The Metabolic and Analytical Changes of Healthy Volunteers upon Intake of Portuguese Extra Virgin Olive Oil: A Comparison Study between Pre- and Post-Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. Data Collection Tools and Techniques
2.3. Trial Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Group | Parameter | Baseline | 100 Days | p-Value |
---|---|---|---|---|
HH (n = 13) | PREDIMED score HbA1c (%) | 10.5 ± 0.66 5.08 ± 0.31 | 11.0 ± 1.1 4.875 ± 0.21 | 0.069 0.026 * |
Total cholesterol (mg/dL) | 189.91 ± 34.51 | 186.55 ± 33.88 | 0.263 | |
HDL (mg/dL) | 65.91 ± 15.33 | 64.64 ± 13.84 | 0.227 | |
LDL (mg/dL) | 106.38 ± 26.03 | 93.38 ± 29.20 | 0.043 * | |
CRP (mg/L) | 0.03 ± 0.00 | 0.56 ± 0.9 | 0.170 | |
Hand grip strength (kg/strength) | 28.00 ± 10.44 | 28.58 ± 11.58 | 0.352 | |
Waist perimeter (cm) | 79.78 ± 9.72 | 78.87 ± 10.45 | 0.119 | |
Hip perimeter (cm) | 92.26 ± 9.07 | 92.94 ± 8.55 | 0.173 | |
Body fat (%) | 24.64 ± 8.71 | 24.93 ± 8.76 | 0.320 | |
LL (n = 10) | PREDIMED score HbA1c (%) | 7.5 ± 1.7 5.08 ± 0.35 | 7.5 ± 1.1 4.95 ± 0.28 | 0.437 0.029 * |
Total cholesterol (mg/dL) | 162.20 ± 26.82 | 159.10 ± 24.77 | 0.366 | |
HDL (mg/dL) | 69.30 ± 41.88 | 68.80 ± 41.05 | 0.441 | |
LDL (mg/dL) | 89.30 ± 20.96 | 80.70 ± 26.96 | 0.097 | |
CRP (mg/L) | 0.54 ± 1.14 | 0.25 ± 0.47 | 0.257 | |
Hand grip strength (kg/strength) | 28.70 ± 14.30 | 30.00 ± 13.90 | 0.215 | |
Waist perimeter (cm) | 83.36 ± 10.13 | 81.94 ± 10.21 | 0.006 * | |
Hip perimeter (cm) | 96.09 ± 6.81 | 96.09 ± 5.12 | 0.500 | |
Body fat (%) | 27.30 ± 8.80 | 27.68 ± 8.85 | 0.321 |
Group | Parameter | Baseline | 100 Days | p-Value |
---|---|---|---|---|
LH (n = 4) | HbA1c (%) | 5.15 ± 0.22 | 4.95 ± 0.17 | 0.117 |
Total cholesterol (mg/dL) | 192 ± 26.70 | 181.75 ± 24.34 | 0.127 | |
HDL (mg/dL) | 63.50 ± 8.31 | 63.25 ± 8.94 | 0.380 | |
LDL (mg/dL) | 95.25 ± 23.95 | 98.50 ± 18.88 | 0.315 | |
CRP (mg/l) | 0.03 ± 0.0 | 0.11 ± 0.08 | 0.195 | |
Hand grip strength (kg/strength) | 22.50 ± 2.87 | 18.00 ± 2.45 | 0.001 * | |
Waist perimeter (cm) | 70.83 ± 1.47 | 70.58 ± 0.64 | 0.398 | |
Hip perimeter (cm) | 92.98 ± 3.76 | 92.95 ± 3.31 | 0.488 | |
Body fat (%) | 31.00 ± 3.39 | 32.13 ± 3.00 | 0.067 | |
Energy intake (kcal) | 1322.55 ± 107.40 | 1643.39 ± 187.02 | 0.163 | |
Lipids intake(kcal) | 48.48 ± 4.48 | 68.02 ± 13.57 | 0.153 | |
Saturated fat (kcal) | 12.23 ± 1.07 | 21.49 ± 6.08 | 0.090 | |
Cholesterol (mg) | 18,867.12 ± 9111.34 | 29,844.74 ± 10,256.04 | 0.05 * | |
HL (n = 3) | HbA1c (%) | 5.40 ± 0.06 | 4.97 ± 0.12 | 0.040 * |
Total cholesterol (mg/dL) | 199.33 ± 5.33 | 187.00 ± 17.52 | 0.307 | |
HDL (mg/dL) | 52.67 ± 4.67 | 55.33 ± 6.98 | 0.262 | |
LDL (mg/dL) | 120.67 ± 1.76 | 116.67 ± 1.76 | 0.352 | |
CRP (mg/L) | 2.59 ± 2.56 | 0.03 ± 0.00 | 0.211 | |
Hand grip strength (kg/strength) | 21.33 ± 1.76 | 23.33 ± 0.67 | 0.239 | |
Waist perimeter (cm) | 82.43 ± 8.27 | 80.73 ± 6.82 | 0.189 | |
Hip perimeter (cm) | 104.93 ± 4.04 | 100.20 ± 4.95 | 0.209 | |
Body fat (%) | 36.87 ± 2.95 | 31.80 ± 1.87 | 0.108 | |
Energy intake (kcal) | 1275.86 ± 150.65 | 1424.66 ± 385.90 | 0.302 | |
Lipids intake(kcal) | 47.72 ± 0.29 | 52.14 ± 11.73 | 0.373 | |
Saturated fat (kcal) | 11.95 ± 0.64 | 15.62 ± 4.88 | 0.265 | |
Cholesterol (mg) | 25,435.77 ± 9523.71 | 29,801.11 ± 8304.61 | 0.233 |
References
- Pulido-Fernández, J.I.; Casado-Montilla, J.; Carrillo-Hidalgo, I. Introducing Olive-Oil Tourism as a Special Interest Tourism. Heliyon 2019, 5, e02975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health Benefits of Olive Oil and Its Components: Impacts on Gut Microbiota Antioxidant Activities, and Prevention of Noncommunicable Diseases. In Trends in Food Science and Technology; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; pp. 220–227. [Google Scholar] [CrossRef]
- Trade Standard Applying to Olive Oils and Olive Pomace Oils. Available online: http://www.internationaloliveoil.org/ (accessed on 29 June 2023).
- Rodriguez-Alcalá, L.M.; Pimentel, L.L.; Figueiredo, I.; Pereira, J.A.; Gomes, A.M.; Pintado, M. Compositional Characterization of Multi and Monovarietal Oils Obtained from Tras-Os-Montes Region. In 10th National Meeting of Chromatography: Book of Abstracts; Polytechnic Institute of Bragança: Bragança, Portugal, 2020. [Google Scholar]
- George, E.S.; Marshall, S.; Mayr, H.L.; Trakman, G.L.; Tatucu-Babet, O.A.; Lassemillante, A.C.M.; Bramley, A.; Reddy, A.J.; Forsyth, A.; Tierney, A.C.; et al. The Effect of High-Polyphenol Extra Virgin Olive Oil on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. In Critical Reviews in Food Science and Nutrition; Taylor and Francis Inc.: Philadelphia, PA, USA, 2019; pp. 2772–2795. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Luna, A.; Criado-Navarro, I.; Ledesma-Escobar, C.A.; López-Bascón, M.A.; Priego-Capote, F. The Decrease in the Health Benefits of Extra Virgin Olive Oil during Storage Is Conditioned by the Initial Phenolic Profile. Food Chem. 2021, 336, 127730. [Google Scholar] [CrossRef]
- Visioli, F.; Franco, M.; Toledo, E.; Luchsinger, J.; Willett, W.C.; Hu, F.B.; Martinez-Gonzalez, M.A. Olive Oil and Prevention of Chronic Diseases: Summary of an International Conference. In Nutrition, Metabolism and Cardiovascular Diseases; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 28, pp. 649–656. [Google Scholar] [CrossRef]
- El Maghariki, J.; Moreira, I.; Machado, M.; Coelho, M.; Correia, M.; Gomes, A. Exploring the Health Benefits of Olive Oil: A Comprehensive Analysis of Its Lipid Profile, Polyphenols, and Nutritional Indices. In Proceedings of the APN Meeting, Porto, Portugal, 12–13 May 2023. [Google Scholar]
- Correia, M.; Machado, M.; Gomes, A. Organic Portuguese Extra Virgin Olive Oil Fatty and Polyphenol Profiles. APN 2022, 29, 1–5. [Google Scholar]
- Oliveras-López, M.J.; Berná, G.; Jurado-Ruiz, E.; López-García de la Serrana, H.; Martín, F. Consumption of Extra-Virgin Olive Oil Rich in Phenolic Compounds Has Beneficial Antioxidant Effects in Healthy Human Adults. J. Funct. Foods 2014, 10, 475–484. [Google Scholar] [CrossRef]
- Del Saz-Lara, A.; López de Las Hazas, M.C.; Visioli, F.; Dávalos, A. Nutri-Epigenetic Effects of Phenolic Compounds from Extra Virgin Olive Oil: A Systematic Review. Adv. Nutr. 2022, 13, 2039–2060. [Google Scholar] [CrossRef]
- Miró -Casas, E.; Covas, M.-I.; Fitó, M.; Farré-Albadalejo, M.; Marrugat, J.; De La Torre, R. SHORT COMMUNICATION Tyrosol and Hydroxytyrosol Are Absorbed from Moderate and Sustained Doses of Virgin Olive Oil in Humans. Eur. J. Clin. Nutr. 2003, 57, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, C.D.; Cramer, H.; Michalsen, A.; Kessler, C.; Steckhan, N.; Choi, K.; Dobos, G. Effects of High Phenolic Olive Oil on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Phytomedicine 2015, 22, 631–640. [Google Scholar] [CrossRef]
- Sarapis, K.; George, E.S.; Marx, W.; Mayr, H.L.; Willcox, J.; Powell, K.L.; Folasire, O.S.; Lohning, A.E.; Prendergast, L.A.; Itsiopoulos, C.; et al. Extra-Virgin Olive Oil Improves HDL Lipid Fraction but Not HDL-Mediated Cholesterol Efflux Capacity: A Double-Blind, Randomized, Controlled, Cross-over Study (OLIVAUS). Br. J. Nutr. 2022, 130, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Otrante, A.; Trigui, A.; Walha, R.; Berrougui, H.; Fulop, T.; Khalil, A. Extra Virgin Olive Oil Prevents the Age-Related Shifts of the Distribution of Hdl Subclasses and Improves Their Functionality. Nutrients 2021, 13, 2235. [Google Scholar] [CrossRef]
- AlKhattaf, N.F.; Alraddadi, A.M.; Aljarbou, M.A.; Arnauti, M.A.; Alfaleh, A.M.; Hammouda, S.A. Determining the Correlation between Olive Oil Consumption, BMI, and Waist Circumference in the Adult Saudi Population. J. Taibah Univ. Med. Sci. 2020, 15, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Loffredo, L.; Pignatelli, P.; Angelico, F.; Bartimoccia, S.; Nocella, C.; Cangemi, R.; Petruccioli, A.; Monticolo, R.; Pastori, D.; et al. Extra Virgin Olive Oil Use Is Associated with Improved Post-Prandial Blood Glucose and LDL Cholesterol in Healthy Subjects. Nutr. Diabetes 2015, 5, e172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Christoph, M.; Hoffmann, G. Effects of Olive Oil on Markers of Inflammation and Endothelial Function—A Systematic Review and Meta-Analysis. Nutrients 2015, 7, 7651–7675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Lampousi, A.M.; Portillo, M.P.; Romaguera, D.; Hoffmann, G.; Boeing, H. Olive Oil in the Prevention and Management of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Cohort Studies and Intervention Trials. Nutr. Diabetes 2017, 7, e262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Zhang, P.; Zheng, Q.; Deka, A.; Choudhury, R.; Rastogi, S. Does a MediDiet with Additional Extra Virgin Olive Oil and Pistachios Reduce the Incidence of Gestational Diabetes? Endocr. Pract. 2022, 28, 135–141. [Google Scholar] [CrossRef]
- Deiana, M.; Serra, G.; Corona, G. Modulation of Intestinal Epithelium Homeostasis by Extra Virgin Olive Oil Phenolic Compounds. In Food and Function; Royal Society of Chemistry: Cambridge, UK, 2018; pp. 4085–4099. [Google Scholar] [CrossRef]
- Morvaridi, M.; Jafarirad, S.; Seyedian, S.S.; Alavinejad, P.; Cheraghian, B. The Effects of Extra Virgin Olive Oil and Canola Oil on Inflammatory Markers and Gastrointestinal Symptoms in Patients with Ulcerative Colitis. Eur. J. Clin. Nutr. 2020, 74, 891–899. [Google Scholar] [CrossRef]
- Dehghani, F.; Morvaridzadeh, M.; Pizarro, A.B.; Rouzitalab, T.; Khorshidi, M.; Izadi, A.; Shidfar, F.; Omidi, A.; Heshmati, J. Effect of Extra Virgin Olive Oil Consumption on Glycemic Control: A Systematic Review and Meta-Analysis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1953–1961. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Krause, M.; Schmucker, C.; Hoffmann, G.; Rücker, G.; Meerpohl, J.J. Impact of Different Types of Olive Oil on Cardiovascular Risk Factors: A Systematic Review and Network Meta-Analysis. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1030–1039. [Google Scholar] [CrossRef]
- Weschenfelder, C.; Gottschall, C.B.A.; Markoski, M.M.; Portal, V.L.; Quadros, A.S.D.; Bersch-Ferreira, Â.C.; Marcadenti, A. Effects of Supplementing a Healthy Diet with Pecan Nuts or Extra-Virgin Olive Oil on Inflammatory Profile of Patients with Stable Coronary Artery Disease: A Randomised Clinical Trial. Br. J. Nutr. 2022, 127, 862–871. [Google Scholar] [CrossRef]
- General Guidance for Stakeholders on the Evaluation of Article 13.1, 13.5 and 14 Health Claims. EFSA J. 2011, 9, 2135. [CrossRef]
- WHO. WHO Expert Commitee on Physical Status: The Use and Interpretation of Anthropometry; WHO: Geneva, Switzerland, 1993. [Google Scholar]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Vieira, L.M.; Gottschall, C.B.A.; Vinholes, D.B.; Martinez-Gonzalez, M.A.; Marcadenti, A. Translation and Cross-Cultural Adaptation of 14-Item Mediterranean Diet Adherence Screener and Low-Fat Diet Adherence Questionnaire. Clin. Nutr. ESPEN 2020, 39, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galvão Cândido, F.; Xavier Valente, F.; da Silva, L.E.; Gonçalves Leão Coelho, O.; do Gouveia Peluzio, M.C.; de Gonçalves Alfenas, R.C. Consumption of Extra Virgin Olive Oil Improves Body Composition and Blood Pressure in Women with Excess Body Fat: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Eur. J. Nutr. 2018, 57, 2445–2455. [Google Scholar] [CrossRef]
- Sarapis, K.; Thomas, C.J.; Hoskin, J.; George, E.S.; Marx, W.; Mayr, H.L.; Kennedy, G.; Pipingas, A.; Willcox, J.C.; Prendergast, L.A.; et al. The Effect of High Polyphenol Extra Virgin Olive Oil on Blood Pressure and Arterial Stiffness in Healthy Australian Adults: A Randomized, Controlled, Cross-over Study. Nutrients 2020, 12, 2272. [Google Scholar] [CrossRef] [PubMed]
- Chiva-Blanch, G.; Sala-Vila, A.; Crespo, J.; Ros, E.; Estruch, R.; Badimon, L. The Mediterranean Diet Decreases Prothrombotic Microvesicle Release in Asymptomatic Individuals at High Cardiovascular Risk. Clin. Nutr. 2020, 39, 3377–3384. [Google Scholar] [CrossRef]
- Biel, S.; Mesa, M.D.; de la Torre, R.; Espejo, J.A.; Fernández-Navarro, J.R.; Fitó, M.; Sánchez-Rodriguez, E.; Rosa, C.; Marchal, R.; de Alche, J.D.; et al. The NUTRAOLEOUM Study, a Randomized Controlled Trial, for Achieving Nutritional Added Value for Olive Oils. BMC Complement. Altern. Med. 2016, 16, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Ridker, P.M.; Bhatt, D.L.; Pradhan, A.D.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E. Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef] [Green Version]
- Hempe, J.M.; Liu, S.; Myers, L.; Mccarter, R.J.; Buse, J.B.; Fonseca, V. The Hemoglobin Glycation Index Identifies Subpopulations with Harms or Benefits from Intensive Treatment in the ACCORD Trial. Diabetes Care 2015, 38, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.S.e.A.d.C.; Rodrigues, A.P.d.S.; Rosa, L.P.d.S.; Noll, M.; Silveira, E.A. Traditional Brazilian Diet and Olive Oil Reduce Cardiometabolic Risk Factors in Severely Obese Individuals: A Randomized Trial. Nutrients 2020, 12, 1413. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. Z. Gefassmed. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Seidita, A.; Soresi, M.; Giannitrapani, L.; Di Stefano, V.; Citarrella, R.; Mirarchi, L.; Cusimano, A.; Augello, G.; Carroccio, A.; Iovanna, J.L.; et al. The Clinical Impact of an Extra Virgin Olive Oil Enriched Mediterranean Diet on Metabolic Syndrome: Lights and Shadows of a Nutraceutical Approach. Front. Nutr. 2022, 9, 980429. [Google Scholar] [CrossRef]
Gender (%) | Men | Women | Age (Years) | |||
8 (24.2) | 25 (75.8) | 33.5 ± 11.2 (19–55) | ||||
Baseline (before NPPR-EVOO) | 100 days of NPPR-EVOO | p-Value | ||||
PREDIMED score | ||||||
Low adherence (%) | 19 (57.6) | 13 (39.4) * | p < 0.05 | |||
High adherence (%) | 14 (42.4) | 20 (60.6) * | p < 0.05 | |||
IPAQ score | ||||||
Sedentary (%) | 3 (9.1) | 3 (9.1) | ns | |||
Irregularly active (%) | 5 (15.2) | 7 (21.2) | ns | |||
Active (%) | 17 (51.5) | 16 (48.5) | ns | |||
Very active (%) | 8 (24.2) | 7 (21.2) | ns | |||
Blood pressure clusters # (mmHg) | ||||||
Normal (%) | 26 (78.8) | 30 (90.9) | ns | |||
Normal-high (%) | 7 (21.2) | 3 (9.1) * | p < 0.05 | |||
Blood pressure (mmHg) | Diastolic | Systolic | Diastolic | Systolic | Diastolic | Systolic |
116.54 ± 13.22 (96–144) | 73.34 ± 8.49 (54–94) | 117.54 ± 13.65 (95–141) | 73.49 ± 8.34 (60–92) | 0.306 | 0.456 | |
Analytical Data | ||||||
HbA1c (%) | 5.12 ± 0.32 (4.6–5.8) | 4.93 ± 0.24 (4.5–5.6) | 0.000 * | |||
Total cholesterol (mg/dL) | 168.22 ± 30.93 (79–200) | 162.79 ± 32.30 (84–213) | 0.208 | |||
HDL (mg/dL) | 62.91 ± 25.70 (34–184) | 62.23 ± 24.53 (39–179) | 0.281 | |||
LDL (mg/dL) | 92.63 ± 24.53 (34–127) | 83.23 ± 27.63 (43–138) | 0.024 * | |||
CRP (mg/dL) | 0.65 ± 1.37 (0.3–7.7) | 0.36 ± 0.20 (0.3–1.17) | 0.119 | |||
Dietary intake (n = 32 **) | ||||||
Energy (kcal/day) | 1394.59 ± 382.30 (422.99–2195.80) | 1559.76 ± 459.89 (317.79–2397) | 0.004 * | |||
Lipids (%) | 32 ± 7 (18–53) | 42 ± 48 (19–305) | 0.306 | |||
Saturated fatty acids (g) | 9 ± 2 (5–14) | 10 ± 3 (5–19) | 0.112 | |||
MUFA (%) | 11 ± 4 (5–19) | 11 ± 4 (3–19) | 0.408 | |||
PUFA (%) | 5 ± 3 (2–17) | 6 ± 3 (2–18) | 0.153 | |||
Cholesterol (mg) | 26,058.41 ± 18,015.77 (0–72,581.83) | 28,473.32 ± 17,401.39 (1130.00–72,275.00) | 0.204 | |||
Anthropometry and body composition | ||||||
Weight (kg) | 65.54 ± 11.94 (48.8–97.5) | 65.68 ± 11.45 (49.5–97.1) | 0.331 | |||
BMI (kg/m2) | 23.65 ± 3.19 (18.5–30.0) | 23.71 ± 2.97 (18.5–30.0) | 0.323 | |||
Circumference (cm) | Female | Male | Female | Male | Female | Male |
Waist (cm) | 76.69 ± 8.41 (62.5–97.5) | 88.96 ± 9.22 (79.4–102) | 75.95 ± 7.77 (64.8–92.8) | 88.61 ± 8.89 (78.1–102.2) | 0.053 | 0.349 |
Hip (cm) | 94.61 ± 8.17 (83–110.8) | 95.88 ± 8.76 (84.5–110) | 94.51 ± 6.84 (84–109.6) | 97.43 ± 8.23 (87.2–111.8) | 0.445 | 0.010 * |
Waist-hip ratio | 0.81 ± 0.07 (0.69–0.92) | 0.93 ± 0.05 (0.87–1.02) | 0.80 ± 0.07 (0.70–1) | 0.91 ± 0.07 (0.85–1.02) | 0.130 | 0.030 * |
Fat mass (%) | 30.08 ± 6.15 (18.10–41.10) | 17.50 ± 8.02 (9.80–29.80) | 29.91 ± 5.56 (19.90–39.40) | 17.96 ± 7.70 (9–29.10) | 0.384 | 0.192 |
Skeletal muscle mass (kg) | 23.10 ± 2.75 (19.50–28.90) | 36.88 ± 2.68 (32–39.80) | 23.23 ± 2.76 (19.80–29.80) | 36.62 ± 2.02 (32.8–39.60) | 0.221 | 0.300 |
Lean body mass (kg) | 39.96 ± 4.29 (34.10–49.10) | 61.33 ± 4.18 (53.80–66.30) | 40.11 ± 4.34 (19.80–29.80) | 60.88 ± 3.24 (54.8–65.60) | 0.262 | 0.244 |
Dynamometry (kg/force) | 21.93 ± 5.86 (12–39) | 43.00 ± 6.70 (30–50) | 22.04 ± 5.12 (12–34) | 43.13 ± 9.34 (30–58) | 0.452 | 0.477 |
Analytical Data | Baseline (before NPPR-EVOO) | 100 Days of NPPR-EVOO | p-Value | |||
HbA1c (%) (n = 23) | 5.10 ± 0.32 | 4.92 ± 0.24 | 0.003 * | |||
Total cholesterol (mg/dL) (n = 22) | 177.50 ± 32.88 | 171.70 ± 37.68 | 0.300 | |||
HDL (mg/dL) (n = 22) | 67.18 ± 29.48 | 66.73 ± 28.60 | 0.397 | |||
LDL (mg/dL) (n = 19) | 98.91 ± 22.88 | 87.20 ± 29.93 | 0.023 * | |||
CRP (mg/dL) (n = 22) | 0.26 ± 0.79 | 0.14 ± 0.33 | 0.272 | |||
Dietary intake ** (n = 23) | ||||||
Energy (kcal/day) | 1440.38 ± 380.172 | 1605.089 ± 418.120 | 0.014 * | |||
Lipids (%) | 32.00 ± 7.19 | 42.13 ± 1.50 | 0.162 | |||
Saturated fatty acids (%) | 3.66 ± 5.60 | 5.04 ± 5.96 | 0.217 | |||
MUFA (%) | 10.27 ± 4,15 | 10.18 ± 4.09 | 0.464 | |||
PUFA (%) | 5.73 ± 3.23 | 5.59 ± 3.61 | 0.415 | |||
Cholesterol (mg) | 28,121.9367 ± 17,745.06031 | 28,322.9412 ± 17,831.64911 | 0.480 | |||
Anthropometry and body composition | ||||||
Circumference (cm) | Female (n = 17) | Male (n = 6) | Female (n = 17) | Male (n = 6) | Female | Male |
Waist (cm) | 77.62 ± 7.91 | 90.08 ± 9.89 | 76.33 ± 7.97 | 89.57 ± 10.13 | 0.011 * | 0.279 |
Hip (cm) | 93.62 ± 7.68 | 95.60 ± 9.52 | 93.68 ± 6.24 | 96.97 ± 9.35 | 0.467 | 0.004 * |
Fat mass (%) | 29.04 ± 6.03 | 17.72 ± 9.45 | 29.41 ± 5.97 | 17.58 ± 9.08 | 0.277 | 0.322 |
Dynamometry (kg/force) (n = 23) | 21.47 ± 5.06 | 46.00 ± 3.63 | 22.82 ± 5.27 | 46.50 ± 7.99 | 0.111 | 0.865 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, M.; Moreira, I.; El Maghariki, J.; Manuel, T.; Alves, P.; Barros, R.; Gomes, A. The Metabolic and Analytical Changes of Healthy Volunteers upon Intake of Portuguese Extra Virgin Olive Oil: A Comparison Study between Pre- and Post-Intervention. Nutrients 2023, 15, 3351. https://doi.org/10.3390/nu15153351
Correia M, Moreira I, El Maghariki J, Manuel T, Alves P, Barros R, Gomes A. The Metabolic and Analytical Changes of Healthy Volunteers upon Intake of Portuguese Extra Virgin Olive Oil: A Comparison Study between Pre- and Post-Intervention. Nutrients. 2023; 15(15):3351. https://doi.org/10.3390/nu15153351
Chicago/Turabian StyleCorreia, Marta, Inês Moreira, Jane El Maghariki, Tânia Manuel, Paulo Alves, Rui Barros, and Ana Gomes. 2023. "The Metabolic and Analytical Changes of Healthy Volunteers upon Intake of Portuguese Extra Virgin Olive Oil: A Comparison Study between Pre- and Post-Intervention" Nutrients 15, no. 15: 3351. https://doi.org/10.3390/nu15153351
APA StyleCorreia, M., Moreira, I., El Maghariki, J., Manuel, T., Alves, P., Barros, R., & Gomes, A. (2023). The Metabolic and Analytical Changes of Healthy Volunteers upon Intake of Portuguese Extra Virgin Olive Oil: A Comparison Study between Pre- and Post-Intervention. Nutrients, 15(15), 3351. https://doi.org/10.3390/nu15153351