Genetics: A Starting Point for the Prevention and the Treatment of Obesity
Abstract
:1. Introduction
2. Monogenic Obesity: Single Gene, Strong Effect
3. Polygenic Obesity: Multiple Genes, Small Effects
4. Epigenetics: The Dress That Genes Wear
5. Genetics and Environment Therapies
6. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, A.; Danielson, K.M.; Benton, M.C.; Ziegler, O.; Shah, R.; Stubbs, R.S.; Das, S.; Macartney-Coxson, D. miRNA Signatures of Insulin Resistance in Obesity. Obesity (Silver Spring) 2017, 25, 1734–1744. [Google Scholar] [CrossRef] [Green Version]
- Gjermeni, E.; Kirstein, A.S.; Kolbig, F.; Kirchhof, M.; Bundalian, L.; Katzmann, J.L.; Laufs, U.; Bluher, M.; Garten, A.; Le Duc, D. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules 2021, 11, 1426. [Google Scholar] [CrossRef] [PubMed]
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 2021, 136, 104754. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Krzysztoszek, J.; Laudanska-Krzeminska, I.; Bronikowski, M. Assessment of epidemiological obesity among adults in EU countries. Ann. Agric. Environ. Med. 2019, 26, 341–349. [Google Scholar] [CrossRef]
- Marques, A.; Peralta, M.; Naia, A.; Loureiro, N.; de Matos, M.G. Prevalence of adult overweight and obesity in 20 European countries, 2014. Eur. J. Public. Health 2018, 28, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Gualdi-Russo, E.; Zaccagni, L.; Manzon, V.S.; Masotti, S.; Rinaldo, N.; Khyatti, M. Obesity and physical activity in children of immigrants. Eur. J. Public. Health 2014, 24 (Suppl. S1), 40–46. [Google Scholar] [CrossRef] [Green Version]
- IBDO-Foundation. Italian Obesity Barometer Report 2022, 4th ed.; 25/11/2022; IBDO-Foundation: Zaventem, Belgium, 2022; p. 213. [Google Scholar]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Shin, S.W. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 1491–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhupathiraju, S.N.; Hu, F.B. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ. Res. 2016, 118, 1723–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.M.; El-Serag, H.B. The epidemiology of obesity. Gastroenterol. Clin. N. Am. 2010, 39, 1–7. [Google Scholar] [CrossRef]
- Stein, C.J.; Colditz, G.A. The epidemic of obesity. J. Clin. Endocrinol. Metab. 2004, 89, 2522–2525. [Google Scholar] [CrossRef] [Green Version]
- Schwenk, R.W.; Vogel, H.; Schurmann, A. Genetic and epigenetic control of metabolic health. Mol. Metab. 2013, 2, 337–347. [Google Scholar] [CrossRef]
- Silventoinen, K.; Konttinen, H. Obesity and eating behavior from the perspective of twin and genetic research. Neurosci. Biobehav. Rev. 2020, 109, 150–165. [Google Scholar] [CrossRef] [Green Version]
- Tirthani, E.; Said, M.S.; Rehman, A. Genetics and Obesity; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Bouchard, C. Genetics of Obesity: What We Have Learned Over Decades of Research. Obesity (Silver Spring) 2021, 29, 802–820. [Google Scholar] [CrossRef] [PubMed]
- Brandkvist, M.; Bjorngaard, J.H.; Odegard, R.A.; Asvold, B.O.; Smith, G.D.; Brumpton, B.; Hveem, K.; Richardson, T.G.; Vie, G.A. Separating the genetics of childhood and adult obesity: A validation study of genetic scores for body mass index in adolescence and adulthood in the HUNT Study. Hum. Mol. Genet. 2021, 29, 3966–3973. [Google Scholar] [CrossRef]
- Masip, G.; Silventoinen, K.; Keski-Rahkonen, A.; Palviainen, T.; Sipila, P.N.; Kaprio, J.; Bogl, L.H. The genetic architecture of the association between eating behaviors and obesity: Combining genetic twin modeling and polygenic risk scores. Am. J. Clin. Nutr. 2020, 112, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Pigeyre, M.; Yazdi, F.T.; Kaur, Y.; Meyre, D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin. Sci. 2016, 130, 943–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahituv, N.; Kavaslar, N.; Schackwitz, W.; Ustaszewska, A.; Martin, J.; Hebert, S.; Doelle, H.; Ersoy, B.; Kryukov, G.; Schmidt, S.; et al. Medical sequencing at the extremes of human body mass. Am. J. Hum. Genet. 2007, 80, 779–791. [Google Scholar] [CrossRef] [Green Version]
- Nordang, G.B.N.; Busk, O.L.; Tveten, K.; Hanevik, H.I.; Fell, A.K.M.; Hjelmesaeth, J.; Holla, O.L.; Hertel, J.K. Next-generation sequencing of the monogenic obesity genes LEP, LEPR, MC4R, PCSK1 and POMC in a Norwegian cohort of patients with morbid obesity and normal weight controls. Mol. Genet. Metab. 2017, 121, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Ranadive, S.A.; Vaisse, C. Lessons from extreme human obesity: Monogenic disorders. Endocrinol. Metab. Clin. N. Am. 2008, 37, 733–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkhenini, H.F.; New, J.P.; Syed, A.A. Five-year outcome of bariatric surgery in a patient with melanocortin-4 receptor mutation. Clin. Obes. 2014, 4, 121–124. [Google Scholar] [CrossRef]
- Lee, M.; Kim, A.; Conwell, I.M.; Hruby, V.; Mayorov, A.; Cai, M.; Wardlaw, S.L. Effects of selective modulation of the central melanocortin-3-receptor on food intake and hypothalamic POMC expression. Peptides 2008, 29, 440–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botha, R.; Kumar, S.S.; Grimsey, N.L.; Mountjoy, K.G. A unique MC4R signaling profile for obesity-associated constitutively active variants. J. Mol. Endocrinol. 2023, 71, e230008. [Google Scholar] [CrossRef]
- Namjou, B.; Stanaway, I.B.; Lingren, T.; Mentch, F.D.; Benoit, B.; Dikilitas, O.; Niu, X.; Shang, N.; Shoemaker, A.H.; Carey, D.J.; et al. Evaluation of the MC4R gene across eMERGE network identifies many unreported obesity-associated variants. Int. J. Obes. 2021, 45, 155–169. [Google Scholar] [CrossRef]
- Montague, C.T.; Farooqi, I.S.; Whitehead, J.P.; Soos, M.A.; Rau, H.; Wareham, N.J.; Sewter, C.P.; Digby, J.E.; Mohammed, S.N.; Hurst, J.A.; et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997, 387, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Spiegelman, B.M.; Flier, J.S. Obesity and the regulation of energy balance. Cell 2001, 104, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Halaas, J.L.; Boozer, C.; Blair-West, J.; Fidahusein, N.; Denton, D.A.; Friedman, J.M. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl. Acad. Sci. USA 1997, 94, 8878–8883. [Google Scholar] [CrossRef] [Green Version]
- Flier, J.S. Starvation in the Midst of Plenty: Reflections on the History and Biology of Insulin and Leptin. Endocr. Rev. 2019, 40, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Myers, M.G., Jr.; Leibel, R.L.; Seeley, R.J.; Schwartz, M.W. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol. Metab. 2010, 21, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, I.; Fricker, L.D. Obesity, POMC, and POMC-processing Enzymes: Surprising Results From Animal Models. Endocrinology 2021, 162, bqab155. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, L.E.; Turnbull, A.V.; White, A. Pro-opiomelanocortin processing in the hypothalamus: Impact on melanocortin signalling and obesity. J. Endocrinol. 2002, 172, 411–421. [Google Scholar] [CrossRef]
- Krude, H.; Biebermann, H.; Luck, W.; Horn, R.; Brabant, G.; Gruters, A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 1998, 19, 155–157. [Google Scholar] [CrossRef]
- Yaswen, L.; Diehl, N.; Brennan, M.B.; Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med. 1999, 5, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Kuhnen, P.; Clement, K.; Wiegand, S.; Blankenstein, O.; Gottesdiener, K.; Martini, L.L.; Mai, K.; Blume-Peytavi, U.; Gruters, A.; Krude, H. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist. N. Engl. J. Med. 2016, 375, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Benjannet, S.; Rondeau, N.; Day, R.; Chretien, M.; Seidah, N.G. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc. Natl. Acad. Sci. USA 1991, 88, 3564–3568. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, I.S.; Volders, K.; Stanhope, R.; Heuschkel, R.; White, A.; Lank, E.; Keogh, J.; O’Rahilly, S.; Creemers, J.W. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J. Clin. Endocrinol. Metab. 2007, 92, 3369–3373. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.S.; Creemers, J.W.; Ohagi, S.; Raffin-Sanson, M.L.; Sanders, L.; Montague, C.T.; Hutton, J.C.; O’Rahilly, S. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 1997, 16, 303–306. [Google Scholar] [CrossRef]
- Bandsma, R.H.; Sokollik, C.; Chami, R.; Cutz, E.; Brubaker, P.L.; Hamilton, J.K.; Perlman, K.; Zlotkin, S.; Sigalet, D.L.; Sherman, P.M.; et al. From diarrhea to obesity in prohormone convertase 1/3 deficiency: Age-dependent clinical, pathologic, and enteroendocrine characteristics. J. Clin. Gastroenterol. 2013, 47, 834–843. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.G.; Lindberg, I.; Solorzano-Vargas, R.S.; Wang, J.; Avitzur, Y.; Bandsma, R.; Sokollik, C.; Lawrence, S.; Pickett, L.A.; Chen, Z.; et al. Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort. Gastroenterology 2013, 145, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Vezzani, A.; Sperk, G.; Colmers, W.F. Neuropeptide Y: Emerging evidence for a functional role in seizure modulation. Trends Neurosci. 1999, 22, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.; Nawaz, A.; Evans, M. Drug Therapy in Obesity: A Review of Current and Emerging Treatments. Diabetes Ther. 2020, 11, 1199–1216. [Google Scholar] [CrossRef] [Green Version]
- Loos, R.J.; Bouchard, C. FTO: The first gene contributing to common forms of human obesity. Obes. Rev. 2008, 9, 246–250. [Google Scholar] [CrossRef]
- Duicu, C.; Marginean, C.O.; Voidazan, S.; Tripon, F.; Banescu, C. FTO rs 9939609 SNP Is Associated With Adiponectin and Leptin Levels and the Risk of Obesity in a Cohort of Romanian Children Population. Medicine 2016, 95, e3709. [Google Scholar] [CrossRef]
- Molina-Luque, R.; Ulloa, N.; Romero-Saldana, M.; Zilic, M.; Gleisner, A.; Lanuza, F.; Molina-Recio, G. Association between the FTO SNP rs9939609 and Metabolic Syndrome in Chilean Children. Nutrients 2021, 13, 2014. [Google Scholar] [CrossRef]
- Prakash, J.; Srivastava, N.; Awasthi, S.; Agarwal, C.G.; Natu, S.M.; Rajpal, N.; Mittal, B. Association of FTO rs17817449 SNP with obesity and associated physiological parameters in a north Indian population. Ann. Hum. Biol. 2011, 38, 760–763. [Google Scholar] [CrossRef]
- Fischer, J.; Koch, L.; Emmerling, C.; Vierkotten, J.; Peters, T.; Bruning, J.C.; Ruther, U. Inactivation of the Fto gene protects from obesity. Nature 2009, 458, 894–898. [Google Scholar] [CrossRef]
- Karra, E.; O’Daly, O.G.; Choudhury, A.I.; Yousseif, A.; Millership, S.; Neary, M.T.; Scott, W.R.; Chandarana, K.; Manning, S.; Hess, M.E.; et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Investig. 2013, 123, 3539–3551. [Google Scholar] [CrossRef] [Green Version]
- Claussnitzer, M.; Dankel, S.N.; Kim, K.H.; Quon, G.; Meuleman, W.; Haugen, C.; Glunk, V.; Sousa, I.S.; Beaudry, J.L.; Puviindran, V.; et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015, 373, 895–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragvin, A.; Moro, E.; Fredman, D.; Navratilova, P.; Drivenes, Ø.; Engström, P.G.; Alonso, M.E.; de la Calle Mustienes, E.; Gómez Skarmeta, J.L.; Tavares, M.J.; et al. Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. Proc. Natl. Acad. Sci. USA 2010, 107, 775–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobreira, D.R.; Joslin, A.C.; Zhang, Q.; Williamson, I.; Hansen, G.T.; Farris, K.M.; Sakabe, N.J.; Sinnott-Armstrong, N.; Bozek, G.; Jensen-Cody, S.O.; et al. Extensive pleiotropism and allelic heterogeneity mediate metabolic effects of IRX3 and IRX5. Science 2021, 372, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, C.S.; Varela, M.C.; de Castro, C.I.E.; Otto, P.A.; Perez, A.B.A.; Lourenco, C.M.; Kim, C.A.; Bertola, D.R.; Kok, F.; Garcia-Alonso, L.; et al. Chromosomal microarray analysis in the genetic evaluation of 279 patients with syndromic obesity. Mol. Cytogenet. 2018, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Butler, M.G.; Miller, J.L.; Forster, J.L. Prader-Willi Syndrome-Clinical Genetics, Diagnosis and Treatment Approaches: An Update. Curr. Pediatr. Rev. 2019, 15, 207–244. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Faivre, L.; Cormier-Daire, V.; Lapierre, J.M.; Colleaux, L.; Jacquemont, S.; Genevieve, D.; Saunier, P.; Munnich, A.; Turleau, C.; Romana, S.; et al. Deletion of the SIM1 gene (6q16.2) in a patient with a Prader-Willi-like phenotype. J. Med. Genet. 2002, 39, 594–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz, H.A. Oxytocin Therapy May Improve Eating Behaviors in Children with Single-Minded-1 Gene Mutation. Turk. Arch. Pediatr. 2022, 57, 360–361. [Google Scholar] [CrossRef]
- Salcedo-Arellano, M.J.; Hagerman, R.J.; Martinez-Cerdeno, V. Fragile X syndrome: Clinical presentation, pathology and treatment. Gac. Med. Mex. 2020, 156, 60–66. [Google Scholar] [CrossRef]
- Dy, A.B.C.; Tassone, F.; Eldeeb, M.; Salcedo-Arellano, M.J.; Tartaglia, N.; Hagerman, R. Metformin as targeted treatment in fragile X syndrome. Clin. Genet. 2018, 93, 216–222. [Google Scholar] [CrossRef]
- Monyak, R.E.; Emerson, D.; Schoenfeld, B.P.; Zheng, X.; Chambers, D.B.; Rosenfelt, C.; Langer, S.; Hinchey, P.; Choi, C.H.; McDonald, T.V.; et al. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol. Psychiatry 2017, 22, 1140–1148. [Google Scholar] [CrossRef] [Green Version]
- Han, J.C.; Liu, Q.R.; Jones, M.; Levinn, R.L.; Menzie, C.M.; Jefferson-George, K.S.; Adler-Wailes, D.C.; Sanford, E.L.; Lacbawan, F.L.; Uhl, G.R.; et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N. Engl. J. Med. 2008, 359, 918–927. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Kumar, P.; Mahalingam, K. Molecular genetics of human obesity: A comprehensive review. Comptes Rendus Biol. 2017, 340, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Hinney, A.; Vogel, C.I.; Hebebrand, J. From monogenic to polygenic obesity: Recent advances. Eur. Child. Adolesc. Psychiatry 2010, 19, 297–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loos, R.J.F.; Yeo, G.S.H. The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Yu, X.; Yang, L.; Liu, X.; Gao, B.; Huang, B.; Dou, X.; Liu, J.; Zou, Z.; Cui, X.L.; et al. FTO mediates LINE1 m(6)A demethylation and chromatin regulation in mESCs and mouse development. Science 2022, 376, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Boender, A.J.; van Rozen, A.J.; Adan, R.A. Nutritional state affects the expression of the obesity-associated genes Etv5, Faim2, Fto, and Negr1. Obesity (Silver Spring) 2012, 20, 2420–2425. [Google Scholar] [CrossRef]
- Shungin, D.; Winkler, T.W.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Magi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.; Justice, A.E.; et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Kilpelainen, T.O.; Zillikens, M.C.; Stancakova, A.; Finucane, F.M.; Ried, J.S.; Langenberg, C.; Zhang, W.; Beckmann, J.S.; Luan, J.; Vandenput, L.; et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat. Genet. 2011, 43, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Herbert, A.; Gerry, N.P.; McQueen, M.B.; Heid, I.M.; Pfeufer, A.; Illig, T.; Wichmann, H.E.; Meitinger, T.; Hunter, D.; Hu, F.B.; et al. A common genetic variant is associated with adult and childhood obesity. Science 2006, 312, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, M.; Okada, Y.; Kanai, M.; Takahashi, A.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 2017, 49, 1458–1467. [Google Scholar] [CrossRef]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef]
- Loos, R.J.F.; Janssens, A. Predicting Polygenic Obesity Using Genetic Information. Cell. Metab. 2017, 25, 535–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashti, H.S.; Miranda, N.; Cade, B.E.; Huang, T.; Redline, S.; Karlson, E.W.; Saxena, R. Interaction of obesity polygenic score with lifestyle risk factors in an electronic health record biobank. BMC Med. 2022, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Lewin, B. The mystique of epigenetics. Cell 1998, 93, 301–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Morris, J.R. Genes, genetics, and epigenetics: A correspondence. Science 2001, 293, 1103–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, C.; Ronn, T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell. Metab. 2019, 29, 1028–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Su, S.; Barnes, V.A.; De Miguel, C.; Pollock, J.; Ownby, D.; Shi, H.; Zhu, H.; Snieder, H.; Wang, X. A genome-wide methylation study on obesity: Differential variability and differential methylation. Epigenetics 2013, 8, 522–533. [Google Scholar] [CrossRef] [Green Version]
- Aslibekyan, S.; Demerath, E.W.; Mendelson, M.; Zhi, D.; Guan, W.; Liang, L.; Sha, J.; Pankow, J.S.; Liu, C.; Irvin, M.R.; et al. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring) 2015, 23, 1493–1501. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Alonso, M.D.C.; Kretschmer, A.; Wilson, R.; Pfeiffer, L.; Karhunen, V.; Seppala, I.; Zhang, W.; Mittelstrass, K.; Wahl, S.; Matias-Garcia, P.R.; et al. DNA methylation and lipid metabolism: An EWAS of 226 metabolic measures. Clin. Epigenetics 2021, 13, 7. [Google Scholar] [CrossRef]
- Uche, U.I.; Suzuki, S.; Fulda, K.G.; Zhou, Z. Environment-wide association study on childhood obesity in the U.S. Environ. Res. 2020, 191, 110109. [Google Scholar] [CrossRef]
- Wahl, S.; Drong, A.; Lehne, B.; Loh, M.; Scott, W.R.; Kunze, S.; Tsai, P.C.; Ried, J.S.; Zhang, W.; Yang, Y.; et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 2017, 541, 81–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fradin, D.; Boelle, P.Y.; Belot, M.P.; Lachaux, F.; Tost, J.; Besse, C.; Deleuze, J.F.; De Filippo, G.; Bougneres, P. Genome-Wide Methylation Analysis Identifies Specific Epigenetic Marks In Severely Obese Children. Sci. Rep. 2017, 7, 46311. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.C.; Garratt, E.S.; Pan, H.; Wu, Y.; Davis, E.A.; Barton, S.J.; Burdge, G.C.; Godfrey, K.M.; Holbrook, J.D.; Lillycrop, K.A. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood. Epigenetics 2015, 10, 995–1005. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Twinn, D.S.; Hjort, L.; Novakovic, B.; Ozanne, S.E.; Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 2019, 62, 1789–1801. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Pichard, C. The Dutch Famine of 1944-1945: A pathophysiological model of long-term consequences of wasting disease. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 388–394. [Google Scholar] [CrossRef]
- Li, C.; Lumey, L.H. Exposure to the Chinese famine of 1959-61 in early life and long-term health conditions: A systematic review and meta-analysis. Int. J. Epidemiol. 2017, 46, 1157–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobi, E.W.; Lumey, L.H.; Talens, R.P.; Kremer, D.; Putter, H.; Stein, A.D.; Slagboom, P.E.; Heijmans, B.T. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 2009, 18, 4046–4053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, E.; Groom, A.; Lawlor, D.A.; Relton, C.L. DNA methylation signatures in cord blood associated with maternal gestational weight gain: Results from the ALSPAC cohort. BMC Res. Notes 2014, 7, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, G.C.; Lawlor, D.A.; Richmond, R.C.; Fraser, A.; Simpkin, A.; Suderman, M.; Shihab, H.A.; Lyttleton, O.; McArdle, W.; Ring, S.M.; et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: Findings from the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 2015, 44, 1288–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrier, J.F.; Derghal, A.; Mounien, L. MicroRNAs in Obesity and Related Metabolic Disorders. Cells 2019, 8, 859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tung, L. Same Genes, Different Tastes. Available online: https://whyy.org/segments/same-genes-different-tastes/ (accessed on 9 May 2023).
- Doo, M.; Kim, Y. Obesity: Interactions of genome and nutrients intake. Prev. Nutr. Food Sci. 2015, 20, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Garaulet, M.; Vera, B.; Bonnet-Rubio, G.; Gomez-Abellan, P.; Lee, Y.C.; Ordovas, J.M. Lunch eating predicts weight-loss effectiveness in carriers of the common allele at PERILIPIN1: The ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study. Am. J. Clin. Nutr. 2016, 104, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Q.; Bray, G.A.; Smith, S.R.; Hu, F.B.; Sacks, F.M.; Qi, L. Insulin receptor substrate 1 gene variation modifies insulin resistance response to weight-loss diets in a 2-year randomized trial: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation 2011, 124, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Qi, Q.; Liang, J.; Bray, G.A.; Hu, F.B.; Sacks, F.M.; Qi, L. Genetic determinant for amino acid metabolites and changes in body weight and insulin resistance in response to weight-loss diets: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation 2013, 127, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
- Heianza, Y.; Ma, W.; Huang, T.; Wang, T.; Zheng, Y.; Smith, S.R.; Bray, G.A.; Sacks, F.M.; Qi, L. Macronutrient Intake-Associated FGF21 Genotype Modifies Effects of Weight-Loss Diets on 2-Year Changes of Central Adiposity and Body Composition: The POUNDS Lost Trial. Diabetes Care 2016, 39, 1909–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heianza, Y.; Qi, L. Gene-Diet Interaction and Precision Nutrition in Obesity. Int. J. Mol. Sci. 2017, 18, 787. [Google Scholar] [CrossRef] [Green Version]
- Food as medicine: Translating the evidence. Nat. Med. 2023, 29, 753–754. [CrossRef]
- van Dijk, S.J.; Tellam, R.L.; Morrison, J.L.; Muhlhausler, B.S.; Molloy, P.L. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin. Epigenetics 2015, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Scheimann, A.O.; Butler, M.G.; Gourash, L.; Cuffari, C.; Klish, W. Critical analysis of bariatric procedures in Prader-Willi syndrome. J. Pediatr. Gastroenterol. Nutr. 2008, 46, 80–83. [Google Scholar] [CrossRef]
- Le Beyec, J.; Cugnet-Anceau, C.; Pepin, D.; Alili, R.; Cotillard, A.; Lacorte, J.M.; Basdevant, A.; Laville, M.; Clement, K. Homozygous leptin receptor mutation due to uniparental disomy of chromosome 1: Response to bariatric surgery. J. Clin. Endocrinol. Metab. 2013, 98, E397–E402. [Google Scholar] [CrossRef] [Green Version]
- Cooiman, M.I.; Kleinendorst, L.; Aarts, E.O.; Janssen, I.M.C.; van Amstel, H.K.P.; Blakemore, A.I.; Hazebroek, E.J.; Meijers-Heijboer, H.J.; van der Zwaag, B.; Berends, F.J.; et al. Genetic Obesity and Bariatric Surgery Outcome in 1014 Patients with Morbid Obesity. Obes. Surg. 2020, 30, 470–477. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Tu, Y.; Wang, C.; Di, J.; Yu, H.; Zhang, P.; Bao, Y.; Jia, W.; Yang, J.; et al. Monogenic Obesity Mutations Lead to Less Weight Loss After Bariatric Surgery: A 6-Year Follow-Up Study. Obes. Surg. 2019, 29, 1169–1173. [Google Scholar] [CrossRef]
- Valette, M.; Poitou, C.; Le Beyec, J.; Bouillot, J.L.; Clement, K.; Czernichow, S. Melanocortin-4 receptor mutations and polymorphisms do not affect weight loss after bariatric surgery. PLoS ONE 2012, 7, e48221. [Google Scholar] [CrossRef] [Green Version]
- Choquet, H.; Meyre, D. Genetics of Obesity: What have we Learned? Curr. Genom. 2011, 12, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Neel, J.V. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 1962, 14, 353–362. [Google Scholar]
- Weiss, K.M.; Ward, R.H.; James, V.; Neel, M.D. Ph.D. (March 22, 1915-January 31, 2000): Founder effect. Am. J. Hum. Genet. 2000, 66, 755–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speakman, J.R. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: The ’drifty gene’ hypothesis. Int. J. Obes. 2008, 32, 1611–1617. [Google Scholar] [CrossRef] [Green Version]
- Minster, R.L.; Hawley, N.L.; Su, C.T.; Sun, G.; Kershaw, E.E.; Cheng, H.; Buhule, O.D.; Lin, J.; Reupena, M.S.; Viali, S.; et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat. Genet. 2016, 48, 1049–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deka, R.; Mc Garvey, S.T.; Ferrell, R.E.; Kamboh, M.I.; Yu, L.M.; Aston, C.E.; Jin, L.; Chakraborty, R. Genetic characterization of American and Western Samoans. Hum. Biol. 1994, 66, 805–822. [Google Scholar] [PubMed]
- Aberg, K.; Dai, F.; Sun, G.; Keighley, E.D.; Indugula, S.R.; Roberts, S.T.; Zhang, Q.; Smelser, D.; Viali, S.; Tuitele, J.; et al. Susceptibility loci for adiposity phenotypes on 8p, 9p, and 16q in American Samoa and Samoa. Obesity (Silver Spring) 2009, 17, 518–524. [Google Scholar] [CrossRef]
- Southam, L.; Soranzo, N.; Montgomery, S.B.; Frayling, T.M.; McCarthy, M.I.; Barroso, I.; Zeggini, E. Is the thrifty genotype hypothesis supported by evidence based on confirmed type 2 diabetes- and obesity-susceptibility variants? Diabetologia 2009, 52, 1846–1851. [Google Scholar] [CrossRef] [Green Version]
- Akbari, P.; Gilani, A.; Sosina, O.; Kosmicki, J.A.; Khrimian, L.; Fang, Y.Y.; Persaud, T.; Garcia, V.; Sun, D.; Li, A.; et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 2021, 373, eabf8683. [Google Scholar] [CrossRef] [PubMed]
- Christmas, M.J.; Kaplow, I.M.; Genereux, D.P.; Dong, M.X.; Hughes, G.M.; Li, X.; Sullivan, P.F.; Hindle, A.G.; Andrews, G.; Armstrong, J.C.; et al. Evolutionary constraint and innovation across hundreds of placental mammals. Science 2023, 380, eabn3943. [Google Scholar] [CrossRef] [PubMed]
Gene Name and HGNC Approved Gene Symbol | OMIM | Biological Function |
---|---|---|
MC4R (MELANOCORTI 4 RECEPTOR) | 155541 | Regulation of energy homeostasis |
LEP (LEPTIN) | 164160 | Regulation of fat metabolism and food intake; decrease in appetite |
LEPR (LEPTIN RECEPTOR) | 601007 | Receptor for Leptin Involved in regulation of fat metabolism |
POMC (PROOPIOMELANOCORTIN) | 176830 | Produces peptide that regulates body weight |
PCSK1 (PROPROTEIN CONVERTASE-1) | 162150 | Involved in processing of prohormones (es. proopiomelanocortin) and other regulators of energy metabolism |
NPY (NEUROPEPTIDE Y) | 162640 | Regulation of neuronal activity stimulates food intake |
FTO (FAT MASS AND OBESITY ASSOCIATION GENE) | 610966 | Regulation of fat mass, adipogenesis, and body weight |
SIM1 (SIM bHLH TRANSCRIPTION FACTOR 1) | 603128 | Pleiotropic effects during embryogenesis and in the adult; involved in neurogenesis |
FMR1 (FRAGILE X MESSENGER RIBONUCLEOPROTEIN 1) | 309550 | Neuronal development and synaptic plasticity |
BDNF (BRAIN-DERIVED NEUROTROPHIC FACTOR) | 113505 | Promotes the survival and differentiation of selected neuronal populations. Regulation of synaptic transmission and plasticity |
Gene Name and HGNC Approved Gene Symbol | OMIM | Biological Function |
---|---|---|
NEGR1 (NEURONAL GROWTH REGULATOR 1) | 613173 | Role in neural cell recognition and neurite outgrowth |
IRS1 (INSULIN RECEPTOR SUBSTRATE 1) | 147545 | Mediates cellular control by insulin |
INSIG2 (INSULIN-INDUCED GENE 2) | 608660 | Mediates feedback control of cholesterol synthesis |
ABCC5 (ATP-BINDING CASSETTE, SUBFAMILY C, MEMBER 5) | 605251 | Transport of endogenous metabolites ejects physiological compounds, and xenobiotics from cells |
ARID1B (AT-RICH INTERACTION DOMAIN-CONTAINING PROTEIN 1B) | 614556 | Reshapes chromatin by which transcription of selected genes is activated or repressed |
CD247 (CD247 ANTIGEN) | 186780 | Role in adaptive immune response as a part of TCR-CD3 complex present on T-lymphocyte cell surface |
CHD3 (CHROMODOMAIN HELICASE DNA-BINDING PROTEIN 3) | 602120 | ATP-dependent helicase; it binds and distorts nucleosomal DNA |
CNTN1 (CONTACTIN 1) | 600016 | Involved in nervous system development |
CPNE6 (COPINE VI) | 605688 | Plays a role in calcium-mediated intracellular processes |
EEFSEC (EUKARYOTIC ELONGATION FACTOR, SELENOCYSTEINE-tRNA-SPECIFIC) | 607695 | Necessary for the incorporation of selenocysteine into proteins |
FAM53B (FAMILY WITH SEQUENCE SIMILARITY 53, MEMBER B) | 617289 | Involved in positive regulation of canonical Wnt signaling pathway |
GABBR1 (GAMMA-AMINOBUTYRIC ACID B RECEPTOR 1) | 603540 | Regulates proliferation and function of hematopoietic stem and progenitor cells |
IGFBP6 (INSULIN-LIKE GROWTH FACTOR-BINDING PROTEIN 6) | 146735 | Autocrine growth inhibitor |
KCNQ1 (POTASSIUM CHANNEL, VOLTAGE-GATED, KQT-LIKE SUBFAMILY, MEMBER 1) | 607542 | Encode for potassium channel |
MAD1L1 (MITOTIC ARREST DEFICIENT 1 LIKE 1) | 602686 | Component of the spindle-assembly checkpoint |
RPS6KA2 (RIBOSOMAL PROTEIN S6 KINASE A2) | 601685 | Regulates translation, mediates cellular proliferation, survival and differentiation |
SNO2- SKIL (ONCOGENE SNO) | 165340 | May have regulatory role in cell division or differentiation in response to extracellular signals |
SH2B2 (SH2B ADAPTOR PROTEIN 2) | 605300 | Adapter protein; involved in multiple signaling pathways |
SLC43A1 (SOLUTE CARRIER FAMILY 43 MEMBER 1) | 603733 | Transport activity |
SLCO3A1 (SOLUTE CARRIER ORGANIC ANION TRANSPORTER FAMILY, MEMBER 3A1) | 612435 | Transport activity |
STK40 (SERINE/THREONINE PROTEIN KINASE 40) | 609437 | Inhibited activation of NFKB and p53 |
SYNJ2 (SYNAPTOJANIN 2) | 609410 | Encodes for Inositol 5-phosphatase which may be involved in distinct membrane trafficking and signal transduction pathways |
GNAS-AS1 (GNAS COMPLEX LOCUS, ANTISENSE TRANSCRIPT 1) | 610540 | Produces a paternally imprinted antisense RNA transcript that helps regulate the GNAS complex locus |
MEG3 (MATERNALLY EXPRESSED GENE 3) | 605636 | Inhibits tumor cell proliferation in vitro; interacts with the tumor suppressor p53; regulates p53 target gene expression |
IL10 (INTERLEUKIN 10) | 124092 | Encodes for major immune regulatory cytokine. |
MMP7 (MATRIX METALLOPROTEINASE 7) | 178990 | Degrades casein, gelatins of types I, III, IV, and V, and fibronectin. Activates procollagenase |
KCNK4 (POTASSIUM CHANNEL, SUBFAMILY K, MEMBER 4) | 605720 | Encodes a member of the TWIK-related arachidonic acid-stimulated two pore potassium channel subfamily |
TRPM5 (TRANSIENT RECEPTOR POTENTIAL CATION C) | 604600 | Plays a central role in taste transduction |
NFKB1 (NUCLEAR FACTOR KAPPA-B, SUBUNIT 1) | 164011 | Regulates TLR-induced pro-inflammatory gene expression in activated macrophages; role in innate immune response |
PLIN1 (PERILIPIN 1) | 170290 | Modulator of adipocyte lipid metabolism |
PPM1K (PROTEIN PHOSPHATASE, MAGNESIUM/MANGANESE-DEPENDENT, 1K) | 611065 | Essential for cellular survival and development |
FGF21 (FIBROBLAST GROWTH FACTOR 21) | 609436 | Regulates systemic glucose homeostasis and insulin sensitivity |
HOXB1 (HOMEOBOX B1) | 142968 | Transcription factor for developmental regulatory system |
PRKCZ (PROTEIN KINASE C, ZETA FORM) | 176982 | Involved in a variety of cellular processes such as proliferation, differentiation, and secretion |
SLC38A10 (SOLUTE CARRIER FAMILY 38 (AMINO ACID TRANSPORTER, MEMBER 10) | 616525 | Transporter activity |
SECTM1 (SECRETED AND TRANSMEMBRANE 1) | 602602 | Encodes a transmembrane and secreted protein; thought to be involved in hematopoietic and/or immune system processes |
NDUFC2 (NADH-UBIQUINONE OXIDOREDUCTASE SUBUNIT C2) | 603845 | Encodes an accessory subunit of mitochondrial respiratory complex I |
THADA (THADA ARMADILLO REPEAT-CONTAINING PROTEIN) | 611800 | Encoded protein is likely involved in the death receptor pathway and apoptosis |
MEF2A (MYOCYTE ENHANCER FACTOR 2A) | 600660 | Activation of numerous growth factor- and stress-induced genes; control of cell growth, survival and apoptosis |
PRKAA2 (ROTEIN KINASE, AMP-ACTIVATED, CATALYTIC, ALPHA-2) | 600497 | Regulation of cellular energy metabolism |
RYR1 (RYANODINE RECEPTOR 1) | 180901 | Codifies for a calcium release channel |
TUBA3C (TUBULIN, ALPHA-3C) | 602528 | Constitution of microtubules |
CREBRF (CREB3 RECRUITMENT FACTOR) | 617109 | Regulates cell proliferation |
TCF7L2 (TRANSCRIPTION FACTOR 7-LIKE 2) | 602228 | Participates in the Wnt signaling pathway |
GPR75 (G PROTEIN-COUPLED RECEPTOR 75) | 606704 | May play a role in neuron survival May regulate insulin secretion by pancreatic islet cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novelli, G.; Cassadonte, C.; Sbraccia, P.; Biancolella, M. Genetics: A Starting Point for the Prevention and the Treatment of Obesity. Nutrients 2023, 15, 2782. https://doi.org/10.3390/nu15122782
Novelli G, Cassadonte C, Sbraccia P, Biancolella M. Genetics: A Starting Point for the Prevention and the Treatment of Obesity. Nutrients. 2023; 15(12):2782. https://doi.org/10.3390/nu15122782
Chicago/Turabian StyleNovelli, Giuseppe, Carmen Cassadonte, Paolo Sbraccia, and Michela Biancolella. 2023. "Genetics: A Starting Point for the Prevention and the Treatment of Obesity" Nutrients 15, no. 12: 2782. https://doi.org/10.3390/nu15122782
APA StyleNovelli, G., Cassadonte, C., Sbraccia, P., & Biancolella, M. (2023). Genetics: A Starting Point for the Prevention and the Treatment of Obesity. Nutrients, 15(12), 2782. https://doi.org/10.3390/nu15122782