Iron Deficiency and Iron Deficiency Anemia in Women with and without Obesity: NHANES 2001–2006
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Participants, and Setting
2.2. Laboratory Methods
2.3. Statistical Analyses
3. Results
3.1. Characteristics of the Study Population
3.2. Iron Biomarkers by Body Mass Index
3.3. ID, Anemia, and IDA Prevalence by Body Mass Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Obesity and Overweight. Fact Sheet. 16 February 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 31 August 2019).
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [PubMed]
- Akinbami, L.J.; Chen, T.C.; Davy, O.; Ogden, C.L.; Fink, S.; Clark, J.; Riddles, M.K.; Mohadjer, L.K. National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes. In National Health Statistics Reports; National Center for Health: Hyattsville, MD, USA, 2021. [Google Scholar] [CrossRef]
- Welsh, P.; Polisecki, E.; Robertson, M.; Jahn, S.; Buckley, B.M.; de Craen, A.J.; Ford, I.; Jukema, J.W.; Macfarlane, P.W.; Packard, C.J.; et al. Unraveling the directional link between adiposity and inflammation: A bidirectional Mendelian randomization approach. J. Clin. Endocrinol. Metab. 2010, 95, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Timpson, N.J.; Nordestgaard, B.G.; Harbord, R.M.; Zacho, J.; Frayling, T.M.; Tybjaerg-Hansen, A.; Smith, G.D. C-reactive protein levels and body mass index: Elucidating direction of causation through reciprocal Mendelian randomization. Int. J. Obes. 2011, 35, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory Mechanisms in Obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef]
- Herter-Aeberli, I.; Thankachan, P.; Bose, B.; Kurpad, A.V. Increased risk of iron deficiency and reduced iron absorption but no difference in zinc, vitamin A or B-vitamin status in obese women in India. Eur. J. Nutr. 2016, 55, 2411–2421. [Google Scholar] [CrossRef]
- Cepeda-Lopez, A.C.; Melse-Boonstra, A.; Zimmermann, M.B.; Herter-Aeberli, I. In overweight and obese women, dietary iron absorption is reduced and the enhancement of iron absorption by ascorbic acid is one-half that in normal-weight women. Am. J. Clin. Nutr. 2015, 102, 1389–1397. [Google Scholar] [CrossRef]
- Stoffel, N.U.; El-Mallah, C.; Herter-Aeberli, I.; Bissani, N.; Wehbe, N.; Obeid, O.; Zimmermann, M.B. The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women. Int. J. Obes. 2020, 44, 1291–1300. [Google Scholar] [CrossRef]
- Cepeda-Lopez, A.C.; Aeberli, I.; Zimmermann, M.B. Does obesity increase risk for iron deficiency? A review of the literature and the potential mechanisms. Int. J. Vitam. Nutr. Res. 2010, 80, 263–270. [Google Scholar] [CrossRef]
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Global Health 2013, 1, e16–e25. [Google Scholar] [CrossRef]
- Stevens, G.A.; Paciorek, C.J.; Flores-Urrutia, M.C.; Borghi, E.; Namaste, S.; Wirth, J.P.; Suchdev, P.S.; Ezzati, M.; Rohner, F.; Flaxman, S.R.; et al. National, regional, and global estimates of anaemia by severity in women and children for 2000–19: A pooled analysis of population-representative data. Lancet Global Health 2022, 10, e627–e639. [Google Scholar] [CrossRef]
- Georgieff, M.K. Long-term brain and behavioral consequences of early iron deficiency. Nutr. Rev. 2011, 69 (Suppl. S1), S43–S48. [Google Scholar] [CrossRef]
- Lozoff, B.; Smith, J.B.; Kaciroti, N.; Clark, K.M.; Guevara, S.; Jimenez, E. Functional significance of early-life iron deficiency: Outcomes at 25 years. J. Pediatr. 2013, 163, 1260–1266. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Jasrasaria, R.; Naghavi, M.; Wulf, S.K.; Johns, N.; Lozano, R.; Regan, M.; Weatherall, D.; Chou, D.P.; Eisele, T.P.; et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014, 123, 615–624. [Google Scholar] [CrossRef]
- Gupta, P.M.; Hamner, H.C.; Suchdev, P.S.; Flores-Ayala, R.; Mei, Z. Iron status of toddlers, nonpregnant females, and pregnant females in the United States. Am. J. Clin. Nutr. 2017, 106 (Suppl. S6), 1640S–1646S. [Google Scholar] [CrossRef]
- Miller, E.M. Iron status and reproduction in US women: National Health and Nutrition Examination Survey, 1999–2006. PLoS ONE 2014, 9, e112216. [Google Scholar] [CrossRef]
- Pinhas-Hamiel, O.; Hamiel, U.; Bendor, C.D.; Bardugo, A.; Twig, G.; Cukierman-Yaffe, T. The Global Spread of Severe Obesity in Toddlers, Children, and Adolescents: A Systematic Review and Meta-Analysis. Obes. Facts 2022, 15, 118–134. [Google Scholar] [CrossRef]
- Fryar, C.D.; Carroll, M.D.; Ogden, C.L. Prevalence of Overweight, Obesity, and Severe Obesity among Adults Aged 20 and over: United States, 1960–1962 through 2017–2018; NCHS National Center for Health Statistics: Hyattsville, MD, USA, 2020.
- Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev. 2015, 16, 1081–1093. [Google Scholar] [CrossRef]
- WHO. Assessing the Iron Status of Populations: Report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level, Geneva, Switzerland, 2004; WHO Press: Geneva, Switzerland, 2007. [Google Scholar]
- CDC. Centers for Disease Control and Prevention. Recommendations to prevent and control iron deficiency in the United States. Morb. Mortal. Wkly. Rep. Recomm. Rep. 1998, 47, 1–29. [Google Scholar]
- Cook, J.D. Defining optimal body iron. Proc. Nutr. Soc. 1999, 58, 489–495. [Google Scholar] [CrossRef]
- Pfeiffer, C.M.; Looker, A.C. Laboratory methodologies for indicators of iron status: Strengths, limitations, and analytical challenges. Am. J. Clin. Nutr. 2017, 106, 1606S–1614S. [Google Scholar] [CrossRef] [PubMed]
- Hastka, J.; Lasserre, J.J.; Schwarzbeck, A.; Reiter, A.; Hehlmann, R. Laboratory tests of iron status: Correlation or common sense? Clin. Chem. 1996, 42, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Looker, A.C.; Dallman, P.R.; Carroll, M.D.; Gunter, E.W.; Johnson, C.L. Prevalence of iron deficiency in the United States. JAMA 1997, 277, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Expert Scientific Working Group. Summary of a report on assessment of the iron nutritional status of the United States population. Am. J. Clin. Nutr. 1985, 42, 1318–1330. [Google Scholar] [CrossRef]
- Looker, A.C.; Gunter, E.W.; Johnson, C.L. Methods to assess iron status in various NHANES surveys. Nutr. Rev. 1995, 53, 246–254. [Google Scholar] [CrossRef]
- Skikne, B.S.; Flowers, C.H.; Cook, J.D. Serum transferrin receptor: A quantitative measure of tissue iron deficiency. Blood 1990, 75, 1870–1876. [Google Scholar] [CrossRef]
- Cook, J.D.; Flowers, C.H.; Skikne, B.S. The quantitative assessment of body iron. Blood 2003, 101, 3359–3364. [Google Scholar] [CrossRef]
- Cogswell, M.E.; Looker, A.C.; Pfeiffer, C.M.; Cook, J.D.; Lacher, D.A.; Beard, J.L.; Lynch, S.R.; Grummer-Strawn, L.M. Assessment of iron deficiency in US preschool children and nonpregnant females of childbearing age: National Health and Nutrition Examination Survey 2003–2006. Am. J. Clin. Nutr. 2009, 89, 1334–1342. [Google Scholar] [CrossRef]
- Mei, Z.; Cogswell, M.E.; Looker, A.C.; Pfeiffer, C.M.; Cusick, S.E.; Lacher, D.A.; Grummer-Strawn, L.M. Assessment of iron status in US pregnant women from the National Health and Nutrition Examination Survey (NHANES), 1999–2006. Am. J. Clin. Nutr. 2011, 93, 1312–1320. [Google Scholar] [CrossRef]
- Cusick, S.E.; Looker, A.C.; Cogswell, M.E.; Pfeiffer, C.M.; Grummer-Strawn, L. Iron-status indicators. Pediatrics 2008, 121, 651–652. [Google Scholar] [CrossRef]
- USDA, Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 7th ed.; U.S. Government Printing Office: Washington, DC, USA, 2010.
- Lozoff, B.; Lu Angelilli, M.; Zatakia, J.; Jacobson, S.W.; Calatroni, A.; Beard, J. Iron status of inner-city African-American infants. Am. J. Hematol. 2007, 82, 112–121. [Google Scholar] [CrossRef]
- Looker, A.C.; Johnson, C.L.; McDowell, M.A.; Yetley, E.A. Iron status: Prevalence of impairment in three Hispanic groups in the United States. Am. J. Clin. Nutr. 1989, 49, 553–558. [Google Scholar] [CrossRef]
- Sekhar, D.L.; Murray-Kolb, L.E.; Kunselman, A.R.; Paul, I.M. Identifying factors predicting iron deficiency in United States adolescent females using the ferritin and the body iron models. Clin. Nutr. ESPEN 2015, 10, e118–e123. [Google Scholar] [CrossRef]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National health and nutrition examination survey: Analytic guidelines, 1999–2010. In Vital Health Stat 2; Department of Health and Human Services Public Health Servic: Bethesda, MD, USA, 2013; pp. 1–24. [Google Scholar]
- CDC. National Health and Nutrition Examination Survey. National Center for Health Statistics of the Centers for Disease Control and Prevention. 2022. Available online: http://www.cdc.gov/nchs/nhanes.htm (accessed on 25 October 2022).
- Yip, R.; Dallman, P.R. The roles of inflammation and iron deficiency as causes of anemia. Am. J. Clin. Nutr. 1988, 48, 1295–1300. [Google Scholar] [CrossRef]
- Fleming, D.J.; Jacques, P.F.; Dallal, G.E.; Tucker, K.L.; Wilson, P.W.; Wood, R.J. Dietary determinants of iron stores in a free-living elderly population: The Framingham Heart Study. Am. J. Clin. Nutr. 1998, 67, 722–733. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Committee on Physical Status: The Use and Interpretation of Anthropometry (1993: Geneva, Switzerland) & World Health Organization. (1995). Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995. Available online: https://apps.who.int/iris/handle/10665/37003 (accessed on 20 June 2016).
- Expert Panel on the Identification, Evaluation, Treatment of Overweight, Obesity in Adults (US); National Heart, Lung, Blood Institute; National Institute of Diabetes; Digestive, Kidney Diseases (US). Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: Executive summary. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. Am. J. Clin. Nutr. 1998, 68, 899–917. [Google Scholar] [CrossRef]
- Gunter, E.W.; Lewis, B.G.; Koncikowski, S.M. Laboratory Methods Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Included in CD-ROM 6-0178, NHANES III Reference Manuals and Reports; Centers for Disease Control and Prevention: Hyattsville, MD, USA, 1996.
- National Health and Nutrition Examination Survey 2003–2004. Data Documentation, Codebook, and Frequencies. Complete Blood Count with 5-Part Differential—Whole Blood (L25_C). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L25_C.htm (accessed on 18 August 2021).
- Dati, F.; Schumann, G.; Thomas, L.; Aguzzi, F.; Baudner, S.; Bienvenu, J.; Blaabjerg, O.; Blirup-Jensen, S.; Carlström, A.; Petersen, P.H.; et al. Consensus of a group of professional societies and diagnostic companies on guidelines for interim reference ranges for 14 proteins in serum based on the standardization against the IFCC/BCR/CAP Reference Material (CRM 470). International Federation of Clinical Chemistry. Community Bureau of Reference of the Commission of the European Communities. College of American Pathologists. Eur. J. Clin. Chem. Clin. Biochem. 1996, 34, 517–520. [Google Scholar]
- National Health and Nutrition Examination Survey 2003–2004 Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L06TFR_C.htm (accessed on 18 August 2021).
- National Health and Nutrition Examination Survey 2005–2006. Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/FERTIN_D.htm (accessed on 18 August 2021).
- Kolbe-Busch, S.; Lotz, J.; Hafner, G.; Blanckaert, N.J.C.; Claeys, G.; Togni, G.; Carlsen, J.; Röddiger, R.; Thomas, L. Multicenter evaluation of a fully mechanized soluble transferrin receptor assay on the Hitachi and cobas integra analyzers. the determination of reference ranges. Clin. Chem. Lab. Med. 2002, 40, 529–536. [Google Scholar] [CrossRef]
- Laboratory Procedure Manual. Modification of the Automated AAII-25 Colorimetric Method. Iron and TIBC in Serum NHANES 2001–2002. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2001-2002/labmethods/l40fe_b_met_iron_tibc_alpkem.pdf (accessed on 18 August 2021).
- National Health and Nutrition Examination Survey 2005–2006. Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/FETIB_D.htm (accessed on 18 August 2021).
- National Health and Nutrition Examination Survey 2003–2004 Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L40FE_C.htm (accessed on 18 August 2021).
- National Health and Nutrition Examination Survey 2003–2004 Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/nchs/nhanes/2003-2004/L39EPP_C.htm (accessed on 18 August 2021).
- National Health and Nutrition Examination Survey 2005–2006. Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/EPP_D.htm (accessed on 18 August 2021).
- National Health and Nutrition Examination Survey 2003–2004 Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L11_C.htm (accessed on 18 August 2021).
- National Health and Nutrition Examination Survey 2005–2006. Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/CRP_D.htm (accessed on 18 August 2021).
- Flowers, C.H.; Skikne, B.S.; Covell, A.M.; Cook, J.D. The clinical measurement of serum transferrin receptor. J. Lab. Clin. Med. 1989, 114, 368–377. [Google Scholar]
- Pfeiffer, C.M.; Cook, J.D.; Mei, Z.; Cogswell, M.E.; Looker, A.C.; Lacher, D.A. Evaluation of an automated soluble transferrin receptor (sTfR) assay on the Roche Hitachi analyzer and its comparison to two ELISA assays. Clin. Chim. Acta 2007, 382, 112–116. [Google Scholar] [CrossRef]
- Mei, Z.; Parvanta, I.; Cogswell, M.E.; Gunter, E.W.; Grummer-Strawn, L.M. Erythrocyte protoporphyrin or hemoglobin: Which is a better screening test for iron deficiency in children and women? Am. J. Clin. Nutr. 2003, 77, 1229–1233. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Pfeiffer, C.M.; Looker, A.C.; Flores-Ayala, R.C.; Lacher, D.A.; Mirel, L.B.; Grummer-Strawn, L.M. Serum soluble transferrin receptor concentrations in US preschool children and non-pregnant women of childbearing age from the National Health and Nutrition Examination Survey 2003–2010. Clin. Chim. Acta 2012, 413, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Santos Silva, J.; Tenreyro, S. Poisson: Some Convergence Issues; Department of Economics, University of Essex: Colchester, UK, 2011. [Google Scholar]
- Silva, J.M.C.S.; Tenreyro, S. The Log of Gravity. Rev. Econ. Stat. 2006, 88, 641–658. [Google Scholar] [CrossRef]
- Akesson, A.; Bjellerup, P.; Berglund, M.; Bremme, K.; Vahter, M. Serum transferrin receptor: A specific marker of iron deficiency in pregnancy. Am. J. Clin. Nutr. 1998, 68, 1241–1246. [Google Scholar] [CrossRef]
- Virtanen, M.; Siimes, M.A.; Krusius, T.; Pettersson, T.; Teppo, A.M.; Viinikka, L. Evaluation of an ELISA test for determination of the serum transferrin receptor. Demonstration of discordance between results obtained with two methods. Scand. J. Clin. Lab. Investig. 1998, 58, 561–567. [Google Scholar] [CrossRef]
- Cheng, H.L.; Bryant, C.; Cook, R.; O’Connor, H.; Rooney, K.; Steinbeck, K. The relationship between obesity and hypoferraemia in adults: A systematic review. Obes. Rev. 2012, 13, 150–161. [Google Scholar] [CrossRef]
- Neymotin, F.; Sen, U. Iron and obesity in females in the United States. Obesity 2011, 19, 191–199. [Google Scholar] [CrossRef]
- Cook, J. The nutritional assessment of iron status. Arch. Lat. Nutr. 1999, 49 (Suppl. S2), 11s–14s. [Google Scholar]
- Aigner, E.; Feldman, A.; Datz, C. Obesity as an emerging risk factor for iron deficiency. Nutrients 2014, 6, 3587–3600. [Google Scholar] [CrossRef]
- Cepeda-Lopez, A.C.; Osendarp, S.J.; Melse-Boonstra, A.; Aeberli, I.; Gonzalez-Salazar, F.; Feskens, E.; Villalpando, S.; Zimmermann, M.B. Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake. Am. J. Clin. Nutr. 2011, 93, 975–983. [Google Scholar] [CrossRef]
- Cusick, S.E.; Mei, Z.; Freedman, D.S.; Looker, A.C.; Ogden, C.L.; Gunter, E.; Cogswell, M.E. Unexplained decline in the prevalence of anemia among US children and women between 1988–1994 and 1999–2002. Am. J. Clin. Nutr. 2008, 88, 1611–1617. [Google Scholar] [CrossRef]
- Ford, E.S.; Cowie, C.C.; Li, C.; Handelsman, Y.; Bloomgarden, Z.T. Iron-deficiency anemia, non-iron-deficiency anemia and HbA1c among adults in the US. J. Diabetes 2011, 3, 67–73. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Iron deficiency—United States, 1999–2000. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 897–899. [Google Scholar]
- Gupta, P.M.; Perrine, C.G.; Mei, Z.; Scanlon, K.S. Iron, Anemia, and Iron Deficiency Anemia among Young Children in the United States. Nutrients 2016, 8, 330. [Google Scholar] [CrossRef]
- Aguree, S.; Reddy, M.B. Inflammatory markers and hepcidin are elevated but serum iron is lower in obese women of reproductive age. Nutrients 2021, 13, 217. [Google Scholar] [CrossRef]
- Flores-Quijano, M.E.; Vega-Sánchez, R.; Tolentino-Dolores, M.C.; López-Alarcón, M.G.; Flores-Urrutia, M.C.; López-Olvera, A.D.; Talavera, J.O. Obesity Is Associated with Changes in Iron Nutrition Status and Its Homeostatic Regulation in Pregnancy. Nutrients 2019, 11, 693. [Google Scholar] [CrossRef]
- Thankachan, P.; Walczyk, T.; Muthayya, S.; Kurpad, A.V.; Hurrell, R.F. Iron absorption in young Indian women: The interaction of iron status with the influence of tea and ascorbic acid. Am. J. Clin. Nutr. 2008, 87, 881–886. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Zeder, C.; Muthayya, S.; Winichagoon, P.; Chaouki, N.; Aeberli, I.; Hurrell, R.F. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification. Int. J. Obes. 2008, 32, 1098–1104. [Google Scholar] [CrossRef]
- Aeberli, I.; Hurrell, R.F.; Zimmermann, M.B. Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children. Int. J. Obes. 2009, 33, 1111–1117. [Google Scholar] [CrossRef]
- Mujica-Coopman, M.F.; Brito, A.; López de Romaña, D.; Pizarro, F.; Olivares, M. Body mass index, iron absorption and iron status in childbearing age women. J. Trace Elem. Med. Biol. 2015, 30, 215–219. [Google Scholar] [CrossRef]
- Laftah, A.H.; Ramesh, B.; Simpson, R.J.; Solanky, N.; Bahram, S.; Schümann, K.; Debnam, E.S.; Srai, S.K. Effect of hepcidin on intestinal iron absorption in mice. Blood 2004, 103, 3940–3944. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta 2012, 1823, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol. 2009, 122, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003, 102, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Yanoff, L.B.; Menzie, C.M.; Denkinger, B.; Sebring, N.G.; McHugh, T.; Remaley, A.T.; Yanovski, J.A. Inflammation and iron deficiency in the hypoferremia of obesity. Int. J. Obes. 2007, 31, 1412–1419. [Google Scholar] [CrossRef]
- Bekri, S.; Gual, P.; Anty, R.; Luciani, N.; Dahman, M.; Ramesh, B.; Iannelli, A.; Staccini-Myx, A.; Casanova, D.; Ben Amor, I.; et al. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 2006, 131, 788–796. [Google Scholar] [CrossRef]
- Becker, C.; Orozco, M.; Solomons, N.W.; Schümann, K. Iron metabolism in obesity: How interaction between homoeostatic mechanisms can interfere with their original purpose. Part I: Underlying homoeostatic mechanisms of energy storage and iron metabolisms and their interaction. J. Trace Elem. Med. Biol. 2015, 30, 195–201. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef]
- Ganz, T. Hepcidin and its role in regulating systemic iron metabolism. Hematol. Am. Soc. Hematol. Educ. Program 2006, 507, 29–35. [Google Scholar] [CrossRef]
- Hentze, M.W.; Muckenthaler, M.U.; Galy, B.; Camaschella, C. Two to tango: Regulation of Mammalian iron metabolism. Cell 2010, 142, 24–38. [Google Scholar] [CrossRef]
- Abboud, S.; Haile, D.J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 2000, 275, 19906–19912. [Google Scholar] [CrossRef]
- McClung, J.P.; Karl, J.P. Iron deficiency and obesity: The contribution of inflammation and diminished iron absorption. Nutr. Rev. 2009, 67, 100–104. [Google Scholar] [CrossRef]
Biomarkers | Abnormal Values |
---|---|
Serum ferritin (µg/L) | <16.5 [32] |
Transferrin saturation (%) | <15 [32] |
EPP (µmol/L RBC) | >1.24 [27,32] |
MCV (fL) | <81 [60] |
Hb (g/dL) | <12 [27] |
sTfR (mg/L) | >5.3 [61] |
Iron deficiency | |
BII (mg/kg) | <0 [30,31] |
Ferritin model | ≥2 abnormal values of SF, TS, and EPP |
MCV model | ≥2 abnormal values of MCV, TS, and EPP |
Total | Healthy Weight | Overweight | Obese | |
---|---|---|---|---|
SF (µg/L) 2,3, µg/dL | 53.5 (50.7, 56.3) (2442) | 48.2 (44.8, 51.5) (899) a | 55.2 (48.4, 62.0) (682) ab | 59.4 (54.0, 64.7) (861) b |
SI (µg/dL) | 83.1 ± 0.8 (2441) | 94.3 ± 1.4 (899) a | 80.0 ± 1.8 (681) b | 70.3 ± 1.4 (861) c |
TIBC (µmol/L) | 66.1± 0.3 (2435) | 65.8 ± 0.5 (896) ab | 67.1 ± 0.5 (861) a | 65.7 ± 0.4 (858) b |
TS (%) | 23.2 ± 0.2 (2435) | 26.5 ± 0.4 (896) a | 22.1 ± 0.5 (681) b | 19.8 ± 0.5 (858) c |
EPP (µmol/L RBC) 2,3 | 1.05(1.03, 1.07) (2436) | 0.96 (0.94, 0.99) (898) a | 1.06 (1.02, 1.10) (679) b | 1.16 (1.12, 1.21) (859) c |
sTfR (mg/L) 2,3 | 3.67 (3.58, 3.76) (1558) | 3.37 (3.27, 3.46) (570) a | 3.68 (3.54, 3.82) (423) b | 4.05 (3.88, 4.22) (565) c |
MCV (fL) | 89.0 ± 0.1 (2442) | 90.6 ± 0.2 (899) a | 88.8 ± 0.3 (682) b | 87.2 ± 0.3 (861) c |
Hb (g/dL) | 13.5± 0.04 (2442) | 13.6 ± 0.05 (899) a | 13.5 ± 0.07 (682) ab | 13.4 ± 0.06 (861) b |
BII (mg/kg) 4 | 5.53 ± 0.09 (1558) | 5.71 ± 0.15 (570) | 5.43 ± 0.24 (423) | 5. 37± 0.23 (565) |
N 2 | Total | Healthy Weight | Overweight | Obese | |
---|---|---|---|---|---|
ID | |||||
Ferritin model 3 | 502 | 17.1 ± 0.6 | 12.5 ± 1.0 a | 17.7± 1.7 ab | 22.9 ± 1.6 b |
MCV model 4 | 407 | 13.4 ± 0.5 | 9.0 ± 0.9 a | 12.9 ± 1.2 a | 20.0 ± 1.3 b |
BII 5 | 181 | 9.6 ± 0.6 | 8.1 ± 1.0 | 10.9 ± 1.6 | 10.5 ± 1.2 |
Anemia | 250 | 7.4 ± 0.6 | 5.5 ± 0.8 a | 8.3 ± 1.2 ab | 9.3 ± 1.0 b |
IDA | |||||
Ferritin model 6 | 183 | 5.6 ± 0.5 | 4.1± 0.6 a | 6.5 ± 1.0 ab | 7.0 ± 0.9 b |
MCV model 7 | 173 | 5.2 ± 0.4 | 3.8 ± 0.6 a | 5.6 ± 0.8 ab | 6.8 ± 0.8 b |
BII 8 | 89 | 4.6 ± 0.5 | 3.3 ± 0.6 a | 5.2 ± 1.2 ab | 6.0 ± 1.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguree, S.; Owora, A.; Hawkins, M.; Reddy, M.B. Iron Deficiency and Iron Deficiency Anemia in Women with and without Obesity: NHANES 2001–2006. Nutrients 2023, 15, 2272. https://doi.org/10.3390/nu15102272
Aguree S, Owora A, Hawkins M, Reddy MB. Iron Deficiency and Iron Deficiency Anemia in Women with and without Obesity: NHANES 2001–2006. Nutrients. 2023; 15(10):2272. https://doi.org/10.3390/nu15102272
Chicago/Turabian StyleAguree, Sixtus, Arthur Owora, Misty Hawkins, and Manju B. Reddy. 2023. "Iron Deficiency and Iron Deficiency Anemia in Women with and without Obesity: NHANES 2001–2006" Nutrients 15, no. 10: 2272. https://doi.org/10.3390/nu15102272
APA StyleAguree, S., Owora, A., Hawkins, M., & Reddy, M. B. (2023). Iron Deficiency and Iron Deficiency Anemia in Women with and without Obesity: NHANES 2001–2006. Nutrients, 15(10), 2272. https://doi.org/10.3390/nu15102272