Effects of Consuming Heat-Treated Dodamssal Brown Rice Containing Resistant Starch on Glucose Metabolism in Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Composition and Particle Size Distribution Analysis
2.3. RS Content and In Vitro Starch Digestibility
2.4. Clinical Trial
2.4.1. Study Design and Participants
2.4.2. Physical Examination and Blood Test
2.4.3. Oral Glucose Tolerance Test (OGTT)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Component Analysis
3.2. Particle Size Distribution of Heat-Treated Brown Rice Flours and Powdered Meals
3.3. RS Content and In Vitro Starch Digestibility
3.4. Clinical Study
3.4.1. Participant Characteristics
3.4.2. Effects of Glycemic Control
- Outcomes of OGTT Glycemic Control
- 2.
- Previous RS Studies
- 3.
- Strengths of this Study
3.4.3. Effects of Lipid Control
3.4.4. Other Laboratory Findings
3.4.5. Tolerability Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caballero, B. Humans against obesity: Who will win? Adv. Nutr. 2019, 10 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Bojarczuk, A.; Skąpska, S.; Mousavi Khaneghah, A.; Marszałek, K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Proximate composition, mineral content and fatty acids analyses of aromatic and non-aromatic Indian rice. Rice Sci. 2017, 24, 21–31. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. 2), S33–S50. [Google Scholar] [PubMed]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant starch—A review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Qadir, N.; Wani, I.A. In-Vitro digestibility of rice starch and factors regulating its digestion process: A review. Carbohydr. Polym. 2022, 291, 119600. [Google Scholar] [CrossRef]
- Kumar, A.; Sahoo, U.; Baisakha, B.; Okpani, O.A.; Ngangkham, U.; Parameswaran, C.; Basak, N.; Kumar, G.; Sharma, S.G.; Kumar, G.; et al. Resistant starch could be decisive in determining the glycemic index of rice cultivars. J. Cereal Sci. 2018, 79, 348–353. [Google Scholar] [CrossRef]
- Kaur, B.; Ranawana, V.; Henry, J. The glycemic index of rice and rice products: A review, and table of GI values. Crit. Rev. Food Sci. Nutr. 2016, 56, 215–236. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Liu, Q.-Q.; Wilson, J.D.; Gu, M.-H.; Shi, Y.-C. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohydr. Polym. 2011, 86, 1751–1759. [Google Scholar] [CrossRef]
- Shu, X.; Sun, J.; Wu, D. Effects of grain development on formation of resistant starch in rice. Food Chem. 2014, 164, 89–97. [Google Scholar] [CrossRef]
- Park, J.; Oh, S.-K.; Chung, H.-J.; Park, H.-J. Structural and physicochemical properties of native starches and non-digestible starch residues from Korean rice cultivars with different amylose contents. Food Hydrocoll. 2020, 102, 105544. [Google Scholar] [CrossRef]
- Rivera-Piza, A.; Choi, L.; Seo, J.; Lee, H.G.; Park, J.; Han, S.I.; Lee, S.J. Effects of high-fiber rice Dodamssal (Oryza sativa L.) on glucose and lipid metabolism in mice fed a high-fat diet. J. Food Biochem. 2020, 44, e13231. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Park, J.; Lee, S.K.; Lee, Y.Y.; Lee, B.W.; Park, H.Y.; Choi, H.S.; Cho, D.; Han, S.I.; Oh, S.K. Quality characteristics of puffed snacks made from high-amylose rice varieties containing resistance starch. Korean J. Crop Sci. 2017, 62, 285–292. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.K.; Choi, I.; Choi, H.S.; Shin, D.S.; Park, H.Y.; Han, S.I.; Oh, S.K. Starch content and in vitro hydrolysis index of rice varieties containing resistant starch. Korean J. Crop Sci. 2018, 63, 304–313. [Google Scholar]
- Park, J.; Lee, S.K.; Choi, I.; Choi, H.S.; Kim, N.; Shin, D.S.; Jeong, K.H.; Park, C.; Chung, H.J.; Oh, S.-K. Quality characteristics according to ground particle size of roasted brown rice’Dodamssal’containing resistant starch. Korean J. Food Sci. Technol. 2019, 51, 509–516. [Google Scholar] [CrossRef]
- Park, J.; Oh, S.-K.; Chung, H.-J.; Shin, D.S.; Choi, I.; Park, H.-J. Effect of steaming and roasting on the quality and resistant starch of brown rice flour with high amylose content. LWT 2022, 167, 113801. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Qiu, L.; Mujumdar, A.S.; Lin, Z. Improvement of the flavor of powder-form meal replacement: A review of relevant technologies. Food Bioprocess Technol. 2023, 16, 492–509. [Google Scholar] [CrossRef]
- Baik, I. Forecasting obesity prevalence in Korean adults for the years 2020 and 2030 by the analysis of contributing factors. Nutr. Res. Pract. 2018, 12, 251–257. [Google Scholar] [CrossRef]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Jung, Y.S.; Kim, Y.E.; Go, D.S.; Yoon, S.J. Projecting the prevalence of obesity in South Korea through 2040: A microsimulation modelling approach. BMJ Open 2020, 10, e037629. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Gratteri, S.; Gualtieri, P.; Cammarano, A.; Bertucci, P.; Di Renzo, L. Why primary obesity is a disease? J. Transl. Med. 2019, 17, 169. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Han, K.D.; Ko, S.H.; Yang, Y.S.; Choi, J.H.; Choi, K.M.; Kwon, H.S.; Won, K.C. Diabetes fact sheet in Korea 2021. Diabetes Metab. J. 2022, 46, 417–426. [Google Scholar] [CrossRef] [PubMed]
- KFDA. Korean Food Code; KFDA: Seoul, Republic of Korea, 2021; Volume 2021.
- Stirban, A.; Heinemann, L. Skin autofluorescence—A non-invasive measurement for assessing cardiovascular risk and risk of diabetes. Eur. Endocrinol. 2014, 10, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Ito, Y.; Brown, I.L.; Ando, R.; Kiriyama, S. In Vitro and in vivo digestibility of native maize starch granules varying in amylose contents. J. AOAC Int. 2007, 90, 1628–1634. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Tetlow, I.J.; Falk, D.E.; Liu, Q.; Emes, M.J. Resistant starch content is related to granule size in barley. Cereal Chem. 2016, 93, 618–630. [Google Scholar] [CrossRef]
- Qi, X.; Tester, R.F. Effect of native starch granule size on susceptibility to amylase hydrolysis. Starch Stärke. 2016, 68, 807–810. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef]
- Zhou, J.; Martin, R.J.; Tulley, R.T.; Raggio, A.M.; McCutcheon, K.L.; Shen, L.; Danna, S.C.; Tripathy, S.; Hegsted, M.; Keenan, M.J.; et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1160–E1166. [Google Scholar] [CrossRef]
- Du, X.; Wu, J.; Gao, C.; Tan, Q.; Xu, Y. Effects of resistant starch on patients with chronic kidney disease: A systematic review and meta-analysis. J. Diabetes Res. 2022, 2022, 1861009. [Google Scholar] [CrossRef]
- Haghighatdoost, F.; Gholami, A.; Hariri, M. Effect of resistant starch type 2 on inflammatory mediators: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2021, 56, 102597. [Google Scholar] [CrossRef]
- Lu, J.; Ma, B.; Qiu, X.; Sun, Z.; Xiong, K. Effects of resistant starch supplementation on oxidative stress and inflammation biomarkers: A systematic review and meta-analysis of randomized controlled trials. Asia Pac. J. Clin. Nutr. 2021, 30, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Montroy, J.; Berjawi, R.; Lalu, M.M.; Podolsky, E.; Peixoto, C.; Sahin, L.; Stintzi, A.; Mack, D.; Fergusson, D.A.; Mack, D.; et al. The effects of resistant starches on inflammatory bowel disease in preclinical and clinical settings: A systematic review and meta-analysis. BMC Gastroenterol. 2020, 20, 372. [Google Scholar] [CrossRef] [PubMed]
- Snelson, M.; Jong, J.; Manolas, D.; Kok, S.; Louise, A.; Stern, R.; Kellow, N.J. Metabolic effects of resistant starch Type 2: A systematic literature review and meta-analysis of randomized controlled trials. Nutrients 2019, 11, 1833. [Google Scholar] [CrossRef] [PubMed]
- Vahdat, M.; Hosseini, S.A.; Khalatbari Mohseni, G.; Heshmati, J.; Rahimlou, M. Effects of resistant starch interventions on circulating inflammatory biomarkers: A systematic review and meta-analysis of randomized controlled trials. Nutr. J. 2020, 19, 33. [Google Scholar] [CrossRef]
- Johnston, K.L.; Thomas, E.L.; Bell, J.D.; Frost, G.S.; Robertson, M.D. Resistant starch improves insulin sensitivity in metabolic syndrome. Diabet. Med. 2010, 27, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Pelkman, C.L.; Finocchiaro, E.T.; Kelley, K.M.; Lawless, A.L.; Schild, A.L.; Rains, T.M. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J. Nutr. 2012, 142, 717–723. [Google Scholar] [CrossRef]
- Tan, F.P.Y.; Beltranena, E.; Zijlstra, R.T. Resistant starch: Implications of dietary inclusion on gut health and growth in pigs: A review. J. Anim. Sci. Biotechnol. 2021, 12, 124. [Google Scholar] [CrossRef]
- Khalid, W.; Arshad, M.S.; Jabeen, A.; Muhammad Anjum, F.; Qaisrani, T.B.; Suleria, H.A.R. Fiber-enriched botanicals: A therapeutic tool against certain metabolic ailments. Food Sci. Nutr. 2022, 10, 3203–3218. [Google Scholar] [CrossRef]
HBI Group | HBD Group | p-Value | |
---|---|---|---|
Weight, kg | 80.79 ± 2.70 | 81.07 ± 3.04 | 0.945 |
BMI, kg/m2 | 27.93 ± 0.68 | 28.64 ± 0.70 | 0.469 |
WC, cm | 93.57 ± 2.36 | 94.21 ± 1.80 | 0.830 |
Total body fat, % | 33.64 ± 1.85 | 33.29 ± 2.21 | 0.902 |
Visceral fat area, cm2 | 123.43 ± 8.67 | 123.21 ± 10.43 | 0.988 |
Lean body mass, kg | 30.36 ± 1.58 | 30.36 ± 1.62 | 1.000 |
SBP, mmHg | 126.21 ± 2.34 | 126.0 ± 1.74 | 0.942 |
DBP, mmHg | 77.79 ± 1.48 | 76.71 ± 1.43 | 0.607 |
Pulse, rate/min | 75.43 ± 2.52 | 71.36 ± 1.77 | 0.199 |
Fasting glucose, mg/dL | 99.21 ± 2.32 | 101.14 ± 2.28 | 0.558 |
Plasma insulin, µU/dL | 12.50 ± 1.77 | 15.21 ± 2.08 | 0.329 |
HbA1c, % | 5.50 ± 0.14 | 5.71 ± 0.13 | 0.262 |
HOMA-IR | 3.07 ± 0.47 | 3.93 ± 0.59 | 0.267 |
AGE | 1.88 ± 0.26 | 2.01 ± 0.32 | 0.229 |
Triglyceride, mg/dL | 134.50 ± 23.14 | 132.21 ± 19.57 | 0.940 |
Total cholesterol, mg/dL | 193.36 ± 8.87 | 198.57 ± 6.68 | 0.643 |
LDL cholesterol, mg/dL | 115.57 ± 8.13 | 114.43 ± 4.97 | 0.906 |
HDL cholesterol, mg/dL | 55.79 ± 3.61 | 57.71 ± 4.33 | 0.735 |
Apo A1, mg/dL | 164.71 ± 5.50 | 167.43 ± 8.45 | 0.790 |
Apo B, mg/dL | 96.93 ± 5.98 | 100.14 ± 4.86 | 0.680 |
Uric acid, mg/dL | 5.93 ± 0.32 | 6.14 ± 0.42 | 0.688 |
AST, U/L | 19.07 ± 1.43 | 21.50 ± 2.42 | 0.398 |
ALT, U/L | 23.43 ± 3.49 | 30.86 ± 6.81 | 0.344 |
rGTP, U/L | 24.50 ± 2.74 | 28.71 ± 6.36 | 0.548 |
BUN, mg/dL | 11.64 ± 0.59 | 13.07 ± 0.74 | 0.143 |
Creatinine, mg/dL | 0.85 ± 0.09 | 0.86 ± 0.10 | 1.000 |
eGFR, mL/min/1.73 m2 | 109.86 ± 6.21 | 105.64 ± 5.67 | 0.621 |
Samples | Energy (kcal/100 g) | Protein (g/100 g) | Fat (g/100 g) | Dietary Fiber (g/100 g) | Carbohydrate (g/100 g) |
---|---|---|---|---|---|
HBI | 393.0 ± 1.1 c | 8.0 ± 0.2 b | 3.4 ± 0.1 c | 4.1 ± 0.1 b | 82.7 ± 0.5 b |
HBD | 405.0 ± 1.3 a | 7.8 ± 0.3 b | 3.3 ± 0.1 c | 4.6 ± 0.1 a | 86.0 ± 0.6 a |
HBI meals | 395.4 ± 0.7 c | 9.4 ± 0.3 a | 6.4 ± 0.2 b | 2.7 ± 0.1 c | 76.3 ± 0.6 c |
HBD meals | 399.2 ± 3.1 b | 9.9 ± 0.6 a | 7.0 ± 0.1 a | 2.8 ± 0.1 c | 75.5 ± 0.7 c |
Samples | Particle Size Distribution (%) | Median Diameter (μm) | |||||
---|---|---|---|---|---|---|---|
0–20 (μm) | 20–40 (μm) | 40–60 (μm) | 60–100 (μm) | 100–200 (μm) | 200–400 (μm) | ||
HBI | 18.6 ± 0.6 c | 16.3 ± 0.5 ns | 11.6 ± 0.3 b | 22.8 ± 0.2 b | 23.3 ± 0.7 a | 7.1 ± 0.6 a | 68.2 ± 0.8 b |
HBD | 24.2 ± 0.7 a | 20.5 ± 0.7 ns | 14.3 ± 0.3 a | 24.5 ± 0.2 a | 16.3 ± 1.2 b | 0.5 ± 0.2 c | 52.0 ± 0.3 d |
HBI meals | 21.1 ± 0.6 b | 16.6 ± 0.5 ns | 11.9 ± 0.3 b | 24.1 ± 0.3 ab | 23.7 ± 1.0 a | 2.8 ± 0.7 b | 74.1 ± 0.4 a |
HBD meals | 21.6 ± 0.6 b | 17.8 ± 0.6 ns | 12.7 ± 0.3 b | 24.2 ± 0.2 ab | 21.9 ± 1.0 a | 2.1 ± 0.6 bc | 60.2 ± 0.9 c |
HBI Group (%) | HBD Group (%) | p-Value | |
---|---|---|---|
Weight, kg | −2.86 ± 0.69 (3.54) | −2.29 ± 0.41 (2.82) | 0.070 |
WC, cm | −2.86 ± 0.69 (3.06) | −4.14 ± 0.66 (4.40) | 0.872 |
Total body fat, % | −1.14 ± 0.29 (3.39) | −1.01 ± 0.35 (3.03) | 0.905 |
Visceral fat area, cm2 | −5.64 ± 1.20 (2.14) | −5.86 ± 1.20 (4.76) | 0.114 |
Lean body mass, kg | −1.43 ± 0.25 (4.71) | −1.43 ± 0.77 (4.71) | 0.937 |
Fasting glucose, mg/dL | −0.50 ± 1.98 (0.50) | −1.64 ± 3.01 (1.62) | 0.345 |
Plasma insulin, uU/dL | −2.21 ± 0.58 (17.68) | −5.71 ± 5.30 (37.54) | 0.021 |
HbA1c, % | 0.01 ± 0.11 (0.18) | −0.04 ± 0.11 (0.70) | 0.221 |
HOMA-IR | −0.50 ± 0.14 (16.29) | −1.50 ± 1.40 (38.17) | 0.023 |
AGEs, AU | 0.14 ± 0.18 (7.45) | −0.06 ± 0.14 (2.99) | 0.003 |
Triglyceride, mg/dL | −22.86 ± 11.30 (17.0) | −17.86 ± 12.78 (13.51) | 0.772 |
Total cholesterol, mg/dL | −20.0 ± 4.3 (10.34) | −26.57 ± 6.22 (13.38) | 0.395 |
LDL cholesterol, mg/dL | −5.14 ± 2.53 (4.45) | −8.29 ± 4.15 (7.24) | 0.451 |
HDL cholesterol, mg/dL | −8.50 ± 1.98 (51.23) | −10.79 ± 2.25 (18.70) | 0.524 |
Apo A1, mg/dL | −16.64 ± 3.43 (10.10) | −26.07 ± 4.22 (15.57) | 0.095 |
Apo B, mg/dL | 0.93 ± 2.40 (0.96) | −4.57 ± 4.00 (4.56) | 0.252 |
AST, U/L | 1.0 ± 1.2 (5.24) | 2.07 ± 2.84 (9.63) | 0.553 |
rGTP, U/L | −5.14 ± 1.98 (20.98) | −7.57 ± 2.41 (26.37) | 0.443 |
Uric acid, mg/dL | −0.07 ± 0.19 (1.18) | −0.43 ± 0.17 (7.0) | 0.127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Oh, S.-K.; Doo, M.; Chung, H.-J.; Park, H.-J.; Chun, H. Effects of Consuming Heat-Treated Dodamssal Brown Rice Containing Resistant Starch on Glucose Metabolism in Humans. Nutrients 2023, 15, 2248. https://doi.org/10.3390/nu15102248
Park J, Oh S-K, Doo M, Chung H-J, Park H-J, Chun H. Effects of Consuming Heat-Treated Dodamssal Brown Rice Containing Resistant Starch on Glucose Metabolism in Humans. Nutrients. 2023; 15(10):2248. https://doi.org/10.3390/nu15102248
Chicago/Turabian StylePark, Jiyoung, Sea-Kwan Oh, Miae Doo, Hyun-Jung Chung, Hyun-Jin Park, and Hyejin Chun. 2023. "Effects of Consuming Heat-Treated Dodamssal Brown Rice Containing Resistant Starch on Glucose Metabolism in Humans" Nutrients 15, no. 10: 2248. https://doi.org/10.3390/nu15102248
APA StylePark, J., Oh, S. -K., Doo, M., Chung, H. -J., Park, H. -J., & Chun, H. (2023). Effects of Consuming Heat-Treated Dodamssal Brown Rice Containing Resistant Starch on Glucose Metabolism in Humans. Nutrients, 15(10), 2248. https://doi.org/10.3390/nu15102248