc, C.G.-V.; Vaquero, M.P. Effects of an Iron or Iron and Vitamin D–Fortified Flavored Skim Milk on Iron Metabolism: A Randomized Controlled Double-Blind Trial in Iron-Deficient Women. J. Am. Coll. Nutr. 2013, 32, 312–320. [Google Scholar] [CrossRef]
- Toxqui, L.; Pérez-Granados, A.M.; Blanco-Rojo, R.; Wright, I.; de la Piedra, C.; Vaquero, M.P. Low iron status as a factor of increased bone resorption and effects of an iron and vitamin D-fortified skimmed milk on bone remodelling in young Spanish women. Eur. J. Nutr. 2013, 53, 441–448. [Google Scholar] [CrossRef]
- Trautvetter, U.; Neef, N.; Leiterer, M.; Kiehntopf, M.; Kratzsch, J.; Jahreis, G. Effect of calcium phosphate and vitamin D3supplementation on bone remodelling and metabolism of calcium, phosphorus, magnesium and iron. Nutr. J. 2014, 13, 6. [Google Scholar] [CrossRef]
- Tripkovic, L.; Wilson, L.R.; Hart, K.; Johnsen, S.; de Lusignan, S.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Elliott, R.; et al. Daily Supplementation with 15 μg Vitamin D2 Compared with Vitamin D3 to Increase Wintertime 25-Hydroxyvitamin D Status in Healthy South Asian and White European Women: A 12-Wk Randomized, Placebo-Controlled Food-Fortification Trial. Am. J. Clin. Nutr. 2017, 106, 481–490. [Google Scholar] [CrossRef]
- Urbain, P.; Singler, F.; Ihorst, G.; Biesalski, H.K.; Bertz, H. Bioavailability of Vitamin D2 from UV-B-Irradiated Button Mush-rooms in Healthy Adults Deficient in Serum 25-Hydroxyvitamin D: A Randomized Controlled Trial. Eur. J. Clin. Nutr. 2011, 65, 965–971. [Google Scholar] [CrossRef]
- Wagner, D.; Sidhom, G.; Whiting, S.J.; Rousseau, D.; Vieth, R. The Bioavailability of Vitamin D from Fortified Cheeses and Supplements Is Equivalent in Adults. J. Nutr. 2008, 138, 1365–1371. [Google Scholar] [CrossRef]
- Woo, J.; Lau, W.; Xu, L.; Lam, C.W.K.; Zhao, X.; Yu, W.; Xing, X.; Lau, E.; Kuhn-Sherlock, B.; Pocock, N.; et al. Milk Supple-mentation and Bone Health in Young Adult Chinese Women. J. Womens Health 2007, 16, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhu, K.; Trube, A.; Zhang, Q.; Ma, G.; Hu, X.; Fraser, D.R.; Greenfield, H. School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10–12 years in Beijing. Br. J. Nutr. 2004, 92, 159–168. [Google Scholar] [CrossRef]
- Zhu, K.; Du, X.; Cowell, C.T.; Greenfield, H.; Blades, B.; Dobbins, T.A.; Zhang, Q.; Fraser, D.R. Effects of School Milk Intervention on Cortical Bone Accretion and Indicators Relevant to Bone Metabolism in Chinese Girls Aged 10–12 y in Beijing. Am. J. Clin. Nutr. 2005, 81, 1168–1175. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Chen, Y.M.; Wang, R.Q.; Huang, Z.W.; Yang, X.G.; Su, Y.X. The Effects of Different Levels of Calcium Supple-mentation on the Bone Mineral Status of Postpartum Lactating Chinese Women: A 12-Month Randomised, Double-Blinded, Controlled Trial. Br. J. Nutr. 2015, 115, 24–31. [Google Scholar] [CrossRef]
- Zhu, K.; Greenfield, H.; Du, X.; Zhang, Q.; Ma, G.; Hu, X.; Cowell, C.T.; Fraser, D. Effects of two years’ milk supplementation on size-corrected bone mineral density of Chinese girls. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. S1), 147–150. [Google Scholar]
- Sun, Q.; Yang, B.; Feng, L.; Chen, Q.; Liu, Y. Prospective Study on Effect of Calcium and Vitamin D Fortified Drinks on Bone Development in Children. J. Jilin Univ. Med. Ed. 2011, 37, 959–964. [Google Scholar]
- McKenna, M.J.; Freaney, R.; Byrne, P.; McBrinn, Y.; Murray, B.; Kelly, M.; Donne, B.; O’Brien, M. Safety and Efficacy of In-creasing Wintertime Vitamin D and Calcium Intake by Milk Fortification. QJM 1995, 88, 895–898. [Google Scholar] [PubMed]
- Green, T.J.; Skeaff, M.; Rockell, J.E. Milk Fortified with the Current Adequate Intake for Vitamin D (5μg) Increases Serum 25-Hydroxyvitamin D Compared to Control Milk but Is Not Sufficient to Prevent a Seasonal Decline in Young Women. Asia Pac. J. Clin. Nutr. 2010, 19, 195–199. [Google Scholar]
- Ganmaa, D.; Tserendolgor, U.; Frazier, L.; Nakamoto, E.; Jargalsaikhan, N.; Rich-Edwards, J.; Mph, S. Effects of Vitamin D Fortified Milk on Vitamin D Status in Mongolian School Age Children. Asia Pac. J. Clin. Nutr. 2008, 17, 68–71. [Google Scholar]
- Gupta, A. Fortification of Foods with Vitamin D in India. Nutrients 2014, 6, 3601–3623. [Google Scholar] [CrossRef]
- Pilz, S.; März, W.; Cashman, K.D.; Kiely, M.E.; Whiting, S.J.; Holick, M.F.; Grant, W.B.; Pludowski, P.; Hiligsmann, M.; Trummer, C.; et al. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front. Endocrinol. 2018, 9, 373. [Google Scholar] [CrossRef]
- Yang, Z.; Laillou, A.; Smith, G.; Schofield, D.; Moench-Pfanner, R. A Review of Vitamin D Fortification: Implications for Nutrition Programming in Southeast Asia. Food Nutr. Bull. 2013, 34, S81–S89. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Boucher, B.J. A Review of the Potential Benefits of Increasing Vitamin D Status in Mongolian Adults through Food Fortification and Vitamin D Supplementation. Nutrients 2019, 11, 2452. [Google Scholar] [CrossRef] [PubMed]
- Faggion, C.M. Critical appraisal of AMSTAR: Challenges, limitations, and potential solutions from the perspective of an assessor. BMC Med. Res. Methodol. 2015, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; O’dea, R. Exploration of strategic food vehicles for vitamin D fortification in low/lower-middle income countries. J. Steroid Biochem. Mol. Biol. 2019, 195, 105479. [Google Scholar] [CrossRef]
Review (First Author, Year) | Number of Studies | Number of Participants | Included Participants | Eligible Fortified Food Product | Vit D Compound Used for Fortification | Duration of Intervention | Dose of Fortification | Outcome |
---|---|---|---|---|---|---|---|---|
Aguiar 2017 [61] | 14 studies | Not reported | General population of all ages | Food | Not specified | Not reported | 800 IU/day | Fractures, cost per avoided fractures |
Al Khalifah 2020 [60] | 20 RCTs | n = 5358 | Children | Food | Vitamin D3 or not specified | 2–24 months | 60–1000 IU/day | Serum 25(OH)D, vitamin D deficiency prevalence, school performance, cognitive function, infection rate, hospital admission length |
Brandão-Lima 2019 [58] | 5 RCTs | n = 792; intervention: n = 568, control: n = 224 | Children: ages 2–11 years, both sexes | Food | Vitamin D2 and D3 | 1.6–9 months | 42–880 IU/serving, 300–880 IU/day | Serum 25(OH)D, harm |
Black 2012 [59] | 15 RCTs | n = 1523 | Adults | Food | Not specified | 11 weeks–2 years | 120–1000 IU/100 g or serving | Serum 25(OH)D |
Brett 2018 [57] | 26 RCT | n = 5403 | Healthy children aged 2–18 years | Food | Vitamin D3 or not reported | 1.6 month–2 years | 100–1000 IU/day | Serum 25(OH)D |
Brooker 2022 [56] | 12 RCTs | n = 4795 | Healthy Children Aged 9–48 Months | Milk or milk formula | Not specified | 20 weeks–12 months | The dose of milk: 150–750 mL/day | Serum 25(OH)D |
Cashman 2021 [54] | 11 RCTs | n = 1429 | Children and adults, both sexes | Food | Vitamin D3 | 8 weeks–6 months | 140–4000 IU/day | Serum 25(OH)D |
Cranney 2007 [35] | 13 RCTs | n = 1281, intervention: n = 697, control: n = 584 | General population of all ages | Food | Vitamin D3 or not specified | 3 weeks–24 months | 228–800 IU/day | Serum 25(OH)D |
Cranney 2008 [55] | 11 RCTs | Not reported | General population of all ages | Food | Vitamin D3 or not specified | Not reported | 137–1000 IU/day | Serum 25(OH)D, adverse effects |
Das 2013 [53] | Children: 7 RCTs, 1 CCT, 2 before-after studies | Not reported | Children and adolescents, age: 2 to 18 years | Milk | Not specified | Not reported | Not reported | Serum 25(OH)D, PTH, Ca, P1NP, CTx |
Women: 13 RCTs, 1 before-after study | Not reported | Women (of reproductive age and post-menopausal) | Food | Not specified | 2 weeks–2 years | |||
Dunlop 2021 [52] | 34 RCTs | n = 3930, intervention: n = 2315, control: n = 1615 | Children and adults, without compromised vitamin D absorption | Food | vitamin D2 or D3, or not specified | 4–104 weeks | 200–4000 IU/day | Serum 25(OH)D |
Emadzadeh 2022 [51] | 40 RCTs | Not reported | General population of all ages | Food | Not specified | 1–30 months | 40–28,000 IU/day | Serum 25(OH)D, PTH, IGF-1, CTx, OC, BMD |
Emadzadeh 2020a [50] | 20 RCTs | n = 2297, intervention: n = 1146, control: n = 1151 | General population of all ages | Food | Vitamin D3 or not specified | 2–24 months | 100–28,000 IU/day | Weight, BMI, FM, LM, WC, HC, WHR |
Emadzadeh 2020b [49] | 11 RCTs | n = 1070, intervention: n = 532, control: n = 538 | General population of all ages | Food | Vitamin D3 | 2–6 months | Range: 1000–28,000 IU/day | FSG, FSI, HOMA-IR, HbA1c |
Fonseca Santos 2022 [48] | 5 RCTs | Not reported | Postmenopausal women | Food | Vitamin D3 | 4–12 weeks. | 50–200 IU/serving | Serum 25(OH)D, PTH, CTx, TRAP5b, P1NP |
Gasparri 2019 [47] | 9 studies | n = 665, intervention n = 322, control n = 343 | Women and men aged 18 to 99 years | Yogurt | Not specified | 8–16 weeks | 400–2000 IU/day | Serum 25(OH)D, PTH, weight, BMI, FM, WC, TC, TG, LDL, HDL, HOMA-IR, FSG, BP |
Lam 2016 [46] | 5 studies | n = 181 | People living in residential care | Food | Not specified | 1–12 months | 100–5000 IU/day | Serum 25(OH)D, PTH |
Niedermaier 2021 [45] | 10 articles | RCT: n = 1303, pre-post design: n = 6134 and 4051, meta-analysis n = 665 | General population of all ages | Food | Not specified | 8 weeks–11 years | 200–1040 IU/day | Serum 25(OH)D, cancer mortality |
Nikooyeh 2018 [43] | 5 studies | n = 189 | Iranian adult participants | Food | Not specified | 8–12 weeks | 1000–2000 IU/day | Serum 25(OH)D |
Nikooyeh 2022a [44] | 31 studies | n = 7593, intervention: n = 4583, control: n = 3010 | Children aged 1 to 18 years | Food | Not specified | 1–12 months | 80–1000 IU/day | Serum 25(OH)D |
Nikooyeh 2022b [42] | 23 studies | n = 2002, intervention: n = 1173, control: n = 829 | Adults aged 18 years and older | Food | Vitamin D2 or D3 | 3 weeks–2 years | 200–2000 IU/day | Serum 25(OH)D |
O’Donnell 2008 [41] | 9 RCTs | n = 889, intervention: n = 437, control: n = 452) | All populations, community-dwelling participants | Food | Vitamin D3 | 3 weeks–24 months | 136–1000 IU/day | Serum 25(OH)D, PTH, harm |
O’Mahony 2011 [40] | 9 studies | n = 850 | General population of all ages | Food | Vitamin D2 or D3 | 3–12 weeks, | 400–4000 IU/day | Serum 25(OH)D, PTH, Ca, glycemic status |
Soto-Mendez 2019 [39] | 41 RCTs (2 on fortification with vitamin D) | fortification: n = 262, intervention n = 104 | General population of all ages | Milk or dairy products | Vitamin D3 | 16 weeks | 200–500 IU/day | TC, HDL, LDL, TG, BP, glucose |
Souza 2022 [38] | 20 articles, including 10 Clinical trial studies | Not reported | General population of all ages | Bread | Vitamin D2 or D3 | 3 weeks–12 months | 172–5000 IU/100 g | Serum 25(OH)D, PTH, Ca, OC, ALP, P1NP, CTx |
Tangestani 2020 [37] | 20 trials | n = 1786 | Healthy population, without age restriction, | Food | Not specified | 1–24 months | 80–5000 IU/day | Serum 25(OH)D, BMD, PTH, OC, ALP, CTx, P1NP |
Whiting 2015 [36] | 18 publications (1 with fortification) | Not reported | Healthy adults | Food | vitamin D3 | 8 weeks | 400 IU/day | Serum 25(OH)D |
Review (First Author, Year | Number of Included Trials | Trial Designs Included | Eligible Vehicle | Vehicle in Included Studies | Effect of Vitamin D Fortification | Direction of Effect |
---|---|---|---|---|---|---|
Al Khalifah 2020 [60] | 20 | RCT | food | milk | MD 23.72 nmol/L (95% CI 22.86 to 24.58) | ↑ |
juice | MD 11.80 nmol/L (95% CI 7.35 to 16.26) | ↑ | ||||
cereal | MD 8.93 nmol/L (95% CI −0.36 to 18.21) | – | ||||
yogurt and cheese | MD 5.34 nmol/L (95% CI 0.97 to 9.70) | ↑ | ||||
Black 2012 [59] | 15 | RCT | food | dairy products, orange juice, bread | MD 19.4 nmol/L (95% CI 13.9 to 24.9) | ↑ |
Brett 2018 [57] | 7 | RCT | food | milk, yogurt/cheese, cereal-based food, bread | MD 6.9 nmol/L (95% CI 3.7 to 10.0) | ↑ |
Das 2013 [53] | 24 | RCT + NRSI | food | milk | children SMD 1.23 nmol/L (95% CI 0.35 to 2.11) | ↑ |
NR | women SMD −1.10 nmol/L (95% CI −3.81 to 1.60) | – | ||||
Dunlop 2021 [52] | 34 | RCT | food | milk, milk powder, milk-based drinks, yogurt, cheese, fruit juice, biscuits, snack bars, bread | MD 21.2 nmol/L (95% CI 16.2 to 26.2) | ↑ |
Emadzadeh 2022 [51] | 40 | RCT | food | dairy products | MD 16.52 nmol/L (95% CI 11.62 to 21.42) | ↑ |
Gasparri 2019 [47] | 9 | RCT | yogurt | yogurt | MD 31.00 nmol/L (95% CI 26.10 to 35.91) | ↑ |
Nikooyeh 2018 [43] | 5 | RCT | food | milk, yogurt, yogurt drink, bread | MD 34.68 nmol/L (95% CI 28.59 to 40.77) | ↑ |
Nikooyeh 2022a [44] | 11 | RCT | food | dairy products | MD 20.29 nmol/L (95% CI 13.32 to 27.25) | ↑ |
Nikooyeh 2022b [42] | 23 | RCT | food | dairy products, grain products, juice, oil and dairy with grain products | MD 25.40 nmol/L (95% CI 19.50 to 31.30) | ↑ |
O’Donnell 2008 [41] | 4 | RCT | food | milk | MD 15.63 nmol/L (95% CI 12.79 to 18.48) | ↑ |
Tangestani 2020 [37] | 20 | RCT + NRSI | food | milk, yogurt, yogurt drink, cheese, orange juice, bread | MD 16.94 nmol/L (95% CI 13.38 to 20.50) | ↑ |
Author | Number of Studies | Fortified Vehicle | Specific Population | Mean Change in Se 25(OH)D (nmol/L)/100 IU Vitamin D Administered |
---|---|---|---|---|
Al Khalifah, 2020 [60] | 18 | cereal, milk, dairy products, bread, juice, two items of food: yogurt and cheese or milk and bread | children | 3 |
Black, 2012 [59] | 7 | dairy products, juice, bread | adults | 3 |
Brett, 2018 [57] | 7 | cereal, milk, dairy products, bread, juice | healthy children | 6.9 |
4 | baseline vitamin D status <50 nmol/L | 4.2–10.8 | ||
Cashman, 2021 [54] | 11 | milk, dairy products, bread, eggs, orange juice, milk + bread, cheese + Yogurt + eggs + crisp bread | 4 | |
3 | milk, dairy products | children | 4.75 | |
8 | milk, dairy products, bread, eggs, orange juice, milk + bread, cheese + Yogurt + eggs + crisp bread | adults | 6.5 | |
Cranney, 2008 [55] | 11 | dairy products | 1–2 | |
Nikooyeh, 2018 [43] | 5 | yogurt, yogurt drink, milk, bread | Iranian adult participants | 3.5 |
Nikooyeh, 2022 [44] | 11 | dairy products, juice, grain products | children | 0.7 |
Nikooyeh, 2022 [42] | 23 | dairy products, juice, grain product, oil and dairy together with grain products | adult | 2 |
Whiting, 2015 [36] | 1 | yogurt | 5.05 |
Study | Food Vehicle | Risk Ratio (95% CI) | Direction of Effect |
---|---|---|---|
Akkermans et al., 2017 [62] | Milk | 0.41 (0.23–0.72) | ↓ |
Benjeddou et al., 2019 [63] | Milk | 0.45 (0.24–0.84) | ↓ |
Brett 2018 [64] | Yogurt and cheese | 1.77 (0.17–18.26) | – |
Brett et al., 2016 [65] | Yogurt and cheese | 0.11 (0.03–0.49) | ↓ |
Economos et al., 2014 [66] | Juice | 2.06 (0.24–17.96) | – |
Graham et al., 2009 [67] | Milk | 0.48 (0.29–0.78) | ↓ |
Houghton et al., 2011 [68] | Milk | 0.80 (0.66–0.96) | ↓ |
Hower et al., 2013 [69] | Milk | 0.77 (0.14–4.21) | – |
Khadgawat et al., 2013 [70] | Milk | 0.51 (0.46–0.56) | ↓ |
Kuriyan et al., 2016 [71] | Malt- and cocoa-based milk | 1.03 (0.34–3.09) | – |
Madsen et al., 2013 [72] | Bread and milk | 0.26 (0.15–0.44) | ↓ |
Neyestani et al., 2014 [73] | Milk | 0.93 (0.83–1.05) | – |
Neyestani et al., 2014 [73] | Orange juice | 0.93 (0.86–1.00) | – |
Ohlund et al., 2017 [74] | Milk | 0.28 (0.17–0.46) | ↓ |
Powers et al., 2016 [75] | Cereal and milk | 0.64 (0.34–1.02) | – |
Rich-Edwards et al., 2011 [76] | Milk | 0.27 (0.22–0.33) | ↓ |
Wang et al., 2017 [77] | Milk | 0.87 (0.31–2.45) | – |
Review (First Author, Year | Number of Included Trials | Trial Designs Included | Eligible Vehicle | Vehicle in Included Studies | Effect of Vitamin D Fortification | Direction of Effect | GRADE |
---|---|---|---|---|---|---|---|
Parathyroid hormone (PTH) | |||||||
Das 2013 [53] | 7 | RCT + NRSI | food | milk | children SMD −0.40 (95% CI −0.56 to −0.24) | ↓ | ⊕⊕OO LOW |
13 | RCT + NRSI | food | NR | women of reproductive age SMD −0.01 (95% CI −0.32 to 0.30) | – | ⊕⊕OO LOW | |
food | NR | post-menopausal women SMD −2.53 (95% CI −4.42 to −0.65) | ↓ | ⊕⊕OO LOW | |||
Emadzadeh 2022 [51] | 25 | RCT | food | dairy products | MD −5.15 (95% CI −7.34 to −2.96) | ↓ | not reported |
Gasparri 2019 [47] | 4 | RCT | yogurt | yogurt | MD −15.47 ng/L (95% CI −19.97 to −10.96) | ↓ | not reported |
Tangestani 2020 [37] | 15 | RCT + NRSI | food | milk, yogurt, yogurt drink, cheese, orange juice, bread | MD −9.22 ug/L (95% CI −14.97 to −3.46) | ↓ | not reported |
Serum ALP | |||||||
Tangestani 2020 [37] | 8 | RCT + NRSI | food | milk, yogurt, yogurt drink, cheese, orange juice, bread | MD −3.434 ug/L (95% CI −7.959 to 1.090) | – | not reported |
Serum CTx | |||||||
Das 2013 [53] | 4 | RCT + NRSI | food | NR | SMD −4.93 (95% CI −7.78 to −2.08) | ↓ | not reported |
Emadzadeh 2022 [51] | 8 | RCT | food | dairy products | MD −0.027 (95% CI −0.05 to −0.005) | ↓ | not reported |
Tangestani 2020 [37] | 4 | RCT + NRSI | food | milk, yogurt, yogurt drink, cheese, orange juice, bread | MD −0.06 mg/L (95% CI −0.15 to 0.03) | – | not reported |
2 | MD −0.307 mg/L (95% CI −1.07 to 0.46) | – | not reported | ||||
Serum Ca | |||||||
Das 2013 [53] | 7 | RCT + NRSI | food | NR | SMD −0.40 (95% CI −0.59 to −0.20) | ↓ | ⊕⊕OO LOW |
Bone mineral density (BMD) | |||||||
Emadzadeh 2022 [51] | RCT | food | dairy products | MD 0.081 g/cm2 (95% CI 0.047 to 0.116) | ↑ | not reported | |
Tangestani 2020 [37] | 6 | RCT + NRSI | food | milk, yogurt, yogurt drink, cheese, orange juice, bread | MD 0.03 g/cm2 (95% CI 0.02 to 0.05) | ↑ | not reported |
Review (First Author, Year | Number of Included Trials | Trial Designs Included | Eligible Vehicle | Vehicle in Included Studies | Effect of Vitamin D Fortification | Direction of Effect | GRADE |
---|---|---|---|---|---|---|---|
Weight | |||||||
Emadzadeh 2020 [50] | 15 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −0.07 kg (95% CI −0.44 to 0.31) | – | not reported |
Gasparri 2019 [47] | 7 | RCT | yogurt | yogurt | MD −0.92 kg (95% CI −1.44 to −0.40) | ↓ | not reported |
BMI | |||||||
Emadzadeh 2020 [50] | 16 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −0.044 kg/m2 (95% CI −0.229 to 0.142) | – | not reported |
Gasparri 2019 [47] | 6 | RCT | yogurt | yogurt | MD −0.15 kg/m2 (95% CI −0.33 to 0.03) | – | not reported |
Fat mass | |||||||
Emadzadeh 2020 [50] | 10 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −0.542% (95% CI −1.207 to 0.123) | – | not reported |
Gasparri 2019 [47] | 6 | RCT | yogurt | yogurt | MD −1.3% (95% CI −2.95 to 0.35) | – | not reported |
Lean mass | |||||||
Emadzadeh 2020 [50] | 3 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −0.089 (95% CI −0.496 to 0.317) | – | not reported |
Waist circumference | |||||||
Emadzadeh 2020 [50] | 6 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −1.283 cm (95% CI −1.892 to −0.674) | ↓ | not reported |
Gasparri 2019 [47] | 5 | RCT | yogurt | yogurt | MD −2.01 cm (95% CI −2.56 to −1.47) | ↓ | not reported |
Hip circumference | |||||||
Emadzadeh 2020 [50] | 3 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −0.127 cm (95% CI −0.842 to 0.589) | – | not reported |
Waist-to-hip ratio | |||||||
Emadzadeh 2020 [50] | 5 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −0.020 (95% CI −0.035 to −0.004) | ↓ | not reported |
Review (First Author, Year | Number of Included Trials | Trial Designs Included | Eligible Vehicle | Vehicle in Included Studies | Effect of Vitamin D Fortification | Direction of Effect | GRADE |
---|---|---|---|---|---|---|---|
HbA1c | |||||||
Emadzadeh 2020 [49] | 17 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD 0.034 (95% CI −0.655 to 0.069) | – | not reported |
Fasting serum glucose (FSG) | |||||||
Emadzadeh 2020 [49] | 11 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −2.772 (95% CI −5.435 to −0.109) | ↓ | not reported |
Gasparri 2019 [47] | 4 | RCT | yogurt | yogurt | MD −22.54 mg/dL (95% CI −37.55 to −7.52) | ↓ | not reported |
Fasting serum insulin (FSI) | |||||||
Emadzadeh 2020 [49] | 9 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −2.937 (95% CI −4.695 to −1.178) | ↓ | not reported |
HOMA-IR | |||||||
Emadzadeh 2020 [49] | 5 | RCT | food | milk, yogurt, cheese, orange juice, bread, eggs, snack bar | MD −1.608 (95% CI −3.138 to −0.079) | ↓ | not reported |
Gasparri 2019 [47] | 4 | RCT | yogurt | yogurt | MD −2.18 (95% CI −2.92 to −1.44) | ↓ | not reported |
Insulin Growth Factor-1 (IGF-1) | |||||||
Emadzadeh 2022 [51] | 8 | RCT | food | dairy products | MD 42.789 (95% CI 14.607 to 70.971) | ↑ | not reported |
Review (First Author, Year | Number of Included Trials | Trial Designs Included | Eligible Vehicle | Vehicle in Included Studies | Effect of Vitamin D Fortification | Direction of Effect | GRADE |
---|---|---|---|---|---|---|---|
Total cholesterol (TC) | |||||||
Gasparri 2019 [47] | 5 | RCT | yogurt | yogurt | MD −13.38 mg/dL (95% CI −20.19 to −6.56) | ↓ | not reported |
Low density lipoprotein (LDL) | |||||||
Gasparri 2019 [47] | 5 | RCT | yogurt | yogurt | MD −7.86 mg/dL (95% CI −15.35 to −0.37) | ↓ | not reported |
High density lipoprotein (HDL) | |||||||
Gasparri 2019 [47] | 5 | RCT | yogurt | yogurt | MD 1.48 mg/dL (95% CI −0.18 to 3.13) | – | not reported |
Triglyceride (TG) | |||||||
Gasparri 2019 [47] | 5 | RCT | yogurt | yogurt | MD −30.12 mg/dL (95% CI −43.22 to −17.12) | ↓ | not reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyakundi, P.N.; Némethné Kontár, Z.; Kovács, A.; Járomi, L.; Zand, A.; Lohner, S. Fortification of Staple Foods for Household Use with Vitamin D: An Overview of Systematic Reviews. Nutrients 2023, 15, 3742. https://doi.org/10.3390/nu15173742
Nyakundi PN, Némethné Kontár Z, Kovács A, Járomi L, Zand A, Lohner S. Fortification of Staple Foods for Household Use with Vitamin D: An Overview of Systematic Reviews. Nutrients. 2023; 15(17):3742. https://doi.org/10.3390/nu15173742
Chicago/Turabian StyleNyakundi, Patrick Nyamemba, Zsuzsanna Némethné Kontár, Attila Kovács, Luca Járomi, Afshin Zand, and Szimonetta Lohner. 2023. "Fortification of Staple Foods for Household Use with Vitamin D: An Overview of Systematic Reviews" Nutrients 15, no. 17: 3742. https://doi.org/10.3390/nu15173742
APA StyleNyakundi, P. N., Némethné Kontár, Z., Kovács, A., Járomi, L., Zand, A., & Lohner, S. (2023). Fortification of Staple Foods for Household Use with Vitamin D: An Overview of Systematic Reviews. Nutrients, 15(17), 3742. https://doi.org/10.3390/nu15173742