The Association between Dietary Fiber Intake and Serum Klotho Levels in Americans: A Cross-Sectional Study from the National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population Samples
2.2. Assessment of Dietary Fiber Intake
2.3. Determination of Serum Klotho Levels
2.4. Covariate Adjustment
2.5. Methods for Statistical Analysis
3. Results
3.1. Basic Characteristics of All Participants
3.2. Association between Serum Klotho Levels and Dietary Fiber Intake
3.3. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, J.T.; Palmer, S.C.; Wai, S.N.; Ruospo, M.; Carrero, J.J.; Campbell, K.L.; Strippoli, G.F. Healthy Dietary Patterns and Risk of Mortality and ESRD in CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2017, 7, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, C.A.; Xie, C.; Garcia, A.L. Dietary fibre and health in children and adolescents. Proc. Nutr. Soc. 2015, 74, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Champ, M.M.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef] [Green Version]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.L.; Wang, L.; Lü, J.; Zhu, Y.Y.; Shen, R.L. Structural, antioxidant and adsorption properties of dietary fiber from foxtail millet (Setaria italica) bran. J. Sci. Food Agric. 2019, 99, 3886–3894. [Google Scholar] [CrossRef]
- Aleixandre, A.; Miguel, M. Dietary fiber and blood pressure control. Food Funct. 2016, 7, 1864–1871. [Google Scholar] [CrossRef]
- Post, R.E.; Mainous AG 3rd King, D.E.; Simpson, K.N. Dietary fiber for the treatment of type 2 diabetes mellitus: A meta-analysis. J. Am. Board. Fam. Med. 2012, 25, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Luo, F. Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. Oxid. Med. Cell Longev. 2021, 8, 5542342. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Z.; Xu, J.; Xu, G.; Liu, X. Dietary fiber intake reduces risk for Barrett’s esophagus and esophageal cancer. Crit. Rev. Food Sci. Nutr. 2017, 57, 2749–2757. [Google Scholar] [CrossRef]
- Tucker, L.A. Dietary Fiber and Telomere Length in 5674 U.S. Adults: An NHANES Study of Biological Aging. Nutrients 2018, 10, 400. [Google Scholar] [CrossRef] [Green Version]
- Thompson, H.J. The Dietary Guidelines for Americans (2020–2025): Pulses, Dietary Fiber, and Chronic Disease Risk-A Call for Clarity and Action. Nutrients 2021, 13, 4034. [Google Scholar] [CrossRef] [PubMed]
- Kuro-o, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, E.; et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390, 45–51. [Google Scholar] [CrossRef]
- Neyra, J.A.; Hu, M.C.; Moe, O.W. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin. J. Am. Soc. Nephrol. 2020, 16, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Kinoshita, S.; Shiraishi, N.; Nakagawa, S.; Sekine, S.; Fujimori, T.; Nabeshima, Y.I. Molecular cloning and expression analyses of mouse beta klotho, which encodes a novel Klotho family protein. Mech. Dev. 2000, 98, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Gołembiewska, E.; Stępniewska, J.; Kabat-Koperska, J.; Kędzierska, K.; Domański, M.; Ciechanowski, K. The Role of Klotho Protein in Chronic Kidney Disease: Studies in Animals and Humans. Curr. Protein Pept. Sci. 2016, 17, 821–826. [Google Scholar] [CrossRef]
- Buchanan, S.; Combet, E.; Stenvinkel, P.; Shiels, P.G. Klotho, Aging, and the Failing Kidney. Front. Endocrinol. (Lausanne) 2020, 11, 560. [Google Scholar] [CrossRef]
- Lindberg, K.; Amin, R.; Moe, O.W.; Hu, M.C.; Erben, R.G.; Östman Wernerson, A.; Lanske, B.; Olauson, H.; Larsson, T.E. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 2014, 25, 2169–2175. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Stein, L.R.; Kim, D.; Ho, K.; Yu, G.Q.; Zhan, L.; Larsson, T.E.; Mucke, L. Klotho controls the brain-immune system interface in the choroid plexus. Proc. Natl. Acad. Sci. USA 2018, 115, E11388–E11396. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Li, Y.; Sun, Z.; Xu, H.; Ma, G.; Deng, Q.; Zhang, C.X.; Li, R. Could α-Klotho Unlock the Key Between Depression and Dementia in the Elderly: From Animal to Human Studies. Mol. Neurobiol. 2021, 58, 2874–2885. [Google Scholar] [CrossRef]
- Prud’homme, G.J.; Kurt, M.; Wang, Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. Front. Aging 2022, 3, 931331. [Google Scholar] [CrossRef]
- Zeng, C.Y.; Yang, T.T.; Zhou, H.J.; Zhao, Y.; Kuang, X.; Duan, W.; Du, J.R. Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer’s disease-like pathology and cognitive deficits in mice. Neurobiol. Aging 2019, 78, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh-Hajahmadi, M.; Najafipour, H.; Rostamzadeh, F.; Naghibzadeh-Tahami, A. Klotho and SIRT1 changes from pre-diabetes to diabetes and pre-hypertension to hypertension. Diabetol. Metab. Syndr. 2021, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Kang, L.; Ren, X.Z.; Diao, Z.L.; Liu, W.H. Circulating α-Klotho Levels in Hemodialysis Patients and Their Relationship to Atherosclerosis. Kidney Blood Press. Res. 2018, 43, 1174–1182. [Google Scholar] [CrossRef]
- Sugiura, H.; Yoshida, T.; Shiohira, S.; Kohei, J.; Mitobe, M.; Kurosu, H.; Kuro-o, M.; Nitta, K.; Tsuchiya, K. Reduced Klotho expression level in kidney aggravates renal interstitial fibrosis. Am. J. Physiol. Renal Physiol. 2012, 302, F1252–F1264. [Google Scholar] [CrossRef]
- Zhou, H.; Pu, S.; Zhou, H.; Guo, Y. Klotho as Potential Autophagy Regulator and Therapeutic Target. Front. Pharmacol. 2021, 12, 755366. [Google Scholar] [CrossRef]
- Kanbay, M.; Demiray, A.; Afsar, B.; Covic, A.; Tapoi, L.; Ureche, C.; Ortiz, A. Role of Klotho in the Development of Essential Hypertension. Hypertension 2021, 77, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.C.; Perez-Gomez, M.V.; Sanchez-Niño, M.D.; Sanz, A.B.; Ruiz-Andres, O.; Poveda, J.; Moreno, J.A.; Egido, J.; Ortiz, A. Klotho, phosphate and inflammation/ageing in chronic kidney disease. Nephrol. Dial. Transplant. 2012, 27 (Suppl. 4), iv6–iv10. [Google Scholar] [CrossRef] [Green Version]
- Jurado-Fasoli, L.; Amaro-Gahete, F.J.; Arias-Tellez, M.J.; Gil, A.; Labayen, I.; Ruiz, J.R. Relationship between dietary factors and S-Klotho plasma levels in young sedentary healthy adults. Mech. Ageing Dev. 2021, 194, 111435. [Google Scholar] [CrossRef]
- Onmaz, M.; Demirbas, N.; Eryavuz Onmaz, D.; Kutlu, R.; Unlu, A. Effect of cigarette smoking on serum methylarginine and α-klotho levels. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 602–609. [Google Scholar] [CrossRef]
- Jurado-Fasoli, L.; Amaro-Gahete, F.J.; De-la-O, A.; Gutiérrez, Á.; Castillo, M.J. Alcohol consumption and S-Klotho plasma levels in sedentary healthy middle-aged adults: A cross sectional study. Drug Alcohol. Depend. 2019, 194, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.E.; Chen, Y.J.; Chen, W.L. Adherence to Mediterranean Diet and Soluble Klotho Level: The Value of Food Synergy in Aging. Nutrients 2022, 14, 3910. [Google Scholar] [CrossRef]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B.; et al. Summary of American Heart Association Diet and Lifestyle Recommendations revision 2006. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2186–2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Liu, J.; Li, J.; Jiang, H.; Kong, J. Klotho Levels are Decreased and Associated with Enhanced Oxidative Stress and Inflammation in the Aqueous Humor in Patients with Exudative Age-related Macular Degeneration. Ocul. Immunol. Inflamm. 2022, 30, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M.; Hillesund, E.R.; Øverby, N.C.; Vik, F.N.; Medin, A.C. Individual nutrients and serum klotho levels in adults aged 40–79 years. Food Sci. Nutr. 2023, 11, 3279–3286. [Google Scholar] [CrossRef]
- Shu, Y.; Wu, M.; Yang, S.; Wang, Y.; Li, H. Association of dietary selenium intake with telomere length in middle-aged and older adults. Clin. Nutr. 2020, 39, 3086–3091. [Google Scholar] [CrossRef]
- Sun, B.; Shi, X.; Wang, T.; Zhang, D. Exploration of the Association between Dietary Fiber Intake and Hypertension among U.S. Adults Using 2017 American College of Cardiology/American Heart Association Blood Pressure Guidelines: NHANES 2007–2014. Nutrients 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Guan, G.; Cai, J.; Zheng, S.; Xiang, Y.; Xia, S.; Zhang, Y.; Shi, J.; Wang, J. Association between serum manganese and serum klotho in a 40-80-year-old American population from NHANES 2011–2016. Front. Aging 2023, 4, 1120823. [Google Scholar] [CrossRef]
- Wu, M.; Shu, Y.; Wang, L.; Song, L.; Chen, S.; Liu, Y.; Bi, J.; Li, D.; Yang, Y.; Hu, Y.; et al. Metabolic syndrome severity score and the progression of CKD. Eur. J. Clin. Investig. 2022, 52, e13646. [Google Scholar] [CrossRef]
- Abraham, C.R.; Li, A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Res. Rev. 2022, 82, 101766. [Google Scholar] [CrossRef]
- Wu, S.E.; Chen, W.L. Soluble klotho as an effective biomarker to characterize inflammatory states. Ann. Med. 2022, 54, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.W.; Fang, W.H.; Chen, W.L. Clinical Relevance of Serum Klotho Concentration and Sagittal Abdominal Diameter. J. Clin. Med. 2022, 11, 7376. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Jain, N.; Normington, J.; Holschuh, N.; Zhu, Y. Associations of Ready-to-Eat Cereal Consumption and Income With Dietary Outcomes: Results From the National Health and Nutrition Examination Survey 2015–2018. Front Nutr. 2022, 9, 816548. [Google Scholar] [CrossRef] [PubMed]
- Kushi, L.H.; Folsom, A.R.; Jacobs, D.R., Jr.; Luepker, R.V.; Elmer, P.J.; Blackburn, H. Educational attainment and nutrient consumption patterns: The Minnesota Heart Survey. J. Am. Diet. Assoc. 1988, 88, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; He, G.Y.; Wu, X.J.; Wang, C.P.; Luo, X.B.; Zhao, Y.; Long, Y. Association between environmental exposure to perchlorate, nitrate, and thiocyanate and serum α-Klotho levels among adults from the National Health and nutrition examination survey (2007–2014). BMC Geriatr. 2022, 22, 740. [Google Scholar] [CrossRef]
- Donate-Correa, J.; Martín-Núñez, E.; Delgado, N.P.; de Fuentes, M.M.; Arduan, A.O.; Mora-Fernández, C.; Navarro González, J.F. Implications of Fibroblast growth factor/Klotho system in glucose metabolism and diabetes. Cytokine Growth Factor. Rev. 2016, 28, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Drew, D.A.; Katz, R.; Kritchevsky, S.; Ix, J.H.; Shlipak, M.G.; Newman, A.B.; Hoofnagle, A.N.; Fried, L.F.; Sarnak, M.; Gutiérrez, O.M.; et al. Soluble Klotho and Incident Hypertension. Clin. J. Am. Soc. Nephrol. 2021, 16, 1502–1511. [Google Scholar] [CrossRef]
- Dërmaku-Sopjani, M.; Kolgeci, S.; Abazi, S.; Sopjani, M. Significance of the anti-aging protein Klotho. Mol. Membr. Biol. 2013, 30, 369–385. [Google Scholar] [CrossRef]
- Hu, J.W.; Chu, C.; Shi, T.; Yan, Y.; Mu, J.J. Effects of salt intervention on serum levels of Klotho influenced by salt sensitivity. J. Clin. Hypertens. (Greenwich) 2020, 22, 2051–2058. [Google Scholar] [CrossRef]
- Saxena, A.; Sachan, T.; Gupta, A.; Kapoor, V. Effect of Dietary Phosphorous Restriction on Fibroblast Growth 2 Factor-23 and sKlotho Levels in Patients with Stages 1-2 Chronic Kidney Disease. Nutrients 2022, 14, 3302. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.C.; Zhou, J.; Wang, C.X.; Fang, M.; Gao, F. Association Between Dietary Inflammatory Index and S-Klotho Plasma Levels in Middle-Aged and Elderly People. Front. Nutr. 2022, 9, 853332. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Fasoli, L.; Castillo, M.J.; Amaro-Gahete, F.J. Dietary Inflammatory Index and S-Klotho Plasma Levels in Middle-Aged Adults. Nutrients 2020, 12, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Liang, X.; Han, K.; Shi, F.; Meng, N.; Li, Q. Anti-Aging Effect of Dietary Fiber Compound Mediated by Guangxi Longevity Dietary Pattern on Natural Aging Mice. Nutrients 2022, 14, 3181. [Google Scholar] [CrossRef] [PubMed]
- García-Carrizo, F.; Galmés, S.; Picó, C.; Palou, A.; Rodríguez, A.M. Supplementation with the Prebiotic High-Esterified Pectin Improves Blood Pressure and Cardiovascular Risk Biomarker Profile, Counteracting Metabolic Malprogramming. J. Agric. Food Chem. 2022, 70, 13200–13211. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Yu, Y.; Zhang, X.H.; Floyd, Z.E.; Boudreau, A.; Lian, K.; Cefalu, W.T. Comparing the effects of nano-sized sugarcane fiber with cellulose and psyllium on hepatic cellular signaling in mice. Int. J. Nanomed. 2012, 7, 2999–3012. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Nguyen, L.H.; Song, M.; Wang, D.D.; Franzosa, E.A.; Cao, Y.; Joshi, A.; Drew, D.A.; Mehta, R.; Ivey, K.L.; et al. Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Med. 2021, 13, 102. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Wang, Y.; Yang, G.; Zhang, Q.; Meng, L.; Xin, Y.; Jiang, X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol. Res. 2021, 165, 105420. [Google Scholar] [CrossRef]
- Marsell, R.; Krajisnik, T.; Göransson, H.; Ohlsson, C.; Ljunggren, O.; Larsson, T.E.; Jonsson, K.B. Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23. Nephrol. Dial. Transplant. 2008, 23, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Kosk, D.; Kramer, H.; Luke, A.; Camacho, P.; Bovet, P.; Rhule, J.P.; Forrester, T.; Wolf, M.; Sempos, C.; Melamed, M.L.; et al. Dietary factors and fibroblast growth factor-23 levels in young adults with African ancestry. J. Bone Miner. Metab. 2017, 35, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Nylund, L.; Candela, M.; Ostan, R.; Bucci, L.; Pini, E.; Nikkïla, J.; Monti, D.; Satokari, R.; Franceschi, C.; et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 2010, 5, e10667. [Google Scholar] [CrossRef]
- Claesson, M.J.; Cusack, S.; O’Sullivan, O.; Greene-Diniz, R.; de Weerd, H.; Flannery, E.; Marchesi, J.R.; Falush, D.; Dinan, T.; Fitzgerald, G.; et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4586–4591. [Google Scholar] [CrossRef] [PubMed]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hengst, C.; Ptok, S.; Roessler, A.; Fechner, A.; Jahreis, G. Effects of polydextrose supplementation on different faecal parameters in healthy volunteers. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. 5), 96–105. [Google Scholar] [CrossRef]
- Orces, C.H. The Association of Obesity and the Antiaging Humoral Factor Klotho in Middle-Aged and Older Adults. Sci. World J. 2022, 2022, 7274858. [Google Scholar] [CrossRef]
Variables | Total Participants | Dietary Fiber Intake (g/Day) | ||||
---|---|---|---|---|---|---|
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p Value | ||
Age, years, mean (SD) | 57.8 (10.8) | 57.6 (10.8) | 58.2 (11.0) | 57.8 (10.9) | 57.5 (10.5) | 0.059 |
BMI, kg/m2, mean (SD) | 29.9 (6.7) | 30.3 (7.3) | 30.1 (6.8) | 29.7 (6.4) | 29.4 (6.4) | <0.001 |
PIR, mean (SD) | 2.7 (1.7) | 2.3 (1.6) | 2.6 (1.6) | 2.8 (1.7) | 2.9 (1.7) | <0.001 |
Sex, n (%) | <0.001 | |||||
male | 5544 (49.1) | 1141 (40.7) | 1254 (44.4) | 1410 (49.8) | 1739 (61.6) | |
female | 5738 (50.9) | 1663 (59.3) | 1571 (55.6) | 1421 (50.2) | 1083 (38.4) | |
Educational attainment, n (%) | <0.001 | |||||
<High school | 2950 (26.1) | 883 (31.5) | 682 (24.1) | 681 (24.1) | 704 (24.9) | |
High school | 2519 (22.3) | 716 (25.5) | 731 (25.9) | 587 (20.7) | 485 (17.2) | |
College or above | 5813 (51.5) | 1205 (43.0) | 1412 (50.0) | 1563 (55.2) | 1633 (57.9) | |
Race/Ethnicity, n (%) | <0.001 | |||||
Non-Hispanic white | 5203 (46.1) | 1263 (45.0) | 1372 (48.6) | 1331 (47.0) | 1237 (43.8) | |
Non-Hispanic black | 2234 (19.8) | 760 (27.1) | 608 (21.5) | 463 (16.4) | 403 (14.3) | |
Other Hispanic | 1199 (10.6) | 300 (10.7) | 316 (11.2) | 320 (11.3) | 263 (9.3) | |
Mexican American or other | 2646 (23.5) | 481 (17.2) | 529 (18.7) | 717 (25.3) | 919 (32.6) | |
Serum cotinine, ng/mL, median (25th–75th) | 0.0 (0.0–2.5) | 0.1 (0.0–179.0) | 0.0 (0.0–1.7) | 0.0 (0.0–0.3) | 0.0 (0.0–0.1) | <0.001 |
Alcohol drinking, n (%) | <0.001 | |||||
More than 12 drinks/yr | 3199 (28.4) | 864 (30.8) | 853 (30.2) | 778 (27.5) | 704 (24.9) | |
Less than 12 drinks/yr | 8083 (71.6) | 1940 (69.2) | 1972 (69.8) | 2053 (72.5) | 2118 (75.1) | |
Diabetes, n (%) | 0.002 | |||||
no | 8569 (76.0) | 2076 (74.0) | 2118 (75.0) | 2173 (76.8) | 2202 (78.0) | |
yes | 2713 (24.0) | 728 (26.0) | 707 (25.0) | 658 (23.2) | 620 (22.0) | |
Hypertension, n (%) | <0.001 | |||||
no | 5133 (45.5) | 1155 (41.2) | 1216 (43.0) | 1337 (47.2) | 1425 (50.5) | |
yes | 6149 (54.5) | 1649 (58.8) | 1609 (57.0) | 1494 (52.8) | 1397 (49.5) | |
eGFR, mL/min/1.73 m2, mean (SD) | 84.0 (19.6) | 82.2 (21.0) | 83.0 (20.1) | 84.5 (19.0) | 86.4 (18.2) | <0.001 |
Dietary energy intake, kcal/day, mean (SD) | 2023.7 (914.1) | 1431.4 (619.2) | 1864.0 (713.7) | 2139.3 (759.5) | 2655.9 (1041.1) | <0.001 |
Serum Klotho, pg/mL, median (25th–75th) | 800.6 (653.9–990.0) | 783.8 (631.2–977.4) | 800.5 (657.3–987.1) | 805.6 (659.2–991.9) | 810.9 (662.0–1002.6) | 0.002 |
Dietary Fiber (g/Day) | Percent Changes (%) and 95% CI | |||||
---|---|---|---|---|---|---|
Model 1 | p Value | Model 2 | p Value | Model 3 | p Value | |
Per IQR increases | 1.5 (0.6, 2.3) | 0.001 | 1.9 (1.0, 2.8) | <0.001 | 1.9 (0.8, 3.0) | <0.001 |
Quartile 1 | Ref | Ref | Ref | |||
Quartile 2 | 0.9 (−1.5, 3.3) | 0.489 | 1.3 (−1.1, 3.8) | 0.283 | 1.4 (−1.2, 4.1) | 0.311 |
Quartile 3 | 2.5 (0.1, 5.0) | 0.043 | 3.2 (0.8, 5.6) | 0.011 | 3.1 (0.5, 5.9) | 0.025 |
Quartile 4 | 3.5 (1.3, 5.7) | 0.002 | 4.6 (2.3, 6.9) | <0.001 | 4.7 (1.8, 7.6) | 0.002 |
p for trend | <0.001 | <0.001 | <0.001 |
Participants | Dietary Fiber Intake (g/Day) | Percent Changes (%) and 95% CI | p Value | p a for Interaction |
---|---|---|---|---|
Age subgroup | 0.074 | |||
Age < 60 years | Per IQR increases | 1.3 (−0.1, 2.7) | 0.077 | |
Quartile 1 | Ref | |||
Quartile 2 | 0.6 (−2.8, 4.2) | 0.728 | ||
Quartile 3 | 0.7 (−2.2, 3.7) | 0.634 | ||
Quartile 4 | 3.1 (−0.6, 7.0) | 0.107 | ||
p for trend | 0.077 | |||
Age ≥ 60 years | Per IQR increases | 2.8 (1.3, 4.4) | 0.001 | |
Quartile 1 | Ref | |||
Quartile 2 | 2.7 (−1.1, 6.6) | 0.175 | ||
Quartile 3 | 7.5 (2.5, 12.7) | 0.004 | ||
Quartile 4 | 7.0 (2.5, 11.7) | 0.003 | ||
p for trend | 0.002 | |||
BMI subgroup | 0.036 | |||
BMI < 25 kg/m2 | Per IQR increases | 3.1 (1.0, 5.3) | 0.005 | |
Quartile 1 | Ref | |||
Quartile 2 | −4.2 (−8.9, 0.7) | 0.098 | ||
Quartile 3 | 0.2 (−4.5, 5.1) | 0.929 | ||
Quartile 4 | 2.6 (−3.0, 8.4) | 0.372 | ||
p for trend | 0.069 | |||
BMI ≥ 25 kg/m2 | Per IQR increases | 1.4 (0.1, 2.6) | 0.036 | |
Quartile 1 | Ref | |||
Quartile 2 | 3.0 (0.0, 6.1) | 0.057 | ||
Quartile 3 | 3.9 (0.5, 7.4) | 0.027 | ||
Quartile 4 | 4.9 (1.5, 8.4) | 0.006 | ||
p for trend | 0.007 | |||
Sex subgroup | 0.252 | |||
male | Per IQR increases | 2.2 (1.0, 3.4) | 0.001 | |
Quartile 1 | Ref | |||
Quartile 2 | −0.7 (−4.8, 3.6) | 0.742 | ||
Quartile 3 | 3.4 (−0.6, 7.7) | 0.104 | ||
Quartile 4 | 4.7 (0.3, 9.3) | 0.039 | ||
p for trend | 0.003 | |||
female | Per IQR increases | 1.5 (−0.3, 3.3) | 0.106 | |
Quartile 1 | Ref | |||
Quartile 2 | 3.1 (0.2, 6.1) | 0.041 | ||
Quartile 3 | 3.1 (−0.1, 6.3) | 0.064 | ||
Quartile 4 | 4.6 (0.6, 8.7) | 0.026 | ||
p for trend | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Wu, M.; Wang, Y.; Xiang, L.; Luo, G.; Lin, Q.; Xiao, L. The Association between Dietary Fiber Intake and Serum Klotho Levels in Americans: A Cross-Sectional Study from the National Health and Nutrition Examination Survey. Nutrients 2023, 15, 3147. https://doi.org/10.3390/nu15143147
Liu S, Wu M, Wang Y, Xiang L, Luo G, Lin Q, Xiao L. The Association between Dietary Fiber Intake and Serum Klotho Levels in Americans: A Cross-Sectional Study from the National Health and Nutrition Examination Survey. Nutrients. 2023; 15(14):3147. https://doi.org/10.3390/nu15143147
Chicago/Turabian StyleLiu, Si, Mingyang Wu, Yan Wang, Lu Xiang, Gang Luo, Qian Lin, and Lin Xiao. 2023. "The Association between Dietary Fiber Intake and Serum Klotho Levels in Americans: A Cross-Sectional Study from the National Health and Nutrition Examination Survey" Nutrients 15, no. 14: 3147. https://doi.org/10.3390/nu15143147
APA StyleLiu, S., Wu, M., Wang, Y., Xiang, L., Luo, G., Lin, Q., & Xiao, L. (2023). The Association between Dietary Fiber Intake and Serum Klotho Levels in Americans: A Cross-Sectional Study from the National Health and Nutrition Examination Survey. Nutrients, 15(14), 3147. https://doi.org/10.3390/nu15143147