Breast Milk Constituents and the Development of Breast Milk Jaundice in Neonates: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Quality Appraisal
2.4. Data Synthesis
3. Results
3.1. Energy and Nutritional Composition of Breast Milk
3.2. Bioactive Components Breast Milk
4. Discussion
4.1. Summary of Main Findings
4.2. Interpretation of the Results
4.3. Strengths and Limitations
4.4. Implications for Clinical Practices and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gartner, L.M.; Herschel, M. Jaundice and breastfeeding. Pediatr. Clin. N. Am. 2001, 48, 389–399. [Google Scholar] [CrossRef]
- Itoh, S.; Okada, H.; Koyano, K.; Nakamura, S.; Konishi, Y.; Iwase, T.; Kusaka, T. Fetal and neonatal bilirubin metabolism. Front. Pediatr. 2022, 10, 1002408. [Google Scholar] [CrossRef] [PubMed]
- Ansong-Assoku, B.; Shah, S.D.; Adnan, M.; Ankola, P.A. Neonatal Jaundice. StatPearls 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532930/ (accessed on 28 April 2023).
- Newman, A.J.; Gross, S. Hyperbilirubinemia in Breast-Fed Infants. Pediatrics 1963, 32, 995–1001. [Google Scholar] [CrossRef]
- Schneider, A.P., 2nd. Breast milk jaundice in the newborn. A real entity. JAMA 1986, 255, 3270–3274. [Google Scholar] [CrossRef]
- Gartner, L.M. Breastfeeding and jaundice. J. Perinatol. 2001, 21 (Suppl. S1), S25–S29. [Google Scholar] [CrossRef]
- Setia, S.; Villaveces, A.; Dhillon, P.; Mueller, B.A. Neonatal jaundice in Asian, white, and mixed-race infants. Arch. Pediatr. Adolesc. Med. 2002, 156, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Preer, G.L.; Philipp, B.L. Understanding and managing breast milk jaundice. Arch. Dis. Child.-Fetal Neonatal Ed. 2011, 96, F461–F466. [Google Scholar] [CrossRef]
- Hokkanen, L.; Launes, J.; Michelsson, K. Adult neurobehavioral outcome of hyperbilirubinemia in full term neonates—A 30 year prospective follow-up study. PeerJ 2014, 2, e294. [Google Scholar] [CrossRef] [PubMed]
- Tsao, P.C.; Yeh, H.L.; Shiau, Y.S.; Chang, Y.C.; Chiang, S.H.; Soong, W.J.; Jeng, M.J.; Hsiao, K.J.; Chiang, P.H. Long-term neurodevelopmental outcomes of significant neonatal jaundice in Taiwan from 2000–2003: A nationwide, population-based cohort study. Sci. Rep. 2020, 10, 11374. [Google Scholar] [CrossRef]
- Dennery, P.A.; Seidman, D.S.; Stevenson, D.K. Neonatal hyperbilirubinemia. N. Engl. J. Med. 2001, 344, 581–590. [Google Scholar] [CrossRef]
- Chiu, Y.W.; Cheng, S.W.; Yang, C.Y.; Weng, Y.H. Breastfeeding in Relation to Neonatal Jaundice in the First Week After Birth: Parents’ Perceptions and Clinical Measurements. Breastfeed. Med. 2021, 16, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef]
- McCandless, D.W. Breast Milk Jaundice. In Contemporary Clinical Neuroscience; Springer Nature: Berlin/Heidelberg, Germany, 2011; pp. 115–120. [Google Scholar] [CrossRef]
- Scheig, R. Neonatal jaundice. Am. Fam. Physician 1974, 10, 158–164. [Google Scholar]
- Wilson, D.C.; Afrasiabi, M.; Reid, M.M. Breast milk beta-glucuronidase and exaggerated jaundice in the early neonatal period. Biol. Neonate 1992, 61, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.S.; Jaiswal, D.D.; Wadhwani, C.N.; Somasunderam, S.; Dacosta, H. Infants with a congenital anomaly and the concentration of Mo, As, Mn, Zn and Cu in the mother’s milk. Sci. Total Environ. 1983, 27, 43–47. [Google Scholar] [CrossRef]
- Zanardo, V.; Golin, R.; Amato, M.; Trevisanuto, D.; Favaro, F.; Faggian, D.; Plebani, M. Cytokines in human colostrum and neonatal jaundice. Pediatr. Res. 2007, 62, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.G.; Abdel Hakeem, G.L.; Ali, M.S.; Mohamed, A.O. Interleukin 1beta level in human colostrum in relation to neonatal hyperbilirubinemia. Egypt. J. Immunol. 2012, 19, 1–7. [Google Scholar]
- Cole, A.P.; Hargreaves, T. Conjugation inhibitors and early neonatal hyperbilirubinaemia. Arch. Dis. Child. 1972, 47, 415–418. [Google Scholar] [CrossRef]
- Hargreaves, T.; Piper, R.F. Breast milk jaundice. Effect of inhibitory breast milk and 3 alpha, 20 abeta-pregnanediol on glucuronyl transferase. Arch. Dis. Child. 1971, 46, 195–198. [Google Scholar] [CrossRef]
- Luzeau, R.; Levillain, P.; Odievre, M.; Lemonnier, A. Demonstration of a lipolytic activity in human milk that inhibits the glucuro-conjugation of bilirubin. Biomedicine 1974, 21, 258–262. [Google Scholar]
- Gartner, L.M.; Arias, I.M. Studies of prolonged neonatal jaundice in the breast-fed infant. J. Pediatr. 1966, 68, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Uhari, M.; Alkku, A.; Nikkari, T.; Timonen, E. Neonatal jaundice and fatty acid composition of the maternal diet. Acta Paediatr. Scand. 1985, 74, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Arias, I.M.; Gartner, L.M. Production of unconjugated hyperbilirubinaemia in full-term new-born infants following administration of pregnane-3(alpha),20(beta)-diol. Nature 1964, 203, 1292–1293. [Google Scholar] [CrossRef] [PubMed]
- Manganaro, R.; Marseglia, L.; Mamì, C.; Saitta, G.; Gargano, R.; Gemelli, M. Serum alpha-fetoprotein (AFP) levels in breastfed infants with prolonged indirect hyperbilirubinemia. Early Hum. Dev. 2008, 84, 487–490. [Google Scholar] [CrossRef]
- Fisher, Q.; Cohen, M.I.; Curda, L.; McNamara, H. Jaundice and breast-feeding among Alaskan Eskimo newborns. Am. J. Dis. Child. 1978, 132, 859–861. [Google Scholar] [CrossRef]
- Rosta, J.; Makól, Z.; Fehér, T.; Korányi, G. Steroid inhibition of glucuronization. Acta Paediatr. Acad. Sci. Hung. 1970, 11, 67–69. [Google Scholar]
- Singla, M.; Malik, S.; Korday, C.S.; Paldiwal, A.A. Weight loss and/or hypernatraemia in inadequately breastfed term neonates having non-haemolytic unconjugated hyperbilirubinaemia. J. Clin. Diagn. Res. 2018, 12, SC01–SC04. [Google Scholar] [CrossRef]
- Maruo, Y.; Nishizawa, K.; Sato, H.; Sawa, H.; Shimada, M.; Shimada, M. Prolonged unconjugated hyperbilirubinemia associated with breast milk and mutations of the bilirubin uridine diphosphate- glucuronosyltransferase gene. Pediatrics 2000, 106, e59. [Google Scholar] [CrossRef]
- Constantopoulos, A.; Messaritakis, J.; Matsaniotis, N. Breast milk jaundice; the role of lipoprotein lipase and the free fatty acids. Eur. J. Pediatr. 1980, 134, 35–38. [Google Scholar] [CrossRef]
- Amato, M.; Howald, H.; von Muralt, G. Fat Content of Human Milk and Breast Milk Jaundice. Acta Paediatr. Int. J. Paediatr. 1985, 74, 805–806. [Google Scholar] [CrossRef]
- Apaydin, K.; Ermis, B.; Arasli, M.; Tekin, I.; Ankarali, H. Cytokines in human milk and late-onset breast milk jaundice. Pediatr. Int. 2012, 54, 801–805. [Google Scholar] [CrossRef]
- Demirkol, M.; Bohles, H. Breast milk taurine and its possible influence on the development of breast milk induced jaundice of the neonate—A hypothesis. Adv. Exp. Med. Biol. 1994, 359, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, J.S.; Donnet, L.; Ross, P.E. A study of the relationship between bile salts, bile salt-stimulated lipase, and free fatty acids in breast milk: Normal infants and those with breast milk jaundice. J. Pediatr. Gastroenterol. Nutr. 1990, 11, 205–210. [Google Scholar] [CrossRef]
- Guo, Q.; Cui, M.; Liu, X.; Zhao, S.; Liu, P.; Wang, L. Effect of Epidermal Growth Factor in Human Milk and Maternal Diet on Late-Onset Breast Milk Jaundice: A Case-Control Study in Beijing. Nutrients 2022, 14, 4587. [Google Scholar] [CrossRef]
- Kumral, A.; Ozkan, H.; Duman, N.; Yesilirmak, D.C.; Islekel, H.; Ozalp, Y. Breast milk jaundice correlates with high levels of epidermal growth factor. Pediatr. Res. 2009, 66, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Ince, Z.; Coban, A.; Peker, I.; Can, G. Breast milk beta-glucuronidase and prolonged jaundice in the neonate. Acta Paediatr. 1995, 84, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Poland, R.L.; Schultz, G.E.; Garg, G. High milk lipase activity associated with breast milk jaundice. Pediatr. Res. 1980, 14, 1328–1331. [Google Scholar] [CrossRef]
- Severi, F.; Rondini, G.; Zaverio, S.; Vegni, M. Prolonged neonatal hyperbilirubinemia and pregnane-3(alpha),20(beta)-diol in maternal milk. Helv. Paediatr. Acta 1970, 25, 517–521. [Google Scholar]
- Uras, N.; Tonbul, A.; Karadag, A.; Dogan, D.G.; Erel, O.; Tatli, M.M. Prolonged jaundice in newborns is associated with low antioxidant capacity in breast milk. Scand. J. Clin. Lab. Investig. 2010, 70, 433–437. [Google Scholar] [CrossRef]
- Yiğit, S.; Ciliv, G.; Aygün, C.; Erdem, G. Breast milk beta-glucuronidase levels in hyperbilirubinemia. Turk. J. Pediatr. 2001, 43, 118–120. [Google Scholar]
- Arias, I.M.; Gartner, L.M.; Seifter, S.; Furman, M. Prolonged neonatal unconjugated hyperbilirubinemia associated with breast feeding and a steroid, pregnane-3(alpha), 20(beta)-diol, in maternal milk that inhibits glucuronide formation in vitro. J. Clin. Investig. 1964, 43, 2037–2047. [Google Scholar] [CrossRef]
- Foliot, A.; Ploussard, J.P.; Housset, E.; Christoforov. Breast milk jaundice: In vitro inhibition of rat liver bilirubin-uridine diphosphate glucuronyltransferase activity and Z protein-bromosulfophthalein binding by human breast milk. Pediatr. Res. 1976, 10, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Bevan, B.R.; Holton, J.B. Inhibition of bilirubin conjugation in rat liver slices by free fatty acids, with relevance to the problem of breast milk jaundice. Clin. Chim. Acta 1972, 41, 101–107. [Google Scholar] [CrossRef]
- Shibuya, A.; Itoh, T.; Tukey, R.H.; Fujiwara, R. Impact of fatty acids on human UDP-glucuronosyltransferase 1A1 activity and its expression in neonatal hyperbilirubinemia. Sci. Rep. 2013, 3, 2903. [Google Scholar] [CrossRef]
- Gao, C.; Miller, J.; Middleton, P.F.; Huang, Y.C.; McPhee, A.J.; Gibson, R.A. Changes to breast milk fatty acid composition during storage, handling and processing: A systematic review. Prostaglandins Leukot. Essent. Fatty Acids 2019, 146, 1–10. [Google Scholar] [CrossRef]
- Fujiwara, R.; Nguyen, N.; Chen, S.; Tukey, R.H. Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus. Proc. Natl. Acad. Sci. USA 2010, 107, 5024–5029. [Google Scholar] [CrossRef]
- Fujiwara, R.; Chen, S.; Karin, M.; Tukey, R.H. Reduced expression of UGT1A1 in intestines of humanized UGT1 mice via inactivation of NF-κB leads to hyperbilirubinemia. Gastroenterology 2012, 142, 109–118. [Google Scholar] [CrossRef]
- Chen, S.; Tukey, R.H. Humanized UGT1 Mice, Regulation of UGT1A1, and the Role of the Intestinal Tract in Neonatal Hyperbilirubinemia and Breast Milk-Induced Jaundice. Drug. Metab. Dispos. 2018, 46, 1745–1755. [Google Scholar] [CrossRef] [PubMed]
- Soyyilmaz, B.; Miks, M.H.; Rohrig, C.H.; Matwiejuk, M.; Meszaros-Matwiejuk, A.; Vigsnaes, L.K. The Mean of Milk: A Review of Human Milk Oligosaccharide Concentrations throughout Lactation. Nutrients 2021, 13, 2737. [Google Scholar] [CrossRef] [PubMed]
- Maruo, Y.; Morioka, Y.; Fujito, H.; Nakahara, S.; Yanagi, T.; Matsui, K.; Mori, A.; Sato, H.; Tukey, R.H.; Takeuchi, Y. Bilirubin uridine diphosphate-glucuronosyltransferase variation is a genetic basis of breast milk jaundice. J. Pediatr. 2014, 165, 36–41. [Google Scholar] [CrossRef]
- Duan, M.; Han, Z.H.; Huang, T.; Yang, Y.; Huang, B. Characterization of gut microbiota and short-chain fatty acid in breastfed infants with or without breast milk jaundice. Lett. Appl. Microbiol. 2021, 72, 60–67. [Google Scholar] [CrossRef]
- Duan, M.; Yu, J.; Feng, J.; He, Y.; Xiao, S.; Zhu, D.; Zou, Z. 16S Ribosomal RNA-based Gut Microbiome Composition Analysis in Infants with Breast Milk Jaundice. Open Life Sci. 2018, 13, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, N.; Li, J.; Hu, R.; Mo, X.; Xu, L. Changes in Intestinal Flora and Metabolites in Neonates With Breast Milk Jaundice. Front. Pediatr. 2020, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, B.E.; Lanke, L.S. Bilirubin and urobilins in germfree, ex-germfree, and conventional rats. J. Exp. Med. 1960, 112, 975–981. [Google Scholar] [CrossRef]
- Vitek, L.; Zelenka, J.; Zadinova, M.; Malina, J. The impact of intestinal microflora on serum bilirubin levels. J. Hepatol. 2005, 42, 238–243. [Google Scholar] [CrossRef]
- Vitek, L.; Majer, F.; Muchova, L.; Zelenka, J.; Jiraskova, A.; Branny, P.; Malina, J.; Ubik, K. Identification of bilirubin reduction products formed by Clostridium perfringens isolated from human neonatal fecal flora. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 833, 149–157. [Google Scholar] [CrossRef]
- Christian, P.; Smith, E.R.; Lee, S.E.; Vargas, A.J.; Bremer, A.A.; Raiten, D.J. The need to study human milk as a biological system. Am. J. Clin. Nutr. 2021, 113, 1063–1072. [Google Scholar] [CrossRef]
- Mitoulas, L.R.; Kent, J.C.; Cox, D.B.; Owens, R.A.; Sherriff, J.L.; Hartmann, P.E. Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br. J. Nutr. 2002, 88, 29–37. [Google Scholar] [CrossRef] [PubMed]
Reference, Year, Country | Study Population Recruitment | Diagnosis of BMJ | Breast Milk Collection and Storage | Breast Milk Component Related to BMJ | Quality Rating # |
---|---|---|---|---|---|
Amato et al., 1985 [32] Switzerland | Recruitment center: NS Duration: NS Inclusion: term infants >38 weeks, normal birth weight Exclusion: bottle feeding supplemented during first 48 h of life Sample size: 98 (50 BMJ, 48 control) | Definition: Healthy neonates without secondary forms of hyperbilirubinemia, but neonatal jaundice Additional tests/screening to rule out other causes: NS Postnatal age: NS | Timing: morning, exact time NS Collection: NS Storage: NS | Component(s): total fat content (%) Method(s): Creamatocrit Statistical comparison: Chi-square test | (+) |
Apaydin et al., 2012 [33] Turkey | Recruitment center: Karaelmas University, Department of Pediatrics Duration: April 2009–April 2010 Inclusion: exclusively breastfed infants Exclusion: potential pathological reasons for BMJ Sample size: 80 (40 BMJ, 40 control) | Definition: prolonged jaundice without identifiable pathological cause Additional tests/screening to rule out other causes: blood group compatibility, Coombs test, G6PD deficiency, hemolytic disease, polycythemia, cephalohematoma, asphyxia, hypothermia, intracranial hemorrhage, perinatal infection, hypothyroidism, urinary infection, maternal diabetes mellitus Postnatal age: 2–4 weeks | Timing: 9 a.m.–12 p.m., 1 h after breastfeeding the infant Collection: hand expression, 5 cc Storage: deep-frozen till analysis | Component(s): cytokines (IL-1β, IL-6, IL-8, IL-10, TNF-α, all in pg/mL) Method(s): ELISA kit Statistical comparison: Student’s t-test, Mann–Whitney U test | (+) |
Arias et al., 1964 [43] United States of America | Recruitment center: Bronx Municipal Hospital Center or specialist referral Duration: NS Inclusion: NS Exclusion: potential pathological reasons for BMJ Sample size: 78 (7 BMJ, 71 control) | Definition: full-term breastfed infants with severe, prolonged, unexplained jaundice Additional tests/screening to rule out other causes: hematocrit, hemoglobin, erythrocyte and leukocyte counts, peripheral blood morphology, Coombs test, blood grouping, serum cephalin cholesterol flocculation, thymol turbidity, glutamic oxaloacetic acid and pyruvic transaminase activities, concentration of albumin and globulin, serological examinations for syphilis, blood cultures, G6PD deficiency, urinary sediment for cytomegalic disease. Postnatal age: NS | Timing: NS Collection: hand expression or manual pump expression Storage: frozen storage till analysis | Component(s): pregnane-3α,2-β-diol Method(s): (1) in vitro experiment to identify milk samples of inhibitory effect on liver samples; (2) isolate and extract the substance of inhibitory effect based on TLC technique and compared to known standards using infrared spectrometry Statistical comparison: NA | (+) |
Demirkol et al., 1994 [34] Turkey | Recruitment center: Department of Obstetrics, Istanbul Faculty of Medicine Duration: July and September 1989 Inclusion: exclusively breastfed neonates Exclusion: birth weight less than 2500 g; any disease or malformation Sample size: 65 (12 BMJ, 53 control) | Definition: exclusively unconjugated hyperbilirubinemia; breastfeeding was interrupted to confirm Additional tests/screening to rule out other causes: blood group compatibility, hemoglobin concentration, reticulocyte count and erythrocyte morphology. Postnatal age: ~7 days | Timing: 9 a.m., foremilk before feeding Collection: NS Storage: deep-frozen till analysis | Component(s): taurine and glycine (µmol/dL) Method(s): automatic amino analyzer Statistical comparison: Mann–Whitney U test | (+) |
Forsyth et al., 1990 [35] United Kingdom | Recruitment center: NS Duration: NS Inclusion: NS Exclusion: potential pathological reasons for BMJ Sample size: 54 (12 BMJ, 42 control) | Definition: prolonged unconjugated hyperbilirubinemia at 10 days of age, breastfeeding was interrupted to confirm. Additional tests/screening to rule out other causes: liver function and thyroid function infection, blood group analysis. Postnatal age: 10 days | Timing: mid-morning Collection: breast pump Storage: deep-frozen till analysis | Component(s): bile salt (µmol/L), BSSL activity (µmol FFA/mL/min), FFA (mmol/L) Method(s): liquid–liquid extraction then radioimmunoassay; rate of FFA formation; selective transmethylation Statistical comparison: rank correlation test | (+) |
Guo et al., 2022 [36] China | Recruitment center: Peking University People’s Hospital Duration: October 2020 and July 2021 Inclusion: Healthy term infants breastfeeding (exclusively or predominantly >70%) Exclusion: preterm infants gestational age <37 weeks Sample size: 94 (29 BMJ, 65 control) | Definition: late onset (occurred after 1st postnatal week), peaked at 2~3 weeks after birth, breastfeeding was interrupted to confirm. Additional tests/screening to rule out other causes: blood group compatibility, Coombs test, G6PD deficiency, hemolytic disease, reticulocytosis, abnormal blood smear, erythrocytosis, cephalohematoma, history of asphyxia, hypothermia, intracranial hemorrhage, cholestasis; mothers had the following conditions: severe liver or kidney disease, with psychological disorders, AIDs, hepatitis B or other infectious diseases. Postnatal age: 42 days | Timing: 9 a.m.–12 p.m., mid-breastfeeding Collection: hand expression or manual pump Storage: deep-frozen till analysis, 5 mL | Component(s): human milk composition (g or kcal/dL); epidermal growth factor (ng/mL) Method(s): automatic human milk analyzer; ELISA kit Statistical comparison: Chi-square test | (+) |
Ince et al., 1995 [38] Turkey | Recruitment center: NS Duration: NS Inclusion: exclusively breastfeeding infants Exclusion: NS Sample size: 45 (25 BMJ, 20 control) | Definition: Prolonged jaundice (>1 week) Additional tests/screening to rule out other causes: maternal diabetes, asphyxia, septicemia, cephalhematoma, bruising, blood group incompatibility, hypothyroidism, cholestatic disorder, G6PD deficiency. Postnatal age: 8–30 days | Timing: NS Collection: manual pump Storage: frozen till analysis | Component(s): β-glucuronidase(units/mL) Method(s): ELISA kit Statistical comparison: Student’s t-test/Chi-square | (+) |
Kumral et al., 2009 [37] Turkey | Recruitment center: Dokuz Eylul University Hospital Duration: January 2007 and June 2008 Inclusion: exclusively breastfed infants Exclusion: potential pathological reasons for BMJ Sample size: 60 (30 BMJ, 30 control) | Definition: late onset at 5–7 postnatal days, peaks around 10th postnatal days Additional tests/screening to rule out other causes: infants with known risk factors, blood group, Coombs test, G6PD, hemolytic disease, reticulocytosis, abnormality of blood smear, maternal diabetes, polycythemia, cephalohematoma, asphyxia, hypothermia, intracranial hemorrhage, perinatal infection, dehydration Postnatal age: 3–4 weeks | Timing: 8–9 a.m., after feeding Collection: manual pump, 5 mL Storage: deep-frozen storage | Component(s): epidermal growth factor (pg/dL) Method(s): ELISA kit Statistical comparison: Mann–Whitney U test; linear regression | (+) |
Poland et al., 1980 [39] United States of America | Recruitment center: Hutzel Hospital of Detroit; specialist referral Duration: NS Inclusion: NS Exclusion: NS Sample size: 139 (9 BMJ, 130 control) | Definition: Serum unconjugated bilirubin >10 mg/dL after 7 postnatal days, breastfeeding was interrupted to confirm Additional tests/screening to rule out other causes: standard laboratory investigation performed, but details cannot be retracted. Postnatal age: NS | Timing: NS Collection: manual expression Storage: frozen storage till analysis | Component(s): free fatty acids; lipase; total fat content; total protein content Method(s): (1) in vitro experiment to identify milk samples of inhibitory effect on liver samples; (2) milk samples with inhibitory/non-inhibitory effect were assayed for the above-mentioned milk components with colorimetric method, Statistical comparison: Student’s t-test | (+) |
Severi et al., 1970 [40] Italy | Recruitment center: NS Duration: NS Inclusion: NS Exclusion: potential pathological reasons for BMJ Sample size: 28 (13 BMJ, 15 control) | Definition: prolonged jaundice, low conjugated bilirubin level Additional tests/screening to rule out other causes: blood group, Coombs test, hemoglobin, erythrocyte and leucocyte counts, peripheral blood morphology, G6PD deficiency Postnatal age: 8–60 days | Timing: NS Collection: manual pump Storage: frozen storage till analysis | Component(s):pregnane-3α,2-β-diol (µg/dL) Method(s):TLC Statistical comparison: NA | (+) |
Uras et al., 2010 [41] Turkey | Recruitment center: NS Duration: NS Inclusion: healthy exclusively breastfed newborns Exclusion: severe congenital malformation Sample size: 72 (35 BMJ, 37 control) | Definition: Prolonged jaundice last more than 2 weeks Additional tests/screening to rule out other causes: blood count, peripheral blood smear, Coombs test, liver and thyroid function, urine culture, G6PD, maternal diabetes, birth asphyxia, sepsis, enclosed hemorrhage, hemolytic type hyperbilirubinemia due to blood group incompatibility, other sign or symptoms suggestive of serious illness; maternal hypertensive, renal, hepatic, or hematological disease, taking any medication or tobacco user. Postnatal age: 11–25 days | Timing: NS, foremilk Collection: manual pump, 3 mL Storage: deep-frozen storage till analysis | Component(s): Total antioxidant capacity/status, oxidative stress (mmol Trolox equivalent/L, μmol H2O2/L, arbitrary unit) Method(s): colorimetric method Statistical comparison: Student’s t-test | (+) |
Yigit et al., 2001 [42] Turkey | Recruitment center: NS Duration: NS Inclusion: exclusively breastfed infants Exclusion: potential pathological reasons for BMJ Sample size: 40 (22 BMJ, 18 control) | Definition: serum total bilirubin >7 mg/dL on 15th postnatal day Additional tests/screening to rule out other causes: blood group incompatibility, hypothyroidism, cholestatic disorders, asphyxia, septicemia, cephalhematoma, bruising, G6PD deficiency, mothers with diabetes Postnatal age: 15 days | Timing: NS Collection: manual pump Storage: frozen till analysis | Component(s):β-glucuronidase (units/mL) Method(s): ELISA kit Statistical comparison: Mann–Whitney U test | (+) |
Substances/Measures | Sample Size | Direction of Change or Presence of Substance(s) * | Reference | |
---|---|---|---|---|
Case | Comparison | |||
Energy | ||||
Total energy content | 29 | 65 | — | [36] |
Minerals | ||||
Total mineral content | 29 | 65 | — | [36] |
Carbohydrate | ||||
Lactose | 29 | 65 | — | [36] |
Fats and fatty acids | ||||
Total fat content | 50 | 48 | ↑39% | [32] |
29 | 65 | — | [36] | |
9 | 130 | — | [39] | |
Free fatty acids concentration | 9 | 130 | ↑132% | [39] |
12 | 42 | — | [35] | |
Proteins and amino acids | ||||
Total protein content | 9 | 130 | — | [39] |
Taurine concentration | 12 | 53 | ↑65% | [34] |
Glycine concentration | — |
Substances/Measures | Sample Size | Direction of Change or Presence of Substance(s) * | Reference | |
---|---|---|---|---|
Case | Comparison | |||
Enzymes | ||||
BSSL activity | 12 | 42 | — | [35] |
9 | 130 | — | [39] | |
Lipoprotein lipase | 9 | 130 | ↑98% | [39] |
β-glucuronidase | 25 | 20 | — | [38] |
22 | 18 | — | [42] | |
Bile salts | ||||
Cholate | 12 | 42 | ↑17% | [35] |
Chenodeoxycholate | — | |||
Cholate/Chenodeoxycholate ratio | ↑75% | |||
Growth factors and cytokines | ||||
IL-1β | 40 | 40 | ↑61% | [33] |
IL-6 | — | |||
IL-8 | — | |||
IL-10 | — | |||
TNF-α | — | |||
Epidermal Growth factor | 29 | 65 | ↓16.8% | [36] |
30 | 30 | ↑80% | [37] | |
Steroid | ||||
pregnane-3α,2-β-diol | 7 | 17 | 100% detection | [43] |
13 | 15 | 77% detection | [40] | |
Antioxidant feature | ||||
Total antioxidant capacity | 35 | 37 | ↓29% | [41] |
Total oxidation status | — | |||
Oxidative stress index | ↑35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Guo, Y.; Huang, M.; He, J.; Qiu, X. Breast Milk Constituents and the Development of Breast Milk Jaundice in Neonates: A Systematic Review. Nutrients 2023, 15, 2261. https://doi.org/10.3390/nu15102261
Gao C, Guo Y, Huang M, He J, Qiu X. Breast Milk Constituents and the Development of Breast Milk Jaundice in Neonates: A Systematic Review. Nutrients. 2023; 15(10):2261. https://doi.org/10.3390/nu15102261
Chicago/Turabian StyleGao, Chang, Yixin Guo, Mingxi Huang, Jianrong He, and Xiu Qiu. 2023. "Breast Milk Constituents and the Development of Breast Milk Jaundice in Neonates: A Systematic Review" Nutrients 15, no. 10: 2261. https://doi.org/10.3390/nu15102261
APA StyleGao, C., Guo, Y., Huang, M., He, J., & Qiu, X. (2023). Breast Milk Constituents and the Development of Breast Milk Jaundice in Neonates: A Systematic Review. Nutrients, 15(10), 2261. https://doi.org/10.3390/nu15102261