Sex Difference in the Associations among Obesity-Related Indices with Hyperuricemia in a Large Taiwanese Population Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Taiwan Biobank
2.2. Study Participants
2.3. Collection of Study Variables
2.4. Obesity-Related Indices Calculations
- Body mass index:BMI = BW (kg)/BH2 (m)
- Waist–hip ratio:WHR = WC (cm)/HC (cm)
- Waist-to-height ratio:WHtR = WC (cm)/BH (cm)
- Body roundness index [18]:
- Conicity index [19]:
- Body adiposity index [21]:
- Abdominal volume index (AVI) [22]:
- A body shape index (ABSI) [23]:ABSI = WC (m)/[BMI2/3(kg/m2) × BH1/2(m)]
- Lipid accumulation product [17]:
- Visceral adiposity index:
2.5. Ethics Statement
2.6. Statistical Analysis
3. Results
3.1. Differences between the Male and Female Participants with and without Hyperuricemia in Clinical Characteristics
3.2. Sex Differences in the Associations between the Obesity-Related Indexes and Hyperuricemia
- For BMI, WHR, WHtR, BRI, CI, BAI, AVI, and ABSI: a adjustments for age, diabetes mellitus, hypertension, smoking status, systolic and diastolic BP, hemoglobin, TGs, total cholesterol, HDL-c, LDL-c, and eGFR.
- For LAP: b adjustments as for model 1 but without TGs.
- For VAI: c adjustments as for model 2 but without HDL-c.
3.3. Interactions between Sex and the Obesity-Related Indexes on Hyperuricemia
3.4. Performance and Predictive Ability of the Obesity-Related Indices for Hyperuricemia
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benn, C.L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R.I.; Vangjeli, C. Physiology of Hyperuricemia and Urate-Lowering Treatments. Front. Med. 2018, 5, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, K.; Wei, C.; Xu, L.; Zhou, Y.; Lv, W.; Dong, B.; Wang, Z.; Huang, Y.; Wang, Y.; Chen, Y. Hyperuricemia and the Risk of Heart Failure: Pathophysiology and Therapeutic Implications. Front. Endocrinol. 2021, 12, 770815. [Google Scholar] [CrossRef] [PubMed]
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.M.; Wang, Y.L.; Liu, B.C. Prevalence of hyperuricemia among Chinese adults: A national cross-sectional survey using multistage, stratified sampling. J. Nephrol. 2014, 27, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.Y.; Lee, S.C.; Hsieh, Y.T.; Pan, W.H. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993–1996 to 2005–2008. Asia Pac. J. Clin. Nutr. 2011, 20, 301–308. [Google Scholar] [PubMed]
- Kanellis, J.; Feig, D.I.; Johnson, R.J. Does asymptomatic hyperuricaemia contribute to the development of renal and cardiovascular disease? An old controversy renewed. Nephrology 2004, 9, 394–399. [Google Scholar] [CrossRef]
- Yu, K.H.; Chen, D.Y.; Chen, J.H.; Chen, S.Y.; Chen, S.M.; Cheng, T.T.; Hsieh, S.C.; Hsieh, T.Y.; Hsu, P.F.; Kuo, C.F.; et al. Management of gout and hyperuricemia: Multidisciplinary consensus in Taiwan. Int. J. Rheum. Dis. 2018, 21, 772–787. [Google Scholar] [CrossRef]
- Tseng, C.H. Correlation of uric acid and urinary albumin excretion rate in patients with type 2 diabetes mellitus in Taiwan. Kidney Int. 2005, 68, 796–801. [Google Scholar] [CrossRef]
- Segura, J.; Campo, C.; Ruilope, L. How relevant and frequent is the presence of mild renal insufficiency in essential hypertension? J. Clin. Hypertens. 2002, 4, 332–336. [Google Scholar] [CrossRef]
- Chiu, T.H.; Wu, P.Y.; Huang, J.C.; Su, H.M.; Chen, S.C.; Chang, J.M.; Chen, H.C. Hyperuricemia Is Associated with Left Ventricular Dysfunction and Inappropriate Left Ventricular Mass in Chronic Kidney Disease. Diagnostics 2020, 10, 514. [Google Scholar] [CrossRef]
- Wei, C.Y.; Sun, C.C.; Wei, J.C.; Tai, H.C.; Sun, C.A.; Chung, C.F.; Chou, Y.C.; Lin, P.L.; Yang, T. Association between Hyperuricemia and Metabolic Syndrome: An Epidemiological Study of a Labor Force Population in Taiwan. BioMed Res. Int. 2015, 2015, 369179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Grandi, E.; Rosticci, M.; D’Addato, S.; Borghi, C. Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the Brisighella Heart Study. Sci. Rep. 2018, 8, 11529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjornstad, P.; Eckel, R.H. Pathogenesis of Lipid Disorders in Insulin Resistance: A Brief Review. Curr. Diab. Rep. 2018, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv. Exp. Med. Biol. 2017, 960, 1–17. [Google Scholar] [CrossRef]
- Keller, K.B.; Lemberg, L. Obesity and the metabolic syndrome. Am. J. Crit. Care 2003, 12, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Kahn, H.S. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef] [Green Version]
- Valdez, R. A simple model-based index of abdominal adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [Green Version]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Rodríguez-Morán, M. Abdominal volume index. An anthropometry-based index for estimation of obesity is strongly related to impaired glucose tolerance and type 2 diabetes mellitus. Arch. Med. Res. 2003, 34, 428–432. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, I.T.; Lee, M.Y.; Wang, C.W.; Wu, D.W.; Chen, S.C. Gender Differences in the Relationships among Metabolic Syndrome and Various Obesity-Related Indices with Nonalcoholic Fatty Liver Disease in a Taiwanese Population. Int. J. Environ. Res. Public Health 2021, 18, 857. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.L.; Lee, M.Y.; Lin, I.T.; Wen, W.L.; Hsu, W.H.; Chen, S.C. Obesity-related indices are associated with albuminuria and advanced kidney disease in type 2 diabetes mellitus. Ren. Fail. 2021, 43, 1250–1258. [Google Scholar] [CrossRef]
- Hsu, Y.E.; Chen, S.C.; Geng, J.H.; Wu, D.W.; Wu, P.Y.; Huang, J.C. Obesity-Related Indices Are Associated with Longitudinal Changes in Lung Function: A Large Taiwanese Population Follow-Up Study. Nutrients 2021, 13, 4055. [Google Scholar] [CrossRef]
- Wung, C.H.; Chung, C.Y.; Wu, P.Y.; Huang, J.C.; Tsai, Y.C.; Chen, S.C.; Chiu, Y.W.; Chang, J.M. Associations between Metabolic Syndrome and Obesity-Related Indices and Bone Mineral Density T-Score in Hemodialysis Patients. J. Pers. Med. 2021, 11, 775. [Google Scholar] [CrossRef]
- Lee, W.C.; Wu, P.Y.; Huang, J.C.; Tsai, Y.C.; Chiu, Y.W.; Chen, S.C.; Chang, J.M.; Chen, H.C. Sex Difference in the Associations among Obesity-Related Indices with Incident Hypertension in a Large Taiwanese Population Follow-Up Study. J. Pers. Med. 2022, 12, 972. [Google Scholar] [CrossRef]
- Wung, C.H.; Lee, M.Y.; Wu, P.Y.; Huang, J.C.; Chen, S.C. Obesity-Related Indices Are Associated with Peripheral Artery Occlusive Disease in Patients with Type 2 Diabetes Mellitus. J. Pers. Med. 2021, 11, 533. [Google Scholar] [CrossRef]
- Huang, S.H.; Chen, S.C.; Geng, J.H.; Wu, D.W.; Li, C.H. Metabolic Syndrome and High-Obesity-Related Indices Are Associated with Poor Cognitive Function in a Large Taiwanese Population Study Older than 60 Years. Nutrients 2022, 14, 1535. [Google Scholar] [CrossRef]
- Gong, M.; Wen, S.; Nguyen, T.; Wang, C.; Jin, J.; Zhou, L. Converging Relationships of Obesity and Hyperuricemia with Special Reference to Metabolic Disorders and Plausible Therapeutic Implications. Diabetes Metab. Syndr. Obes. 2020, 13, 943–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogura, T.; Matsuura, K.; Matsumoto, Y.; Mimura, Y.; Kishida, M.; Otsuka, F.; Tobe, K. Recent trends of hyperuricemia and obesity in Japanese male adolescents, 1991 through 2002. Metabolism 2004, 53, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, R.L. Gout and hyperuricemia. Curr. Opin. Rheumatol. 2002, 14, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Yoshida, H.; Nakamura, K.; Suzuki, K.; Tatara, K. Predictors for development of hyperuricemia: An 8-year longitudinal study in middle-aged Japanese men. Metabolism 2001, 50, 621–626. [Google Scholar] [CrossRef]
- Tanaka, K.; Ogata, S.; Tanaka, H.; Omura, K.; Honda, C.; Hayakawa, K. The relationship between body mass index and uric acid: A study on Japanese adult twins. Environ. Health Prev. Med. 2015, 20, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, L.; Xie, R.; Dai, W.; Gao, C.; Shen, P.; Huang, X.; Zhang, F.; Yang, X.; Ji, G. Association of Serum Uric Acid with Body Mass Index: A Cross-Sectional Study from Jiangsu Province, China. Iran J. Public Health 2014, 43, 1503–1509. [Google Scholar]
- You, A.; Li, Y.; Shen, C.; Fan, H.; He, J.; Liu, Z.; Xue, Q.; Zhang, Y.; Zheng, L. Associations of non-traditional cardiovascular risk factors and body mass index with metabolic syndrome in the Chinese elderly population. Diabetol. Metab. Syndr. 2023, 15, 129. [Google Scholar] [CrossRef]
- Li, S.; Feng, L.; Sun, X.; Ding, J.; Zhou, W. Association between serum uric acid and measures of adiposity in Chinese adults: A cross-sectional study. BMJ Open 2023, 13, e072317. [Google Scholar] [CrossRef]
- Chen, C.H.; Yang, J.H.; Chiang, C.W.K.; Hsiung, C.N.; Wu, P.E.; Chang, L.C.; Chu, H.W.; Chang, J.; Song, I.W.; Yang, S.L.; et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum. Mol. Genet. 2016, 25, 5321–5331. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.T.; Hung, T.H.; Yeh, C.K. Taiwan Regulation of Biobanks. J. Law Med. Ethics 2015, 43, 816–826. [Google Scholar] [CrossRef]
- Lee, J.W.; Kwon, B.C.; Choi, H.G. Analyses of the relationship between hyperuricemia and osteoporosis. Sci. Rep. 2021, 11, 12080. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, S.; Zhao, J.; Liang, J.; Gao, X.; Gao, Q.; He, S.; Wang, T. Association between nutrient patterns and hyperuricemia: Mediation analysis involving obesity indicators in the NHANES. BMC Public Health 2022, 22, 1981. [Google Scholar] [CrossRef] [PubMed]
- Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Guo, H.; Wang, B.; Sun, Z.; Yu, J. Urine Glucose Excretion Attenuates the Association Between Lipid Accumulation Product and Serum Uric Acid in Subjects with Prediabetes. Diabetes Metab. Syndr. Obes. 2020, 13, 2297–2305. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Azizi, F. Lipid accumulation product is associated with insulin resistance, lipid peroxidation, and systemic inflammation in type 2 diabetic patients. Endocrinol. Metab. 2014, 29, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuura, F.; Yamashita, S.; Nakamura, T.; Nishida, M.; Nozaki, S.; Funahashi, T.; Matsuzawa, Y. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: Visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism 1998, 47, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Seyed-Sadjadi, N.; Berg, J.; Bilgin, A.A.; Grant, R. Visceral fat mass: Is it the link between uric acid and diabetes risk? Lipids Health Dis. 2017, 16, 142. [Google Scholar] [CrossRef]
- Balasubramanian, T. Uric acid or 1-methyl uric acid in the urinary bladder increases serum glucose, insulin, true triglyceride, and total cholesterol levels in Wistar rats. Sci. World J. 2003, 3, 930–936. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.J.; Hsu, L.T.; Lu, M.C.; Chen, Y.J.; Tsou, M.T.; Chen, J.Y. Gender Differences in the Association Between Obesity Indices and Chronic Kidney Disease Among Middle-Aged and Elderly Taiwanese Population: A Community-Based Cross-Sectional Study. Front. Endocrinol. 2021, 12, 737586. [Google Scholar] [CrossRef]
- Bamba, R.; Okamura, T.; Hashimoto, Y.; Hamaguchi, M.; Obora, A.; Kojima, T.; Fukui, M. The Visceral Adiposity Index Is a Predictor of Incident Chronic Kidney Disease: A Population-Based Longitudinal Study. Kidney Blood Press. Res. 2020, 45, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Anoop, S.S.; Dasgupta, R.; Rebekah, G.; Jose, A.; Inbakumari, M.P.; Finney, G.; Thomas, N. Lipid accumulation product (LAP) as a potential index to predict risk of insulin resistance in young, non-obese Asian Indian males from Southern India: Observations from hyperinsulinemic-euglycemic clamp studies. BMJ Open Diabetes Res. Care 2021, 9, e002414. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, V.; Salazar, J.; Fuenmayor, J.; Nava, M.; Ortega, Á.; Duran, P.; Rojas, M.; Añez, R.; Rivas-Montenegro, A.; Angarita, L.; et al. Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela. J. Obes. 2021, 2021, 5514901. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002, 417, 447–452. [Google Scholar] [CrossRef]
- Perez-Ruiz, F.; Aniel-Quiroga, M.A.; Herrero-Beites, A.M.; Chinchilla, S.P.; Erauskin, G.G.; Merriman, T. Renal clearance of uric acid is linked to insulin resistance and lower excretion of sodium in gout patients. Rheumatol. Int. 2015, 35, 1519–1524. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, S.H.; Guo, H.J.; Li, W.; Sun, Z.L. Increased urinary glucose excretion is associated with a reduced risk of hyperuricaemia. Diabet. Med. 2019, 36, 902–907. [Google Scholar] [CrossRef]
- Yang, L.; He, Z.; Gu, X.; Cheng, H.; Li, L. Dose-Response Relationship Between BMI and Hyperuricemia. Int. J. Gen. Med. 2021, 14, 8065–8071. [Google Scholar] [CrossRef]
- Kuwabara, M.; Kuwabara, R.; Niwa, K.; Hisatome, I.; Smits, G.; Roncal-Jimenez, C.A.; MacLean, P.S.; Yracheta, J.M.; Ohno, M.; Lanaspa, M.A.; et al. Different Risk for Hypertension, Diabetes, Dyslipidemia, and Hyperuricemia According to Level of Body Mass Index in Japanese and American Subjects. Nutrients 2018, 10, 1011. [Google Scholar] [CrossRef] [Green Version]
- Fabregat, I.; Revilla, E.; Machado, A. Short-term control of the pentose phosphate cycle by insulin could be modulated by the NADPH/NADP ratio in rat adipocytes and hepatocytes. Biochem. Biophys. Res. Commun. 1987, 146, 920–925. [Google Scholar] [CrossRef]
- Tian, X.; Chen, S.; Xu, Q.; Zhang, Y.; Wu, S.; Wang, A.; Luo, Y. Cumulative burden of abnormal visceral adiposity index and its components on the risk of hyperuricemia. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 340–349. [Google Scholar] [CrossRef]
- Gu, D.; Ding, Y.; Zhao, Y.; Miao, S.; Qu, Q. Positively increased visceral adiposity index in hyperuricemia free of metabolic syndrome. Lipids Health Dis. 2018, 17, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, A.; Sato, K.K.; Kinuhata, S.; Uehara, S.; Endo, G.; Hikita, Y.; Fujimoto, W.Y.; Boyko, E.J.; Hayashi, T. Association of Visceral Fat and Liver Fat With Hyperuricemia. Arthritis Care Res. 2016, 68, 553–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichida, K.; Matsuo, H.; Takada, T.; Nakayama, A.; Murakami, K.; Shimizu, T.; Yamanashi, Y.; Kasuga, H.; Nakashima, H.; Nakamura, T.; et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 2012, 3, 764. [Google Scholar] [CrossRef] [Green Version]
- Goodpaster, B.H.; Krishnaswami, S.; Resnick, H.; Kelley, D.E.; Haggerty, C.; Harris, T.B.; Schwartz, A.V.; Kritchevsky, S.; Newman, A.B. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 2003, 26, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanaya, A.M.; Harris, T.; Goodpaster, B.H.; Tylavsky, F.; Cummings, S.R. Adipocytokines attenuate the association between visceral adiposity and diabetes in older adults. Diabetes Care 2004, 27, 1375–1380. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, T.; Nagasaka, S.; Taniguchi, A.; Fukushima, M.; Nakamura, T.; Kuroe, A.; Nakai, Y.; Ishibashi, S. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism 2003, 52, 1274–1278. [Google Scholar] [CrossRef]
- Rathmann, W.; Funkhouser, E.; Dyer, A.R.; Roseman, J.M. Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: The CARDIA study. Coronary Artery Risk Development in Young Adults. Ann. Epidemiol. 1998, 8, 250–261. [Google Scholar] [CrossRef]
- Facchini, F.; Chen, Y.D.; Hollenbeck, C.B.; Reaven, G.M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 1991, 266, 3008–3011. [Google Scholar] [CrossRef]
- Battelli, M.G.; Bortolotti, M.; Polito, L.; Bolognesi, A. The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2557–2565. [Google Scholar] [CrossRef]
- Tsushima, Y.; Nishizawa, H.; Tochino, Y.; Nakatsuji, H.; Sekimoto, R.; Nagao, H.; Shirakura, T.; Kato, K.; Imaizumi, K.; Takahashi, H.; et al. Uric acid secretion from adipose tissue and its increase in obesity. J. Biol. Chem. 2013, 288, 27138–27149. [Google Scholar] [CrossRef] [Green Version]
- Furuhashi, M.; Koyama, M.; Higashiura, Y.; Murase, T.; Nakamura, T.; Matsumoto, M.; Sakai, A.; Ohnishi, H.; Tanaka, M.; Saitoh, S.; et al. Differential regulation of hypoxanthine and xanthine by obesity in a general population. J. Diabetes Investig. 2020, 11, 878–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiki, S.; Sato, T.; Kohzuki, M.; Kamimoto, M.; Yosida, T. Changes in serum hypoxanthine levels by exercise in obese subjects. Metabolism 2001, 50, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.Y.; Han, K.D.; Kim, D.H.; Eun, Y.; Cha, H.S.; Koh, E.M.; Lee, J.; Kim, H. Women with Metabolic Syndrome and General Obesity Are at a Higher Risk for Significant Hyperuricemia Compared to Men. J. Clin. Med. 2019, 8, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Man (n = 43,790) | Woman (n = 78,098) | ||||
---|---|---|---|---|---|---|
Hyperuricemia (−) (n =30,735) | Hyperuricemia (+) (n = 13,055) | p | Hyperuricemia (−) (n = 67,494) | Hyperuricemia (+) (n = 10,604) | p | |
Age (year) | 50.4 ± 11.3 | 48.6 ± 11.4 | <0.001 | 49.3 ± 10.7 | 53.4 ± 10.3 | <0.001 |
DM (%) | 7.5 | 5.2 | <0.001 | 3.7 | 7.8 | <0.001 |
Hypertension (%) | 15.5 | 20.0 | <0.001 | 7.7 | 22.0 | <0.001 |
Smoking history (%) | 56.6 | 59.5 | <0.001 | 10.3 | 10.7 | 0.291 |
Systolic BP (mmHg) | 124.5 ± 16.5 | 127.5 ± 17.0 | <0.001 | 115.1 ± 17.6 | 124.4 ± 19.0 | <0.001 |
Diastolic BP (mmHg) | 77.2 ± 10.5 | 80.1 ± 11.0 | <0.001 | 70.1 ± 10.2 | 75.1 ± 11.0 | <0.001 |
Body height (cm) | 169.5 ± 6.3 | 170.0 ± 6.3 | <0.001 | 157.7 ± 5.7 | 156.7 ± 5.6 | <0.001 |
Body weight (kg) | 71.4 ± 11.1 | 77.2 ± 12.4 | <0.001 | 57.6 ± 9.3 | 64.7 ± 11.6 | <0.001 |
Waist circumference (cm) | 86.6 ± 9.1 | 91.2 ± 9.3 | <0.001 | 79.7 ± 9.3 | 87.2 ± 10.4 | <0.001 |
Hip circumference (cm) | 96.7 ± 6.4 | 99.7 ± 7.0 | <0.001 | 94.6 ± 6.8 | 98.7 ± 8.5 | <0.001 |
Laboratory parameters | ||||||
Uric acid (mg/dL) | 5.7 ± 0.9 | 8.0 ± 0.9 | <0.001 | 4.6 ± 0.8 | 6.8 ± 0.8 | <0.001 |
Fasting glucose (mg/dL) | 99.8 ± 25.4 | 98.2 ± 17.6 | <0.001 | 93.2 ± 18.4 | 98.7 ± 20.3 | <0.001 |
Hemoglobin (g/dL) | 15.0 ± 1.2 | 15.2 ± 1.2 | <0.001 | 13.0 ± 1.3 | 13.4 ± 1.2 | <0.001 |
Triglyceride (mg/dL) | 125.1 ± 102.8 | 167.7 ± 142.8 | <0.001 | 96.4 ± 66.5 | 145.6 ± 103.7 | <0.001 |
Total cholesterol (mg/dL) | 189.7 ± 34.4 | 197.1 ± 36.2 | <0.001 | 196.2 ± 35.5 | 207.3 ± 38.3 | <0.001 |
HDL-c (mg/dL) | 49.1 ± 11.3 | 45.4 ± 10.3 | <0.001 | 59.2 ± 13.2 | 52.1 ± 11.9 | <0.001 |
LDL-c (mg/dL) | 120.2 ± 31.0 | 125.3 ± 32.3 | <0.001 | 119.0 ± 31.3 | 130.3 ± 33.9 | <0.001 |
eGFR (mL/min/1.73 m2) | 102.4 ± 20.3 | 93.1 ± 20.1 | <0.001 | 117.7 ± 25.5 | 100.8 ± 24.6 | <0.001 |
Obesity-related indices | ||||||
BMI (kg/m2) | 24.8 ± 3.4 | 26.7 ± 3.6 | <0.001 | 23.2 ± 3.5 | 26.3 ± 4.3 | <0.001 |
WHR (%) | 89.5 ± 5.6 | 91.4 ± 5.4 | <0.001 | 84.1 ± 6.7 | 88.3 ± 6.6 | <0.001 |
WHtR (%) | 51.1 ± 5.4 | 53.7 ± 5.4 | <0.001 | 50.6 ± 6.1 | 55.7 ± 6.8 | <0.001 |
BRI | 7.0 ± 1.7 | 7.8 ± 1.9 | <0.001 | 6.3 ± 1.8 | 7.8 ± 2.2 | <0.001 |
CI | 1.23 ± 0.07 | 1.24 ± 0.06 | <0.001 | 1.21 ± 0.08 | 1.25 ± 0.09 | <0.001 |
BAI | 25.9 ± 3.1 | 27.0 ± 3.2 | <0.001 | 29.8 ± 3.8 | 32.4 ± 4.5 | <0.001 |
AVI | 15.3 ± 3.2 | 16.9 ± 3.5 | <0.001 | 13.0 ± 3.0 | 15.6 ± 3.8 | <0.001 |
ABSI | 0.0784 ± 0.0038 | 0.0785 ± 0.0037 | <0.001 | 0.0783 ± 0.0052 | 0.0791 ± 0.0052 | <0.001 |
LAP | 33.2 ± 37.2 | 51.9 ± 49.7 | <0.001 | 25.5 ± 25.1 | 49.5 ± 40.7 | <0.001 |
VAI | 1.6 ± 1.9 | 2.3 ± 2.7 | <0.001 | 1.5 ± 1.6 | 2.6 ± 2.5 | <0.001 |
Obesity-Related Index | Man (n = 43,790) | Woman (n = 78,098) | β | Interaction p | ||||
---|---|---|---|---|---|---|---|---|
Multivariable | Multivariable | |||||||
Odds Ratio | 95% Confidence Interval | p | Odds Ratio | 95% Confidence Interval | p | |||
BMI (per 1 kg/m2) a | 1.121 | 1.113–1.129 | <0.001 | 1.163 | 1.155–1.170 | <0.001 | 0.058 | <0.001 |
WHR (per 0.01) a | 1.058 | 1.053–1.063 | <0.001 | 1.054 | 1.050–1.058 | <0.001 | 0.036 | <0.001 |
WHtR (per 0.01) a | 1.077 | 1.072–1.082 | <0.001 | 1.090 | 1.085–1.094 | <0.001 | 0.043 | <0.001 |
BRI (per 1) a | 1.241 | 1.224–1.258 | <0.001 | 1.296 | 1.281–1.312 | <0.001 | 0.128 | <0.001 |
CI (per 0.1) a | 1.460 | 1.406–1.516 | <0.001 | 1.340 | 1.303–1.378 | <0.001 | 0.196 | <0.001 |
BAI (per 1) a | 1.095 | 1.087–1.103 | <0.001 | 1.113 | 1.107–1.120 | <0.001 | 0.048 | <0.001 |
AVI (per 1) a | 1.119 | 1.111–1.128 | <0.001 | 1.162 | 1.154–1.170 | <0.001 | 0.077 | <0.001 |
ABSI (per 0.01) a | 1.260 | 1.183–1.341 | <0.001 | 1.088 | 1.040–1.138 | <0.001 | 0.244 | <0.001 |
LAP (per 1) b | 1.010 | 1.009–1.011 | <0.001 | 1.018 | 1.017–1.019 | <0.001 | 0.009 | <0.001 |
VAI (per 1) c | 1.238 | 1.219–1.258 | <0.001 | 1.339 | 1.321–1.357 | <0.001 | 0.078 | <0.001 |
Obesity-Related Index | Man (n = 43,790) | Woman (n = 78,098) | Interaction p | ||||
---|---|---|---|---|---|---|---|
AUC | 95% Confidence Interval | p | AUC | 95% Confidence Interval | p | ||
BMI (per 1 kg/m2) | 0.655 | 0.649–0.660 | <0.001 | 0.728 | 0.723–0.733 | <0.001 | <0.001 |
WHR (per 0.01) | 0.599 | 0.594–0.605 | <0.001 | 0.676 | 0.671–0.982 | <0.001 | <0.001 |
WHtR (per 0.01) | 0.633 | 0.628–0.639 | <0.001 | 0.721 | 0.716–0.726 | <0.001 | <0.001 |
BRI (per 1) | 0.640 | 0.634–0.645 | <0.001 | 0.720 | 0.715–0.725 | <0.001 | <0.001 |
CI (per 0.1) | 0.574 | 0.568–0.579 | <0.001 | 0.626 | 0.620–0.631 | <0.001 | <0.001 |
BAI (per 1) | 0.605 | 0.600–0.611 | <0.001 | 0.673 | 0.668–0.679 | <0.001 | <0.001 |
AVI (per 1) | 0.642 | 0.637–0.648 | <0.001 | 0.713 | 0.708–0.718 | <0.001 | <0.001 |
ABSI (per 0.01) | 0.510 | 0.504–0.516 | 0.001 | 0.544 | 0.538–0.550 | <0.001 | <0.001 |
LAP (per 1) | 0.669 | 0.664–0.675 | <0.001 | 0.754 | 0.750–0.759 | <0.001 | <0.001 |
VAI (per 1) | 0.645 | 0.640–0.651 | <0.001 | 0.724 | 0.719–0.729 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.-Y.; Lin, T.-H.; Liu, Y.-H.; Wu, P.-Y.; Huang, J.-C.; Su, H.-M.; Chen, S.-C. Sex Difference in the Associations among Obesity-Related Indices with Hyperuricemia in a Large Taiwanese Population Study. Nutrients 2023, 15, 3419. https://doi.org/10.3390/nu15153419
Su S-Y, Lin T-H, Liu Y-H, Wu P-Y, Huang J-C, Su H-M, Chen S-C. Sex Difference in the Associations among Obesity-Related Indices with Hyperuricemia in a Large Taiwanese Population Study. Nutrients. 2023; 15(15):3419. https://doi.org/10.3390/nu15153419
Chicago/Turabian StyleSu, Shih-Yao, Tsung-Han Lin, Yi-Hsueh Liu, Pei-Yu Wu, Jiun-Chi Huang, Ho-Ming Su, and Szu-Chia Chen. 2023. "Sex Difference in the Associations among Obesity-Related Indices with Hyperuricemia in a Large Taiwanese Population Study" Nutrients 15, no. 15: 3419. https://doi.org/10.3390/nu15153419
APA StyleSu, S.-Y., Lin, T.-H., Liu, Y.-H., Wu, P.-Y., Huang, J.-C., Su, H.-M., & Chen, S.-C. (2023). Sex Difference in the Associations among Obesity-Related Indices with Hyperuricemia in a Large Taiwanese Population Study. Nutrients, 15(15), 3419. https://doi.org/10.3390/nu15153419