An Examination of the Associations between Nutritional Composition, Social Jet Lag and Temporal Sleep Variability in Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants and Procedure
2.3. Measures
2.4. Data Analysis
3. Results
3.1. Group Differences between Those with SJL (Irrespective of Direction) and Those without
3.2. Group Differences in SJL Scores Taking Account of Direction
3.3. Correlations with Overall SJL (Irrespective of Direction) Scores
3.4. Predictors of Overall SJL (Irrespective of Direction)
3.5. Correlations with SJL Scores Taking Account of Direction
3.6. Predictors of SJL Taking Account of Direction
3.7. Correlations with TSV
3.8. Predictors of TSV
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- da Silva, A.A.; de Mello, R.G.B.; Schaan, C.W.; Fuchs, F.D.; Redline, S.; Fuchs, S.C. Sleep duration and mortality in the elderly: A systematic review with meta-analysis. BMJ Open 2016, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Perdomo, H.A.; Zapata-Copete, J.; Rojas-Cerón, C.A. Sleep duration and risk of all-cause mortality: A systematic review and meta-analysis. Epidemiol. Psychiatr. Sci. 2019, 28, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Jing, S.; Gao, Y. Sleep Restriction Effects on BP: Systematic Review & Meta-analysis of RCTs. West. J. Nurs. Res. 2020, 42, 567–576. [Google Scholar] [PubMed]
- Shen, X.; Wu, Y.; Zhang, D. Nighttime sleep duration, 24-h sleep duration and risk of all-cause mortality among adults: A meta-analysis of prospective cohort studies. Sci. Rep. 2016, 6, 21480. [Google Scholar] [CrossRef] [Green Version]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration and all cause-mortality: A systematic review and meta-analysis of prospective studies. Sleep 2010, 33, 585–592. [Google Scholar] [CrossRef]
- Bacaro, V.; Ballesio, A.; Cerolini, S.; Vacca, M.; Poggiogalle, E.; Donini, L.M.; Lucidi, F.; Lombardo, C. Sleep duration and obesity in adulthood: An updated systematic review and meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Felső, R.; Lohner, S.; Hollódy, K.; Erhardt, É.; Molnár, D. Relationship between sleep duration and childhood obesity: Systematic review including the potential underlying mechanisms. Nutr. Metab. Cardiovasc. Dis. NMCD 2017, 27, 751–761. [Google Scholar] [CrossRef]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2016, 32, 246–256. [Google Scholar] [CrossRef]
- Magee, L.; Hale, L. Longitudinal associations between sleep duration and subsequent weight gain: A systematic review. Sleep Med. Rev. 2012, 16, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Cappuccio, F.P.; Taggart, F.M.; Kandala, N.-B.; Currie, A.; Peile, E.; Stranges, S.; Miller, M.A. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 2008, 31, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Aziz, M.; Ali, S.S.; Das, S.; Younus, A.; Malik, R.; Latif, M.A.; Humayun, C.; Anugula, D.; Abbas, G.; Salami, J.; et al. Association of Subjective and Objective Sleep Duration as well as Sleep Quality with Non-Invasive Markers of Sub-Clinical Cardiovascular Disease (CVD): A Systematic Review. J. Atheroscler. Thromb. 2017, 24, 208–226. [Google Scholar] [CrossRef] [Green Version]
- Krittanawong, C.; Tunhasiriwet, A.; Wang, Z.; Zhang, H.; Farrell, A.M.; Chirapongsathorn, S.; Sun, T.; Kitai, T.; Argulian, E. Association between short and long sleep durations and cardiovascular outcomes: A systematic review and meta-analysis. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 762–770. [Google Scholar] [CrossRef]
- Xi, B.; He, D.; Zhang, M.; Xue, J.; Zhou, D. Short sleep duration predicts risk of metabolic syndrome: A systematic review and meta-analysis. Sleep Med. Rev. 2014, 18, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, F.P.; Cooper, D.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. Eur. Heart J. 2011, 32, 1484–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.W.H.; Ng, K.Y.; Chin, W.K. The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: A systematic review and meta-analysis. Sleep Med. Rev. 2016, 31, 91–101. [Google Scholar] [CrossRef]
- Shan, Z.; Ma, H.; Xie, M.; Yan, P.; Guo, Y.; Bao, W.; Rong, Y.; Jackson, C.L.; Hu, F.B.; Liu, L. Sleep Duration and Risk of Type 2 Diabetes: A Meta-analysis of Prospective Studies. Diabetes Care 2015, 38, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Reutrakul, S.; Thakkinstian, A.; Anothaisintawee, T.; Chontong, S.; Borel, A.-L.; Perfect, M.M.; Janovsky, C.C.P.S.; Kessler, R.; Schultes, B.; Harsch, I.A.; et al. Sleep characteristics in type 1 diabetes and associations with glycemic control: Systematic review and meta-analysis. Sleep Med. 2016, 23, 26–45. [Google Scholar] [CrossRef]
- Baglioni, C.; Nanovska, S.; Regen, W.; Spiegelhalder, K.; Feige, B.; Nissen, C.; Reynolds, C.F.; Riemann, D. Sleep and mental disorders: A meta-analysis of polysomnographic research. Psychol. Bull. 2016, 142, 969–990. [Google Scholar] [CrossRef]
- Fatima, Y.; Doi, S.A.R.; Mamun, A.A. Sleep quality and obesity in young subjects: A meta-analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2016, 17, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Sleep symptoms associated with intake of specific dietary nutrients. J. Sleep Res. 2013, 23, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Tubbs, A.S.; Fernandez, F.X.; Grandner, M.A.; Perlis, M.L.; Klerman, E.B. The mind after midnight: Nocturnal wakefulness, behavioral dysregulation, and psychopathology. Front. Netw. Physiol. 2022, 22, 830338. [Google Scholar] [CrossRef]
- Ji, X.; Grandner, M.A.; Liu, J. The relationship between micronutrient status and sleep patterns: A systematic review. Public Health Nutr. 2017, 20, 687–701. [Google Scholar] [CrossRef] [Green Version]
- Shechter, A.; Grandner, M.A.; St-Onge, M.-P. The Role of Sleep in the Control of Food Intake. Am. J. Lifestyle Med. 2014, 8, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Taheri, S.; Lin, L.; Austin, D.; Young, T.; Mignot, E. Short Sleep Duration Is Associated with Reduced Leptin, Elevated Ghrelin, and Increased Body Mass Index. PLoS Med. 2004, 1, e62. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, K.; Leproult, R.; L’hermite-Balériaux, M.; Copinschi, G.; Penev, P.D.; Van Cauter, E. Leptin Levels Are Dependent on Sleep Duration: Relationships with Sympathovagal Balance, Carbohydrate Regulation, Cortisol, and Thyrotropin. J. Clin. Endocrinol. Metab. 2004, 89, 5762–5771. [Google Scholar] [CrossRef] [Green Version]
- Van Cauter, E.; Spiegel, K.; Tasali, E.; Leproult, R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008, 9 (Suppl. S1), S23–S28. [Google Scholar] [CrossRef] [Green Version]
- Bodur, M.; Baspinar, B.; Özçelik, A. A cross-sectional evaluation of the relationship between social jetlag and diet quality. Chronobiol. Int. 2021, 38, 1557–1568. [Google Scholar] [CrossRef]
- Binks, H.; Vincent, G.E.; Gupta, C.; Irwin, C.; Khalesi, S. Effects of Diet on Sleep: A Narrative Review. Nutrients 2020, 12, 936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenton, S.; Burrows, T.L.; Skinner, J.A.; Duncan, M.J. The influence of sleep health on dietary intake: A systematic review and meta-analysis of intervention studies. J. Hum. Nutr. Diet. 2020, 34, 273–285. [Google Scholar] [CrossRef]
- Godos, J.; Grosso, G.; Castellano, S.; Galvano, F.; Caraci, F.; Ferri, R. Association between diet and sleep quality: A systematic review. Sleep Med. Rev. 2021, 57, 101430. [Google Scholar] [CrossRef] [PubMed]
- Hepsomali, P.; Groeger, J.A. Diet, Sleep, and Mental Health: Insights from the UK Biobank Study. Nutrients 2021, 13, 2573. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social Jetlag: Misalignment of Biological and Social Time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Allebrandt, K.V.; Merrow, M.; Vetter, C. Social Jetlag and Obesity. Curr. Biol. 2012, 22, 939–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, J.; Jang, T.-W.; Lee, H.-E.; Cho, S.-S.; Kang, M.-Y. Social jetlag and risk of depression: Results from the Korea National Health and Nutrition Examination Survey. J. Affect. Disord. 2023, 323, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.E.M.; Brady, E.M.; Robertson, N. Associations between social jetlag and mental health in young people: A systematic review. Chronobiol. Int. 2019, 36, 1316–1333. [Google Scholar] [CrossRef]
- Silva, C.M.; Mota, M.C.; Miranda, M.T.; Paim, S.L.; Waterhouse, J.; Crispim, C.A. Chronotype, social jetlag and sleep debt are associated with dietary intake among Brazilian undergraduate students. Chronobiol. Int. 2016, 33, 740–748. [Google Scholar] [CrossRef]
- Almoosawi, S.; Palla, L.; Walshe, I.; Vingeliene, S.; Ellis, J.G. Long Sleep Duration and Social Jetlag Are Associated Inversely with a Healthy Dietary Pattern in Adults: Results from the UK National Diet and Nutrition Survey Rolling Programme Y1–4. Nutrients 2018, 10, 1131. [Google Scholar] [CrossRef] [Green Version]
- Vrabec, A.; Yuhas, M.; Deyo, A.; Kidwell, K. Social jet lag and eating styles in young adults. Chronobiol. Int. 2022, 39, 1277–1284. [Google Scholar] [CrossRef]
- Polugrudov, A.; Popov, S.; Smirnov, V.; Panev, A.; Ascheulova, E.; Kuznetsova, E.; Tserne, T.; Borisenkov, M. Association of social jetlag experienced by young northerners with their appetite after having breakfast. Biol. Rhythm. Res. 2017, 48, 917–929. [Google Scholar] [CrossRef]
- Zerón-Rugerio, M.F.; Cambras, T.; Izquierdo-Pulido, M. Social Jet Lag Associates Negatively with the Adherence to the Mediterranean Diet and Body Mass Index among Young Adults. Nutrients 2019, 11, 1756. [Google Scholar] [CrossRef] [Green Version]
- Yoshizaki, T.; Togo, F. Objectively measured chronotype and social jetlag are associated with habitual dietary intake in undergraduate students. Nutr. Res. 2021, 90, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.C.; Silva, C.M.; Balieiro, L.C.T.; Gonçalves, B.F.; Fahmy, W.M.; Crispim, C.A. Association between social jetlag food consumption and meal times in patients with obesity-related chronic diseases. PLoS ONE 2019, 14, e0212126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suikki, T.; Maukonen, M.; Partonen, T.; Jousilahti, P.; Kanerva, N.; Männistö, S. Association between social jet lag, quality of diet and obesity by diurnal preference in Finnish adult population. Chronobiol. Int. 2021, 38, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Al Khatib, H.; Dikariyanto, V.; Bermingham, K.M.; Gibson, R.; Hall, W.L. Short sleep and social jetlag are associated with higher intakes of non-milk extrinsic sugars, and social jetlag is associated with lower fibre intakes in those with adequate sleep duration: A cross-sectional analysis from the National Diet and Nutrition Survey Rolling Programme (Years 1–9). Public Health Nutr. 2022, 25, 2570–2581. [Google Scholar] [PubMed]
- Lanes, M.; Jones, K.; Rebellon, C.; Zaman, A.; Thomas, E.; Rynders, C. Associations among dietary quality, meal timing, and sleep in adults with overweight and obesity. Obesity 2020, 28, 54. [Google Scholar]
- Kawasaki, Y.; Akamatsu, R.; Fujiwara, Y.; Omori, M.; Sugawara, M.; Yamazaki, Y.; Matsumoto, S.; Iwakabe, S.; Kobayashi, T. Later chronotype is associated with unhealthful plant-based diet quality in young Japanese women. Appetite 2021, 166, 105468. [Google Scholar] [CrossRef]
- Jankowski, K.S. Social jet lag: Sleep-corrected formula. Chronobiol. Int. 2017, 34, 531–535. [Google Scholar] [CrossRef]
- Roenneberg, T.; Pilz, L.K.; Zerbini, G.; Winnebeck, E.C. Chronotype and Social Jetlag: A (Self-) Critical Review. Biology 2019, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Caliandro, R.; Streng, A.A.; van Kerkhof, L.W.M.; van der Horst, G.T.J.; Chaves, I. Social Jetlag and Related Risks for Human Health: A Timely Review. Nutrients 2021, 13, 4543. [Google Scholar] [CrossRef]
- Burgess, H.J.; Eastman, C.I. A late wake time phase delays the human dim light melatonin rhythm. Neurosci. Lett. 2006, 395, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Stothard, E.R.; McHill, A.W.; Depner, C.M.; Birks, B.R.; Moehlman, T.M.; Ritchie, H.K.; Guzzetti, J.R.; Chinoy, E.D.; LeBourgeois, M.K.; Axelsson, J.; et al. Circadian Entrainment to the Natural Light-Dark Cycle across Seasons and the Weekend. Curr. Biol. 2017, 27, 508–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusu, A.; Ciobanu, D.M.; Inceu, G.; Craciun, A.-E.; Fodor, A.; Roman, G.; Bala, C.G. Variability in Sleep Timing and Dietary Intake: A Scoping Review of the Literature. Nutrients 2022, 14, 5248. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Kline, E.C.; Rebar, A.L.; Vandelanotte, C.; Short, E.C. Greater bed- and wake-time variability is associated with less healthy lifestyle behaviors: A cross-sectional study. J. Public Health 2015, 24, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.S. Daily associations between objective sleep and consumption of highly palatable food in free-living conditions. Obes. Sci. Pract. 2018, 4, 379–386. [Google Scholar] [CrossRef]
- Jones, K.H.S.; Ellis, J.; VON Schantz, M.; Skene, D.J.; Dijk, D.-J.; Archer, S.N. Age-related change in the association between a polymorphism in the PER3 gene and preferred timing of sleep and waking activities. J. Sleep Res. 2007, 16, 12–16. [Google Scholar] [CrossRef]
- Roenneberg, T.; Kuehnle, T.; Pramstaller, P.P.; Ricken, J.; Havel, M.; Guth, A.; Merrow, M. A marker for the end of adolescence. Curr. Biol. 2004, 14, R1038–R1039. [Google Scholar] [CrossRef] [Green Version]
- Crowley, S.J.; Cain, S.W.; Burns, A.C.; Acebo, C.; Carskadon, M.A. Increased Sensitivity of the Circadian System to Light in Early/Mid-Puberty. J. Clin. Endocrinol. Metab. 2015, 100, 4067–4073. [Google Scholar] [CrossRef]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between Clocks: Daily Temporal Patterns of Human Chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Bingham, S.A.; Gill, C.; Welch, A.; Cassidy, A.; Runswick, S.A.; Oakes, S.; Lubin, R.; Thurnham, D.I.; Key, T.J.; Roe, L.; et al. Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-h urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S137. [Google Scholar] [CrossRef]
- Mulligan, A.A.; Luben, R.N.; Bhaniani, A.; Parry-Smith, D.J.; O’Connor, L.; Khawaja, A.P.; Forouhi, N.G.; Khaw, K.T. A new tool for converting food frequency questionnaire data into nutrient and food group values: FETA research methods and availability. BMJ Open 2014, 4, e004503. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65 (Suppl. S4), 1220S–1228S. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.; Kamarck, T.; Mermelstein, R. Perceived stress scale. Meas. Stress A Guide Health Soc. Sci. 1994, 10, 1–2. [Google Scholar]
- Reeves, S.; Newling-Ward, E.; Gissane, C. The effect of shift-work on food intake and eating habits. Nutr. Food Sci. 2004, 34, 216–221. [Google Scholar] [CrossRef]
- Souza, R.V.; Sarmento, R.A.; De Almeida, J.C.; Canuto, R. The effect of shift work on eating habits: A systematic review. Scand. J. Work. Environ. Health 2018, 45, 7–21. [Google Scholar] [CrossRef]
- Roenneberg, T. How can social jetlag affect health? Nat. Rev. Endocrinol. 2023, 19, 383–384. [Google Scholar] [CrossRef]
- Kant, G.J.; Genser, S.G.; Thorne, D.R.; Pfalser, H.L.; Mougey, E.H. Effects of 72 h sleep deprivation on urinary cortisol and indices of metabolism. Sleep 1984, 7, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.; Lee, T.W.; Jang, H.N.; Cho, H.S.; Jung, S.; Lee, S.; Chang, S.-H.; Park, D.J. Lower serum sodium levels predict poor clinical outcomes in patients with insomnia. BMC Nephrol. 2020, 21, 386. [Google Scholar] [CrossRef]
- Krueger, B.; Stutz, B.; Jankovic, N.; Alexy, U.; Kilanowski, A.; Libuda, L.; Buyken, A.E. The association of chronotype and social jet lag with body composition in German students: The role of physical activity behaviour and the impact of the pandemic lockdown. PLoS ONE 2023, 18, e0279620. [Google Scholar] [CrossRef]
Whole Sample (n = 657) | SJL 60+ (n = 373) | SJL 60− (n = 284) | Positive SJL (n = 60) | Negative SJL (n = 313) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Age | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
26.64 | 6.13 | 25.95 | 5.91 | 27.54 | 6.31 | 26.45 | 6.22 | 25.86 | 5.86 | ||
Gender | n= | % | n= | % | n= | % | n= | % | n= | % | |
Male | 213 | 32.42 | 129 | 34.6 | 84 | 29.6 | 23 | 38.3 | 106 | 33.9 | |
Female | 437 | 66.5 | 242 | 64.9 | 195 | 68.7 | 37 | 61.7 | 205 | 65.5 | |
Prefer not to say | 7 | 1.01 | 2 | 0.5 | 5 | 1.8 | 0 | 0 | 2 | 0.6 | |
Body Mass Index (n = 498) | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
23.17 | 3.18 | 23.27 | 3.22 | 23.27 | 3.15 | 22.41 | 3.27 | 23.25 | 3.1 | ||
Household Income (pre annum) | n= | % | n= | % | n= | % | n= | % | n= | % | |
Under GBP12,000 | 81 | 12.3 | 44 | 11.8 | 37 | 13 | 5 | 8.3 | 39 | 12.5 | |
Between GBP12,000 and 30,000 | 199 | 30.3 | 110 | 29.5 | 89 | 31.4 | 21 | 35 | 89 | 28.5 | |
Between GBP30,001 and 50,000 | 188 | 28.6 | 113 | 30.3 | 75 | 26.5 | 21 | 35 | 92 | 29.5 | |
Between GBP50,001 and 100,000 | 123 | 18.7 | 68 | 18.2 | 55 | 19.4 | 8 | 13.3 | 60 | 19.2 | |
Over GBP100,000 | 12 | 1.8 | 3 | 0.8 | 9 | 3.2 | 2 | 3.3 | 1 | 0.3 | |
Prefer not to say | 54 | 8.1 | 34 | 9.1 | 19 | 6.7 | 3 | 5 | 32 | 10.2 | |
Education | n= | % | n= | % | n= | % | n= | % | n= | % | |
School | 81 | 12.3 | 46 | 12.3 | 35 | 12.3 | 9 | 15 | 37 | 11.8 | |
College/Vocational Training | 224 | 34.1 | 131 | 35.1 | 93 | 32.7 | 15 | 25 | 116 | 37.1 | |
Degree or Equivalent | 252 | 38.4 | 143 | 38.3 | 109 | 38.4 | 27 | 45 | 116 | 37.1 | |
Masters Degree or Equivalent | 84 | 12.8 | 44 | 11.8 | 40 | 14.1 | 7 | 11.7 | 37 | 11.8 | |
Doctoral Degree or Equivalent | 9 | 1.4 | 5 | 1.3 | 4 | 1.4 | 0 | 0 | 5 | 1.6 | |
Prefer not to say | 7 | 1.1 | 4 | 1.1 | 3 | 3.4 | 2 | 3.4 | 2 | 0.6 | |
Ethnicity | n= | % | n= | % | n= | % | n= | % | n= | % | |
White | 558 | 84.9 | 308 | 82.6 | 250 | 88 | 44 | 73.3 | 264 | 84.3 | |
Mixed/Multiple Ethnic Groups | 30 | 4.6 | 19 | 5.1 | 11 | 3.9 | 6 | 10 | 13 | 4.2 | |
Asian/Asian British | 43 | 6.5 | 26 | 7 | 17 | 6 | 5 | 8.3 | 21 | 6.7 | |
Black/African/Caribbean/Black British | 23 | 3.5 | 17 | 4.6 | 6 | 2.1 | 4 | 6.7 | 13 | 4.2 | |
Other | 1 | 0.2 | 1 | 0.3 | 0 | 0 | 1 | 1.7 | 0 | 0 | |
Prefer not to say | 2 | 0.3 | 2 | 0.5 | 0 | 0 | 0 | 0 | 2 | 0.6 |
Whole Sample (n = 657) | SJL 60+ (n = 373) | SJL 60− (n = 284) | t | p | Positive SJL (n = 60) | Negative SJL (n = 313) | F | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||
Non-Nutrient Variables | |||||||||||||||
Stress/Sleep Reactivity | 6.5 | 4.46 | 6.72 | 4.16 | 6.22 | 4.82 | −1.43 | 0.15 | 6.55 | 5.15 | 6.76 | 3.95 | 1.08 | 0.34 | |
Depression | 17.77 | 6.48 | 18.44 | 6.4 | 16.89 | 6.49 | −3.06 | 0.00 | 18.23 | 6.94 | 18.48 | 6.3 | 4.7 | 0.00 | |
Anxiety | 14.84 | 5.54 | 15.31 | 5.65 | 14.21 | 5.33 | −2.53 | 0.01 | 14.52 | 5.7 | 15.46 | 5.64 | 3.94 | 0.02 | |
Perceived Stress | 25.25 | 5.64 | 25.53 | 5.4 | 24.88 | 5.92 | −1.47 | 0.14 | 24.9 | 5.85 | 25.65 | 5.31 | 1.52 | 0.22 | |
Natural Light Exposure | 210.66 | 166.53 | 205.67 | 155.67 | 217.2 | 179.87 | 0.880 | 0.38 | 227.8 | 168.61 | 201.43 | 152.99 | 1.02 | 0.36 | |
Temporal Sleep Variability | 28.7 | 10.21 | 29.65 | 10.22 | 27.46 | 10.07 | −2.73 | 0.00 | 31.25 | 10.28 | 29.34 | 10.19 | 4.63 | 0.01 | |
Social Jet Lag | −83.48 | 77.87 | 132.29 | 70.23 | 19.38 | 17.53 | 26.47 | 0.00 | −96.92 | 37.95 | −139.07 | 72.95 | 382.8 | 0.00 | |
Nutrient Composition | Mean | SD | Mean | SD | Mean | SD | t | p | Mean | SD | Mean | SD | F | p | |
Carbohydrate | 223.59 | 0.99 | 223.56 | 0.98 | 223.63 | 1.02 | 0.92 | 0.36 | 223.42 | 1.06 | 223.58 | 0.96 | 1.14 | 0.32 | |
Protein | 83.7 | 0.99 | 83.73 | 1.03 | 83.67 | 0.96 | −0.79 | 0.43 | 83.63 | 1.02 | 83.74 | 1.03 | 0.62 | 0.54 | |
Monosaturated Fat | 30.9 | 0.99 | 30.92 | 1.01 | 30.88 | 0.99 | −0.4 | 0.69 | 31.17 | 1.13 | 30.87 | 0.97 | 2.44 | 0.09 | |
Polyunsaturated Fat | 13.71 | 0.99 | 13.75 | 1.06 | 13.66 | 0.91 | −1.2 | 0.23 | 13.9 | 1.48 | 13.72 | 0.97 | 1.58 | 0.21 | |
Saturated Fat | 30.99 | 0.99 | 31 | 1 | 31 | 1 | −0.08 | 0.94 | 31.2 | 1.25 | 30.96 | 0.94 | 1.45 | 0.24 | |
Fibre | 15.35 | 0.99 | 15.34 | 0.95 | 15.38 | 1.07 | 0.55 | 0.59 | 15.49 | 1.09 | 15.3 | 0.92 | 1.05 | 0.35 | |
Calcium | 822.96 | 0.99 | 822.94 | 1.07 | 822.99 | 0.91 | 0.56 | 0.58 | 822.91 | 1.12 | 822.95 | 1.06 | 0.21 | 0.81 | |
Chloride | 3891.96 | 0.99 | 3892.01 | 1.05 | 3891.9 | 0.93 | −1.44 | 0.15 | 3892.22 | 1.59 | 3891.97 | 0.9 | 2.66 | 0.07 | |
Copper | 1.24 | 0.99 | 1.18 | 0.54 | 1.31 | 1.39 | 1.75 | 0.08 | 1.11 | 0.63 | 1.19 | 0.52 | 1.68 | 0.19 | |
Iron | 10.75 | 0.99 | 10.73 | 1.03 | 10.77 | 0.96 | 0.53 | 0.6 | 10.94 | 1.36 | 10.69 | 0.95 | 1.62 | 0.2 | |
Iodine | 122.49 | 0.99 | 122.47 | 1.04 | 122.52 | 0.94 | 0.71 | 0.48 | 122.22 | 1.44 | 122.51 | 0.94 | 2.4 | 0.09 | |
Potassium | 3245.53 | 0.99 | 3245.5 | 0.99 | 3245.57 | 1.01 | 0.8 | 0.43 | 3245.57 | 1.28 | 3245.49 | 0.93 | 0.49 | 0.62 | |
Magnesium | 288.56 | 0.99 | 288.52 | 0.98 | 288.6 | 1.02 | 1.06 | 0.29 | 288.62 | 1.23 | 288.5 | 0.93 | 0.95 | 0.39 | |
Manganese | 2.86 | 0.99 | 2.81 | 0.97 | 2.92 | 1.03 | 1.31 | 0.19 | 2.85 | 1.2 | 2.81 | 0.93 | 0.91 | 0.4 | |
Sodium | 2687.78 | 0.99 | 2687.84 | 1.06 | 2687.71 | 0.92 | −1.58 | 0.11 | 2688.05 | 1.62 | 2687.8 | 0.91 | 2.86 | 0.06 | |
Phosphate | 1330.14 | 0.99 | 1330.13 | 1.04 | 1330.16 | 0.95 | 0.34 | 0.73 | 1330 | 1.14 | 1330.15 | 1.02 | 0.66 | 0.52 | |
Selenium | 61.29 | 0.99 | 61.3 | 1.01 | 61.26 | 0.99 | −0.51 | 0.61 | 61.16 | 1.41 | 61.33 | 0.91 | 0.86 | 0.43 | |
Zinc | 9.32 | 0.99 | 9.34 | 1.09 | 9.3 | 0.87 | −0.48 | 0.630 | 9.27 | 1.14 | 9.35 | 1.08 | 0.27 | 0.77 | |
Vitamin B9 | 266.13 | 0.99 | 266.12 | 1.06 | 266.14 | 0.91 | 0.28 | 0.78 | 266.3 | 1.12 | 266.09 | 1.05 | 1.18 | 0.31 | |
Vitamin B3 | 22.08 | 0.99 | 22.09 | 1.02 | 22.06 | 0.97 | −0.4 | 0.69 | 22.1 | 1 | 22.09 | 1.03 | 0.08 | 0.92 | |
Vitamin A | 1190.54 | 0.99 | 1190.48 | 0.51 | 1190.62 | 1.4 | 1.81 | 0.07 | 1190.42 | 0.67 | 1190.49 | 0.48 | 1.79 | 0.17 | |
Vitamin B2 | 1.69 | 0.99 | 1.64 | 0.76 | 1.76 | 1.25 | 1.56 | 0.12 | 1.55 | 0.83 | 1.66 | 0.74 | 1.49 | 0.23 | |
Vitamin B1 | 1.45 | 0.99 | 1.46 | 1.07 | 1.43 | 0.9 | −0.48 | 0.63 | 1.55 | 1.44 | 1.45 | 0.98 | 0.4 | 0.7 | |
Vitamin B12 | 6.13 | 0.99 | 6.09 | 0.62 | 6.18 | 1.35 | 1.16 | 0.25 | 5.97 | 0.71 | 6.11 | 0.59 | 1.13 | 0.32 | |
Vitamin B6 | 2.16 | 0.99 | 2.19 | 1.07 | 2.11 | 0.89 | −0.94 | 0.35 | 2.24 | 1.17 | 2.18 | 1.06 | 0.53 | 0.59 | |
Vitamin C | 103.96 | 0.99 | 103.95 | 0.98 | 103.96 | 1.03 | 0.1 | 0.92 | 104.05 | 1.17 | 103.94 | 0.94 | 0.33 | 0.72 | |
Vitamin D | 2.91 | 0.99 | 2.92 | 1.03 | 2.9 | 0.95 | −0.24 | 0.81 | 2.84 | 1.26 | 2.93 | 0.99 | 0.23 | 0.79 | |
Vitamin E | 12.25 | 0.99 | 12.26 | 1.04 | 12.24 | 0.95 | −0.24 | 0.81 | 12.19 | 1.26 | 12.28 | 0.99 | 0.23 | 0.79 | |
Energy Intake (Kcal) | 1946.84 | 1391.79 | 2005.07 | 1465.63 | 1870.37 | 1286.95 | −1.23 | 0.22 | 2316.79 | 2402.57 | 1945.32 | 1203.05 | 2.56 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hepsomali, P.; Zandstra, E.H.; Wanders, A.J.; O’Neill, B.V.; Alfonso-Miller, P.; Ellis, J.G. An Examination of the Associations between Nutritional Composition, Social Jet Lag and Temporal Sleep Variability in Young Adults. Nutrients 2023, 15, 3425. https://doi.org/10.3390/nu15153425
Hepsomali P, Zandstra EH, Wanders AJ, O’Neill BV, Alfonso-Miller P, Ellis JG. An Examination of the Associations between Nutritional Composition, Social Jet Lag and Temporal Sleep Variability in Young Adults. Nutrients. 2023; 15(15):3425. https://doi.org/10.3390/nu15153425
Chicago/Turabian StyleHepsomali, Piril, Elizabeth H. Zandstra, Anne J. Wanders, Barry V. O’Neill, Pamela Alfonso-Miller, and Jason G. Ellis. 2023. "An Examination of the Associations between Nutritional Composition, Social Jet Lag and Temporal Sleep Variability in Young Adults" Nutrients 15, no. 15: 3425. https://doi.org/10.3390/nu15153425
APA StyleHepsomali, P., Zandstra, E. H., Wanders, A. J., O’Neill, B. V., Alfonso-Miller, P., & Ellis, J. G. (2023). An Examination of the Associations between Nutritional Composition, Social Jet Lag and Temporal Sleep Variability in Young Adults. Nutrients, 15(15), 3425. https://doi.org/10.3390/nu15153425