Association of 25-Hydroxyvitamin D with Preterm Birth and Premature Rupture of Membranes: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Plasma 25(OH)D Measurement
2.3. SNP Selection and Genotyping
2.4. GRSs
2.5. Definition of the Outcomes
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association of 25(OH)D Level with PTB
3.3. Association of 25(OH)D Levels with PROM
3.4. Association of 25(OH)D Levels with PPROM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vogel, J.P.; Chawanpaiboon, S.; Moller, A.B.; Watananirun, K.; Bonet, M.; Lumbiganon, P. The global epidemiology of preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 52, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Walani, S.R. Global burden of preterm birth. Int. J. Gynaecol. Obstet. 2020, 150, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Liang, J.; Mu, Y.; Liu, Z.; Wang, Y.; Li, M.; Li, X.; Dai, L.; Li, Q.; Chen, P.; et al. Preterm births in China between 2012 and 2018: An observational study of more than 9 million women. Lancet Glob. Health 2021, 9, e1226–e1241. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [PubMed]
- Kozuki, N.; Lee, A.C.; Silveira, M.F.; Sania, A.; Vogel, J.P.; Adair, L.; Barros, F.; Caulfield, L.E.; Christian, P.; Fawzi, W.; et al. The associations of parity and maternal age with small-for-gestational-age, preterm, and neonatal and infant mortality: A meta-analysis. BMC Public Health 2013, 13 (Suppl. 3), S2. [Google Scholar] [CrossRef] [PubMed]
- Kazemier, B.M.; Buijs, P.E.; Mignini, L.; Limpens, J.; de Groot, C.J.; Mol, B.W. Impact of obstetric history on the risk of spontaneous preterm birth in singleton and multiple pregnancies: A systematic review. Bjog 2014, 121, 1197–1208; discussion 1209. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.F.; Ge, C.H.; Shen, W.; Liu, Y.H.; Huang, X.Y. Association between hepatitis C infection during pregnancy with maternal and neonatal outcomes: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3475–3488. [Google Scholar] [CrossRef]
- Bhowmik, B.; Siddique, T.; Majumder, A.; Mdala, I.; Hossain, I.A.; Hassan, Z.; Jahan, I.; Moreira, N.; Alim, A.; Basit, A.; et al. Maternal BMI and nutritional status in early pregnancy and its impact on neonatal outcomes at birth in Bangladesh. BMC Pregnancy Childbirth 2019, 19, 413–426. [Google Scholar] [CrossRef]
- Wang, S.; Xin, X.; Luo, W.; Mo, M.; Si, S.; Shao, B.; Shen, Y.; Cheng, H.; Yu, Y. Association of vitamin D and gene variants in the vitamin D metabolic pathway with preterm birth. Nutrition 2021, 89, 111349–111356. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, Y.; Zhang, L.; Gao, Q. Maternal early pregnancy vitamin D status in relation to low birth weight and small-for-gestational-age offspring. J. Steroid Biochem. Mol. Biol. 2018, 175, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Amegah, A.K.; Klevor, M.K.; Wagner, C.L. Maternal vitamin D insufficiency and risk of adverse pregnancy and birth outcomes: A systematic review and meta-analysis of longitudinal studies. PLoS ONE 2017, 12, e0173605–e0173626. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Fu, L.; Hao, J.H.; Wang, H.; Zhang, C.; Tao, F.B.; Xu, D.X. Influent factors of gestational vitamin D deficiency and its relation to an increased risk of preterm delivery in Chinese population. Sci. Rep. 2018, 8, 3608–3615. [Google Scholar] [CrossRef] [PubMed]
- Tahsin, T.; Khanam, R.; Chowdhury, N.H.; Hasan, A.; Hosen, M.B.; Rahman, S.; Roy, A.K.; Ahmed, S.; Raqib, R.; Baqui, A.H. Vitamin D deficiency in pregnancy and the risk of preterm birth: A nested case-control study. BMC Pregnancy Childbirth 2023, 23, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Magnus, M.C.; Miliku, K.; Bauer, A.; Engel, S.M.; Felix, J.F.; Jaddoe, V.W.V.; Lawlor, D.A.; London, S.J.; Magnus, P.; McGinnis, R.; et al. Vitamin D and risk of pregnancy related hypertensive disorders: Mendelian randomisation study. BMJ Clin. Res. Ed. 2018, 361, k2167–k2175. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Yu, K.; Stolzenberg-Solomon, R.; Simon, K.C.; McCullough, M.L.; Gallicchio, L.; Jacobs, E.J.; Ascherio, A.; Helzlsouer, K.; Jacobs, K.B.; et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet. 2010, 19, 2739–2745. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet 2010, 376, 180–188. [Google Scholar] [CrossRef]
- Shao, B.; Jiang, S.; Muyiduli, X.; Wang, S.; Mo, M.; Li, M.; Wang, Z.; Yu, Y. Vitamin D pathway gene polymorphisms influenced vitamin D level among pregnant women. Clin. Nutr. 2018, 37, 2230–2237. [Google Scholar] [CrossRef]
- Phinney, K.W. Development of a standard reference material for vitamin D in serum. Am. J. Clin. Nutr. 2008, 88, 511s–512s. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Use of allele scores as instrumental variables for Mendelian randomization. Int. J. Epidemiol. 2013, 42, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Lv, J.; Wang, S.; Zhou, Y.; Chen, L.; Lu, J.; Zhang, X.; Wang, X.; Gu, Y.; Lu, Q. Association of serum 25-hydroxyvitamin D with metabolic syndrome and type 2 diabetes: A one sample Mendelian randomization study. BMC Geriatr. 2021, 21, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Platt, R.W.; Simhan, H.N. Early-pregnancy vitamin D deficiency and risk of preterm birth subtypes. Obstet. Gynecol. 2015, 125, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Monier, I.; Baptiste, A.; Tsatsaris, V.; Senat, M.V.; Jani, J.; Jouannic, J.M.; Winer, N.; Elie, C.; Souberbielle, J.C.; Zeitlin, J.; et al. First Trimester Maternal Vitamin D Status and Risks of Preterm Birth and Small-For-Gestational Age. Nutrients 2019, 11, 3042. [Google Scholar] [CrossRef]
- Zhou, J.; Su, L.; Liu, M.; Liu, Y.; Cao, X.; Wang, Z.; Xiao, H. Associations between 25-hydroxyvitamin D levels and pregnancy outcomes: A prospective observational study in southern China. Eur. J. Clin. Nutr. 2014, 68, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Pu, L.; Si, S.; Xin, X.; Mo, M.; Shao, B.; Wu, J.; Huang, M.; Wang, S.; Muyiduli, X.; et al. Vitamin D nutrient status during pregnancy and its influencing factors. Clin. Nutr. 2020, 39, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.L.; Baggerly, C.; McDonnell, S.L.; Baggerly, L.; Hamilton, S.A.; Winkler, J.; Warner, G.; Rodriguez, C.; Shary, J.R.; Smith, P.G.; et al. Post-hoc comparison of vitamin D status at three timepoints during pregnancy demonstrates lower risk of preterm birth with higher vitamin D closer to delivery. J. Steroid Biochem. Mol. Biol. 2015, 148, 256–260. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Tuo, L.; Zhai, Q.; Cui, J.; Chen, D.; Xu, D. Relationship between Maternal Vitamin D Levels and Adverse Outcomes. Nutrients 2022, 14, 4230. [Google Scholar] [CrossRef]
- Liong, S.; Di Quinzio, M.K.; Heng, Y.J.; Fleming, G.; Permezel, M.; Rice, G.E.; Georgiou, H.M. Proteomic analysis of human cervicovaginal fluid collected before preterm premature rupture of the fetal membranes. Reproduction 2013, 145, 137–147. [Google Scholar] [CrossRef]
- Kumar, D.; Moore, R.M.; Mercer, B.M.; Mansour, J.M.; Redline, R.W.; Moore, J.J. The physiology of fetal membrane weakening and rupture: Insights gained from the determination of physical properties revisited. Placenta 2016, 42, 59–73. [Google Scholar] [CrossRef]
- Menon, R.; Fortunato, S.J. Infection and the role of inflammation in preterm premature rupture of the membranes. Best Pr. Res. Clin. Obstet. Gynaecol. 2007, 21, 467–478. [Google Scholar] [CrossRef]
- Colotta, F.; Jansson, B.; Bonelli, F. Modulation of inflammatory and immune responses by vitamin D. J. Autoimmun. 2017, 85, 78–97. [Google Scholar] [CrossRef]
- Ni, M.; Zhang, Q.; Zhao, J.; Shen, Q.; Yao, D.; Wang, T.; Liu, Z. Relationship between maternal vitamin D status in the first trimester of pregnancy and maternal and neonatal outcomes: A retrospective single center study. BMC Pediatr. 2021, 21, 330–343. [Google Scholar] [CrossRef]
Variables | Healthy Group (n = 3219) | Only PTB Group (n = 187) | Only PROM Group (n = 465) | PPROM Group (n = 52) | p |
---|---|---|---|---|---|
Maternal age, years | 29.31 ± 3.88 | 29.74 ± 3.95 | 29.40 ± 3.94 | 29.67 ± 4.64 | 0.460 |
Pre-pregnancy BMI, kg/m2 | 21.10 ± 2.72 | 21.85 ± 2.96 | 21.32 ± 2.73 | 21.81 ± 2.85 | <0.001 |
Educational level | 0.198 | ||||
Junior high school or below | 244 (7.58) | 20 (10.70) | 35 (7.53) | 6 (11.54) | |
High school | 574 (17.83) | 33 (17.65) | 65 (13.98) | 11 (21.15) | |
College or above | 2401 (74.59) | 134 (71.66) | 365 (78.49) | 35 (67.31) | |
Gravidity | 0.168 | ||||
1 | 1502 (46.66) | 86 (45.99) | 232 (49.89) | 29 (55.77) | |
2 | 904 (28.08) | 49 (26.20) | 134 (28.82) | 6 (11.54) | |
3 | 499 (15.50) | 31 (16.58) | 55 (11.83) | 11 (21.15) | |
≥4 | 314 (9.75) | 21 (11.23) | 44 (9.46) | 6 (11.54) | |
Parity | 0.278 | ||||
Primipara | 2383 (74.03) | 145 (77.54) | 360 (77.42) | 41 (78.85) | |
Multipara | 836 (25.97) | 42 (22.46) | 105 (22.58) | 11 (21.15) | |
Delivery mode | <0.001 | ||||
Vaginal delivery | 1799 (55.89) | 72 (38.50) | 346 (74.41) | 32 (61.54) | |
Cesarean | 1420 (44.11) | 115 (61.50) | 119 (25.59) | 20 (38.46) | |
PTB history | 0.003 | ||||
No | 3173 (98.57) | 178 (95.19) | 456 (98.06) | 50 (96.15) | |
Yes | 46 (1.43) | 9 (4.81) | 9 (1.94) | 2 (3.85) |
Variables | Healthy Group | Only PTB Group | Only PROM Group | PPROM Group | p |
---|---|---|---|---|---|
First trimester (n = 3626) | |||||
25(OH)D, ng/mL | 17.92 ± 8.13 | 17.87 ± 7.81 | 18.51 ± 8.39 | 19.58 ± 10.06 | 0.284 |
Vitamin D deficiency | 0.294 | ||||
No | 1040 (34.89) | 61 (34.27) | 164 (39.33) | 20 (40.00) | |
Yes | 1941 (65.11) | 117 (65.73) | 253 (60.67) | 30 (60.00) | |
Gestational week at blood sampling | 11.91 ± 0.90 | 11.78 ± 0.96 | 11.98 ± 0.75 | 12.08 ± 0.79 | 0.052 |
Sampling season | 0.565 | ||||
Summer/Autumn | 1513 (50.75) | 95 (53.37) | 221 (53.00) | 29 (58.00) | |
Spring/Winter | 1468 (49.25) | 83 (46.63) | 196 (47.00) | 21 (42.00) | |
Second trimester (n = 1840) | |||||
25(OH)D, ng/mL | 27.39 ± 10.55 | 28.13 ± 10.30 | 27.49 ± 10.55 | 28.01 ± 13.00 | 0.943 |
Vitamin D deficiency | 0.883 | ||||
No | 1097 (73.87) | 50 (74.63) | 191 (72.08) | 18 (78.26) | |
Yes | 388 (26.13) | 17 (25.37) | 74 (27.92) | 5 (21.74) | |
Gestational week at blood sampling | 24.10 ± 3.51 | 23.89 ± 3.41 | 23.92 ± 3.41 | 24.34 ± 2.33 | 0.830 |
Sampling season | 0.306 | ||||
Summer/Autumn | 766 (51.58) | 31 (46.27) | 141 (53.21) | 8 (34.78) | |
Spring/Winter | 719 (48.42) | 36 (53.73) | 124 (46.79) | 15 (65.22) | |
Third trimester (n = 2044) | |||||
25(OH)D, ng/mL | 28.33 ± 12.10 | 25.07 ± 12.82 | 30.81 ± 10.75 | 27.65 ± 11.23 | 0.007 |
Vitamin D deficiency | 0.012 | ||||
No | 1270 (72.41) | 18 (54.55) | 195 (79.27) | 8 (72.73) | |
Yes | 484 (27.59) | 15 (45.45) | 51 (20.73) | 3 (27.27) | |
Gestational week at blood sampling | 33.42 ± 3.73 | 31.13 ± 3.59 | 34.39 ± 3.40 | 32.51 ± 3.87 | <0.001 |
Sampling season | 0.303 | ||||
Summer/Autumn | 802 (45.72) | 17 (51.52) | 127 (51.63) | 6 (54.55) | |
Spring/Winter | 952 (54.28) | 16 (48.48) | 119 (48.37) | 5 (45.45) |
Variables | n (%) | Model 1 * | Model 2 † | ||
---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||
First trimester | |||||
25(OH)D, ng/mL | 228 (6.29) | 1.00 (0.95, 1.05) | 0.979 | 1.00 (0.96, 1.05) | 0.945 |
Vitamin D deficiency | |||||
No | 81 (6.30) | ref. | - | ref. | - |
Yes | 147 (6.28) | 1.00 (0.79, 1.27) | 0.979 | 0.99 (0.80, 1.23) | 0.945 |
Second trimester | |||||
25(OH)D, ng/mL | 90 (4.89) | 1.01 (0.97, 1.05) | 0.700 | 1.01 (0.97, 1.06) | 0.636 |
Vitamin D deficiency | |||||
No | 68 (5.01) | ref. | - | ref. | - |
Yes | 22 (4.55) | 0.95 (0.75, 1.21) | 0.701 | 0.94 (0.72, 1.22) | 0.637 |
Third trimester | |||||
25(OH)D, ng/mL | 44 (2.15) | 1.01 (0.99, 1.04) | 0.261 | 1.01 (0.99, 1.03) | 0.326 |
Vitamin D deficiency | |||||
No | 26 (1.74) | ref. | - | ref. | - |
Yes | 18 (3.25) | 0.91 (0.76, 1.08) | 0.270 | 0.93 (0.80, 1.08) | 0.332 |
Variables | n (%) | Model 1 * | Model 2 † | ||
---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||
First trimester | |||||
25(OH)D, ng/mL | 467 (12.88) | 1.01 (0.94, 1.08) | 0.784 | 1.01 (0.95, 1.08) | 0.690 |
Vitamin D deficiency | |||||
No | 184 (14.32) | ref. | - | ref. | - |
Yes | 283 (12.09) | 0.96 (0.69, 1.32) | 0.784 | 0.94 (0.70, 1.26) | 0.691 |
Second trimester | |||||
25(OH)D, ng/mL | 288 (15.65) | 1.01 (0.95, 1.09) | 0.687 | 1.02 (0.95, 1.10) | 0.641 |
Vitamin D deficiency | |||||
No | 209 (15.41) | ref. | - | ref. | - |
Yes | 79 (16.32) | 0.92 (0.62, 1.37) | 0.688 | 0.90 (0.58, 1.40) | 0.642 |
Third trimester | |||||
25(OH)D, ng/mL | 257 (12.57) | 1.00 (0.95, 1.06) | 0.939 | 1.01 (0.96, 1.06) | 0.827 |
Vitamin D deficiency | |||||
No | 203 (13.62) | ref. | - | ref. | - |
Yes | 54 (9.76) | 0.99 (0.68, 1.43) | 0.939 | 0.96 (0.69, 1.35) | 0.827 |
Variables | n (%) | Model 1 * | Model 2 † | ||
---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||
First trimester | |||||
25(OH)D, ng/mL | 50 (1.38) | 1.00 (0.97, 1.02) | 0.795 | 1.00 (0.98, 1.02) | 0.863 |
Vitamin D deficiency | |||||
No | 20 (1.56) | ref. | - | ref. | - |
Yes | 30 (1.28) | 1.01 (0.91, 1.14) | 0.796 | 1.01 (0.91, 1.12) | 0.863 |
Second trimester | |||||
25(OH)D, ng/mL | 23 (1.25) | 1.00 (0.98, 1.02) | 0.937 | 1.00 (0.98, 1.02) | 0.989 |
Vitamin D deficiency | |||||
No | 18 (1.33) | ref. | - | ref. | - |
Yes | 5 (1.03) | 1.00 (0.89, 1.13) | 0.937 | 1.00 (0.88, 1.14) | 0.989 |
Third trimester | |||||
25(OH)D, ng/mL | 11 (0.54) | 1.00 (0.99, 1.02) | 0.634 | 1.00 (0.99, 1.01) | 0.697 |
Vitamin D deficiency | |||||
No | 8 (0.54) | ref. | - | ref. | - |
Yes | 3 (0.54) | 0.98 (0.90, 1.06) | 0.635 | 0.99 (0.91, 1.06) | 0.698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Chi, P.; Zhuang, Y.; Alifu, X.; Zhou, H.; Qiu, Y.; Huang, Y.; Zhang, L.; Ainiwan, D.; Peng, Z.; et al. Association of 25-Hydroxyvitamin D with Preterm Birth and Premature Rupture of Membranes: A Mendelian Randomization Study. Nutrients 2023, 15, 3593. https://doi.org/10.3390/nu15163593
Cheng H, Chi P, Zhuang Y, Alifu X, Zhou H, Qiu Y, Huang Y, Zhang L, Ainiwan D, Peng Z, et al. Association of 25-Hydroxyvitamin D with Preterm Birth and Premature Rupture of Membranes: A Mendelian Randomization Study. Nutrients. 2023; 15(16):3593. https://doi.org/10.3390/nu15163593
Chicago/Turabian StyleCheng, Haoyue, Peihan Chi, Yan Zhuang, Xialidan Alifu, Haibo Zhou, Yiwen Qiu, Ye Huang, Libi Zhang, Diliyaer Ainiwan, Zhicheng Peng, and et al. 2023. "Association of 25-Hydroxyvitamin D with Preterm Birth and Premature Rupture of Membranes: A Mendelian Randomization Study" Nutrients 15, no. 16: 3593. https://doi.org/10.3390/nu15163593
APA StyleCheng, H., Chi, P., Zhuang, Y., Alifu, X., Zhou, H., Qiu, Y., Huang, Y., Zhang, L., Ainiwan, D., Peng, Z., Si, S., Liu, H., & Yu, Y. (2023). Association of 25-Hydroxyvitamin D with Preterm Birth and Premature Rupture of Membranes: A Mendelian Randomization Study. Nutrients, 15(16), 3593. https://doi.org/10.3390/nu15163593