Higher Serum Testosterone Level Was Associated with a Lower Risk of Prediabetes in US Adults: Findings from Nationally Representative Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Key Study Outcome Variables: Diabetes and Prediabetes
2.3. Key Study Exposure Variable: Testosterone
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Study Sample Characteristics and Distribution of Health Outcomes
3.2. Association between Testosterone and Prediabetes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC. National Diabetes Statistics Report. Available online: https://www.cdc.gov/diabetes/data/statistics-report/index.html (accessed on 26 January 2022).
- Vas, P.R.J.; Alberti, K.G.; Edmonds, M.E. Prediabetes: Moving away from a glucocentric definition. Lancet Diabetes Endocrinol. 2017, 5, 848–849. [Google Scholar] [CrossRef] [PubMed]
- Tabak, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimaki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 2020, 370, m2297. [Google Scholar] [CrossRef] [PubMed]
- Nichols, G.A.; Hillier, T.A.; Brown, J.B. Progression from newly acquired impaired fasting glusose to type 2 diabetes. Diabetes Care 2007, 30, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossmann, M. Low Testosterone in Men with Type 2 Diabetes: Significance and Treatment. J. Clin. Endocrinol. Metab. 2011, 96, 2341–2353. [Google Scholar] [CrossRef] [Green Version]
- Yao, Q.M.; Wang, B.; An, X.F.; Zhang, J.A.; Ding, L. Testosterone level and risk of type 2 diabetes in men: A systematic review and meta-analysis. Endocr. Connect. 2018, 7, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Ding, E.L.; Song, Y.; Malik, V.S.; Liu, S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2006, 295, 1288–1299. [Google Scholar] [CrossRef] [PubMed]
- Barone, B.; Napolitano, L.; Abate, M.; Cirillo, L.; Reccia, P.; Passaro, F.; Turco, C.; Morra, S.; Mastrangelo, F.; Scarpato, A.; et al. The Role of Testosterone in the Elderly: What Do We Know? Int. J. Mol. Sci. 2022, 23, 3535. [Google Scholar] [CrossRef]
- Atlantis, E.; Fahey, P.; Martin, S.; O’Loughlin, P.; Taylor, A.W.; Adams, R.J.; Shi, Z.; Wittert, G. Predictive value of serum testosterone for type 2 diabetes risk assessment in men. BMC Endocr. Disord. 2016, 16, 26. [Google Scholar] [CrossRef] [Green Version]
- Arthur, R.; Rohrmann, S.; Moller, H.; Selvin, E.; Dobs, A.S.; Kanarek, N.; Nelson, W.; Platz, E.A.; Van Hemelrijck, M. Pre-diabetes and serum sex steroid hormones among US men. Andrology 2017, 5, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, K.; Crawley, D.; Nelson, W.G.; Platz, E.A.; Selvin, E.; Van Hemelrijck, M.; Rohrmann, S. Hormonal patterns in men with prediabetes and diabetes in NHANES III: Possible links with prostate cancer. Cancer Causes Control. 2022, 33, 429–440. [Google Scholar] [CrossRef]
- Hu, T.Y.; Chen, Y.C.; Lin, P.; Shih, C.K.; Bai, C.H.; Yuan, K.C.; Lee, S.Y.; Chang, J.S. Testosterone-Associated Dietary Pattern Predicts Low Testosterone Levels and Hypogonadism. Nutrients 2018, 10, 1786. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, A.L.; Hsu, C.-Y.; Rau, H.-H.; Lin, L.-Y.; Chao, J.C.J. Dietary patterns in relation to testosterone levels and severity of impaired kidney function among middle-aged and elderly men in Taiwan: A cross-sectional study. Nutr. J. 2019, 18, 42. [Google Scholar] [CrossRef] [Green Version]
- Jannasch, F.; Kroger, J.; Schulze, M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestoni, G.; Riedl, A.; Breuninger, T.A.; Wawro, N.; Krieger, J.P.; Meisinger, C.; Rathmann, W.; Thorand, B.; Harris, C.; Peters, A.; et al. Association between dietary patterns and prediabetes, undetected diabetes or clinically diagnosed diabetes: Results from the KORA FF4 study. Eur. J. Nutr. 2021, 60, 2331–2341. [Google Scholar] [CrossRef]
- Qian, F.; Liu, G.; Hu, F.B.; Bhupathiraju, S.N.; Sun, Q. Association Between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2019, 179, 1335–1344. [Google Scholar] [CrossRef]
- Lokeshwar, S.D.; Patel, P.; Fantus, R.J.; Halpern, J.; Chang, C.; Kargi, A.Y.; Ramasamy, R. Decline in Serum Testosterone Levels Among Adolescent and Young Adult Men in the USA. Eur. Urol. Focus 2021, 7, 886–889. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National Health and Nutrition Examination Survey: Analytic Guidelines, 1999–2010; Vital and Health Statistics. Series 10, Data from the National Health Survey; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2013; pp. 1–24. [Google Scholar]
- American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 (Suppl. S1), S62–S69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, C.L.; Carroll, M.D.; Fakhouri, T.H.; Hales, C.M.; Fryar, C.D.; Li, X.; Freedman, D.S. Prevalence of Obesity Among Youths by Household Income and Education Level of Head of Household—United States 2011-2014. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 186–189. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Wittert, G.; Grossmann, M. Obesity, type 2 diabetes, and testosterone in ageing men. Rev. Endocr. Metab. Disord. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Shi, Z.; Araujo, A.B.; Martin, S.; O’Loughlin, P.; Wittert, G.A. Longitudinal changes in testosterone over five years in community-dwelling men. J. Clin. Endocrinol. Metab. 2013, 98, 3289–3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svartberg, J.; Midtby, M.; Bonaa, K.H.; Sundsfjord, J.; Joakimsen, R.M.; Jorde, R. The associations of age, lifestyle factors and chronic disease with testosterone in men: The Tromso Study. Eur. J. Endocrinol. 2003, 149, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.C.; Tajar, A.; Pye, S.R.; Silman, A.J.; Finn, J.D.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.; Forti, G.; Giwercman, A.; et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: The European Male Aging Study. J. Clin. Endocrinol. Metab. 2008, 93, 2737–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, E.C.; Matsumoto, A.M.; Fujimoto, W.Y.; Boyko, E.J. Association of Bioavailable, Free, and Total Testosterone With Insulin Resistance: Influence of sex hormone-binding globulin and body fat. Diabetes Care 2004, 27, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Yeap, B.B.; Chubb, S.A.; Hyde, Z.; Jamrozik, K.; Hankey, G.J.; Flicker, L.; Norman, P.E. Lower serum testosterone is independently associated with insulin resistance in non-diabetic older men: The Health In Men Study. Eur. J. Endocrinol. 2009, 161, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Luboshitzky, R.; Aviv, A.; Hefetz, A.; Herer, P.; Shen-Orr, Z.; Lavie, L.; Lavie, P. Decreased pituitary-gonadal secretion in men with obstructive sleep apnea. J. Clin. Endocrinol. Metab. 2002, 87, 3394–3398. [Google Scholar] [CrossRef]
- Wittert, G. The relationship between sleep disorders and testosterone in men. Asian J. Androl. 2014, 16, 262–265. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Wang, Y.; Wan, H.; Chen, Y.; Xia, F.; Zhang, K.; Wang, N.; Lu, Y. Novel associations between sex hormones and diabetic vascular complications in men and postmenopausal women: A cross-sectional study. Cardiovasc. Diabetol. 2019, 18, 97. [Google Scholar] [CrossRef]
Total | Q1 | Q2 | Q3 | Q4 | p Value | |
---|---|---|---|---|---|---|
A. Men | n = 2633 | n = 661 | n = 657 | n = 657 | n = 658 | |
Total testosterone, mean (SD) (ng/dL) * | 418.3 (×/1.6) | 230.8 (×/1.7) | 383.9 (×/1.1) | 493.0 (×/1.1) | 703.2 (×/1.2) | <0.001 |
Total testosterone, mean (SD) (ng/dL) | 461.4 (193.6) | 249.8 (68.2) | 385.3 (33.0) | 494.1 (33.3) | 717.5 (160.2) | <0.001 |
Age, mean (SD) (years) | 47.5 (17.3) | 50.9 (17.3) | 47.6 (17.3) | 46.5 (16.7) | 45.1 (17.4) | <0.001 |
Education | 0.091 | |||||
<11 grade | 591 (22.4%) | 138 (20.9%) | 160 (24.4%) | 141 (21.5%) | 152 (23.1%) | |
High school diploma or GED | 616 (23.4%) | 150 (22.7%) | 140 (21.3%) | 148 (22.5%) | 178 (27.1%) | |
College | 732 (27.8%) | 202 (30.6%) | 170 (25.9%) | 184 (28.0%) | 176 (26.7%) | |
>Post-graduate School | 694 (26.4%) | 171 (25.9%) | 187 (28.5%) | 184 (28.0%) | 152 (23.1%) | |
Race | 0.21 | |||||
NH White | 1096 (41.6%) | 289 (43.7%) | 280 (42.6%) | 275 (41.9%) | 252 (38.3%) | |
NH Black | 466 (17.7%) | 109 (16.5%) | 105 (16.0%) | 117 (17.8%) | 135 (20.5%) | |
Mex American | 356 (13.5%) | 84 (12.7%) | 103 (15.7%) | 89 (13.5%) | 80 (12.2%) | |
Other race/ethnicity | 715 (27.2%) | 179 (27.1%) | 169 (25.7%) | 176 (26.8%) | 191 (29.0%) | |
Income to poverty ratio | 0.23 | |||||
<1.30 | 754 (31.1%) | 173 (28.5%) | 187 (30.8%) | 182 (30.2%) | 212 (34.8%) | |
1.3–3.5 | 879 (36.2%) | 218 (35.9%) | 225 (37.0%) | 217 (36.0%) | 219 (35.9%) | |
>3.5 | 794 (32.7%) | 216 (35.6%) | 196 (32.2%) | 203 (33.7%) | 179 (29.3%) | |
Smoking | <0.001 | |||||
Never | 1240 (47.2%) | 308 (46.7%) | 321 (48.9%) | 327 (49.9%) | 284 (43.2%) | |
Former | 767 (29.2%) | 229 (34.7%) | 205 (31.2%) | 169 (25.8%) | 164 (25.0%) | |
Current smoker | 622 (23.7%) | 123 (18.6%) | 131 (19.9%) | 159 (24.3%) | 209 (31.8%) | |
Drinking alcohol | 0.011 | |||||
No | 385 (14.6%) | 126 (19.1%) | 95 (14.5%) | 84 (12.8%) | 80 (12.2%) | |
Yes | 1941 (73.7%) | 457 (69.1%) | 492 (74.9%) | 494 (75.2%) | 498 (75.7%) | |
Missing | 307 (11.7%) | 78 (11.8%) | 70 (10.7%) | 79 (12.0%) | 80 (12.2%) | |
Physical activity (METs minutes/week) | <0.001 | |||||
<600 | 778 (29.6%) | 234 (35.5%) | 182 (27.7%) | 195 (29.7%) | 167 (25.4%) | |
600–1200 | 259 (9.8%) | 75 (11.4%) | 69 (10.5%) | 65 (9.9%) | 50 (7.6%) | |
≥1200 | 1594 (60.6%) | 351 (53.2%) | 405 (61.7%) | 397 (60.4%) | 441 (67.0%) | |
HEI-2015 | 41.9 (14.4) | 41.8 (13.5) | 42.3 (14.9) | 41.7 (14.9) | 41.6 (14.3) | 0.86 |
BMI (kg/m2), mean (SD) | 28.3 (5.9) | 31.7 (6.7) | 29.0 (5.1) | 27.3 (4.8) | 25.1 (4.4) | <0.001 |
Overweight/obese | 1829 (69.9%) | 569 (86.7%) | 525 (80.3%) | 442 (67.7%) | 293 (44.9%) | <0.001 |
Hypertension | 824 (31.8%) | 270 (41.5%) | 228 (35.2%) | 186 (28.6%) | 140 (21.7%) | <0.001 |
Diabetes status (IFG/A1C/OGTT) | <0.001 | |||||
Normal | 1024 (38.9%) | 176 (26.6%) | 240 (36.5%) | 295 (44.9%) | 313 (47.6%) | |
Prediabetes | 1366 (51.9%) | 379 (57.3%) | 355 (54.0%) | 316 (48.1%) | 316 (48.0%) | |
Diabetes | 243 (9.2%) | 106 (16.0%) | 62 (9.4%) | 46 (7.0%) | 29 (4.4%) | |
Having known prediabetes | 145 (5.7%) | 50 (8.0%) | 37 (5.8%) | 29 (4.6%) | 29 (4.5%) | 0.022 |
Perceived at risk for diabetes/prediabetes | 678 (26.0%) | 200 (30.8%) | 168 (25.8%) | 165 (25.3%) | 145 (22.3%) | 0.005 |
Glucose test past 3 years | 1171 (45.0%) | 346 (53.3%) | 286 (43.9%) | 287 (44.0%) | 252 (38.7%) | <0.001 |
Family history of diabetes | 483 (18.3%) | 139 (21.0%) | 121 (18.4%) | 125 (19.0%) | 98 (14.9%) | 0.035 |
Medicine use ** | 230 (8.7%) | 68 (10.3%) | 50 (7.6%) | 53 (8.1%) | 59 (9.0%) | 0.33 |
B. Women | n = 2697 | n = 676 | n = 673 | n = 674 | n = 674 | |
Testosterone total (ng/dL) * | 20.3 (×/1.8) | 9.7 (×/1.5) | 17.5 (×/1.1) | 24.6 (×/1.1) | 41.2 (×/1.4) | <0.001 |
Testosterone total (ng/dL) | 24.4 (22.4) | 10.3 (2.9) | 17.6 (1.8) | 24.7 (2.4) | 45.3 (36.1) | <0.001 |
Age (years) | 47.9 (17.2) | 55.5 (15.4) | 49.1 (15.8) | 44.3 (16.2) | 42.5 (18.1) | <0.001 |
Education | <0.001 | |||||
<11 grade | 543 (20.1%) | 163 (24.1%) | 141 (21.0%) | 128 (19.0%) | 111 (16.5%) | |
High school diploma or GED | 530 (19.7%) | 130 (19.2%) | 147 (21.8%) | 125 (18.5%) | 128 (19.0%) | |
College | 864 (32.0%) | 190 (28.1%) | 199 (29.6%) | 216 (32.0%) | 259 (38.5%) | |
>Post-graduate School | 759 (28.2%) | 193 (28.6%) | 186 (27.6%) | 205 (30.4%) | 175 (26.0%) | |
Race | <0.001 | |||||
NH White | 1090 (40.4%) | 259 (38.3%) | 286 (42.5%) | 257 (38.1%) | 288 (42.7%) | |
NH Black | 530 (19.7%) | 120 (17.8%) | 109 (16.2%) | 143 (21.2%) | 158 (23.4%) | |
Mex American | 372 (13.8%) | 99 (14.6%) | 109 (16.2%) | 96 (14.2%) | 68 (10.1%) | |
Other race/ethnicity | 705 (26.1%) | 198 (29.3%) | 169 (25.1%) | 178 (26.4%) | 160 (23.7%) | |
Income to poverty ratio | 0.15 | |||||
<1.30 | 868 (34.9%) | 213 (35.0%) | 198 (32.6%) | 211 (33.2%) | 246 (38.5%) | |
1.3–3.5 | 888 (35.7%) | 212 (34.9%) | 218 (35.9%) | 226 (35.6%) | 232 (36.3%) | |
>3.5 | 733 (29.4%) | 183 (30.1%) | 191 (31.5%) | 198 (31.2%) | 161 (25.2%) | |
Smoking | <0.001 | |||||
Never | 1802 (66.9%) | 477 (70.8%) | 466 (69.3%) | 446 (66.2%) | 413 (61.3%) | |
Former | 453 (16.8%) | 124 (18.4%) | 107 (15.9%) | 112 (16.6%) | 110 (16.3%) | |
Current smoker | 439 (16.3%) | 73 (10.8%) | 99 (14.7%) | 116 (17.2%) | 151 (22.4%) | |
Drinking | <0.001 | |||||
No | 384 (14.2%) | 127 (18.8%) | 92 (13.7%) | 93 (13.8%) | 72 (10.7%) | |
Yes | 1603 (59.4%) | 356 (52.7%) | 393 (58.4%) | 411 (61.0%) | 443 (65.7%) | |
Missing | 710 (26.3%) | 193 (28.6%) | 188 (27.9%) | 170 (25.2%) | 159 (23.6%) | |
Physical activity (METs minutes/week) | 0.085 | |||||
<600 | 1159 (43.0%) | 319 (47.2%) | 288 (42.8%) | 289 (42.9%) | 263 (39.0%) | |
600–1200 | 334 (12.4%) | 86 (12.7%) | 78 (11.6%) | 85 (12.6%) | 85 (12.6%) | |
≥1200 | 1204 (44.6%) | 271 (40.1%) | 307 (45.6%) | 300 (44.5%) | 326 (48.4%) | |
HEI-2015 | 43.5 (14.2) | 44.4 (13.8) | 43.5 (14.8) | 43.5 (13.8) | 42.7 (14.4) | 0.22 |
BMI (kg/m2) | 29.2 (7.6) | 29.1 (7.2) | 29.4 (7.1) | 29.2 (7.8) | 29.1 (8.1) | 0.89 |
Overweight/obese | 1803 (67.3%) | 444 (66.4%) | 467 (69.7%) | 453 (67.3%) | 439 (65.6%) | 0.41 |
Hypertension | 816 (31.1%) | 287 (43.4%) | 196 (30.2%) | 159 (24.1%) | 174 (26.6%) | <0.001 |
Type 2 Diabetes (IFG/A1C/OGTT) | <0.001 | |||||
Normal | 1320 (48.9%) | 240 (35.5%) | 301 (44.7%) | 378 (56.1%) | 401 (59.5%) | |
Prediabetes | 1142 (42.3%) | 360 (53.3%) | 303 (45.0%) | 254 (37.7%) | 225 (33.4%) | |
Diabetes | 235 (8.7%) | 76 (11.2%) | 69 (10.3%) | 42 (6.2%) | 48 (7.1%) | |
Known prediabetes | 217 (8.4%) | 68 (10.6%) | 51 (7.9%) | 49 (7.6%) | 49 (7.4%) | 0.12 |
Perceived at risk for diabetes/prediabetes | 870 (32.8%) | 211 (31.7%) | 219 (33.3%) | 219 (33.0%) | 221 (33.1%) | 0.93 |
Glucose test past 3 years | 1417 (53.4%) | 409 (61.5%) | 352 (53.5%) | 349 (52.6%) | 307 (46.0%) | <0.001 |
Family history of diabetes | 674 (25.0%) | 161 (23.8%) | 172 (25.6%) | 174 (25.8%) | 167 (24.8%) | 0.83 |
Medication use ** | 247 (9.2%) | 94 (13.9%) | 58 (8.6%) | 48 (7.1%) | 47 (7.0%) | <0.001 |
Quartiles of Testosterone | p-Value | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Men | |||||
Model 1 | 1.00 | 0.68 (0.50–0.92) | 0.51 (0.36–0.72) | 0.48 (0.34–0.70) | <0.001 |
Model 2 | 1.00 | 0.73 (0.53–1.00) | 0.57 (0.40–0.81) | 0.51 (0.35–0.72) | <0.001 |
Model 2+HEI-2015 | 1.00 | 0.72 (0.52–1.00) | 0.56 (0.39–0.80) | 0.50 (0.35–0.73) | <0.001 |
Model 2+hypertension | 1.00 | 0.75 (0.54–1.04) | 0.59 (0.41–0.84) | 0.52 (0.36–0.74) | <0.001 |
Model 2+ BMI | 1.00 | 0.82 (0.59–1.15) | 0.71 (0.48–1.05) | 0.69 (0.45–1.05) | 0.052 |
Model 2+excluding medication users ** | 1.00 | 0.68 (0.49–0.95) | 0.53 (0.37–0.76) | 0.46 (0.31–0.67) | <0.001 |
Women | |||||
Model 1 | 1.00 | 1.06 (0.81–1.40) | 0.81 (0.61–1.06) | 0.68 (0.49–0.93) | 0.004 |
Model 2 | 1.00 | 1.13 (0.83–1.53) | 0.82 (0.63–1.07) | 0.72 (0.52–1.01) | 0.013 |
Model 2+HEI-2015 | 1.00 | 1.14 (0.84–1.55) | 0.81 (0.62–1.05) | 0.72 (0.51–1.02) | 0.013 |
Model 2+hypertension | 1.00 | 1.12 (0.84–1.50) | 0.85 (0.65–1.10) | 0.72 (0.52–0.99) | 0.015 |
Model 2+ BMI | 1.00 | 1.07 (0.78–1.49) | 0.79 (0.60–1.05) | 0.70 (0.50–0.98) | 0.009 |
Model 2+excluding medication users ** | 1.00 | 1.12 (0.81–1.54) | 0.84 (0.65–1.09) | 0.72 (0.51–1.02) | 0.014 |
Quartiles of Testosterone | p Trend | p Interaction | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |||
A. Men Age ≥ 50 years | 0.097 | |||||
No | 1.00 | 0.54 (0.36–0.81) | 0.43 (0.29–0.64) | 0.39 (0.26–0.59) | <0.001 | |
Yes | 1.00 | 1.30 (0.69–2.43) | 0.96 (0.50–1.86) | 0.69 (0.39–1.23) | 0.112 | |
Race | 0.981 | |||||
NH White | 1.00 | 0.70 (0.46–1.07) | 0.59 (0.36–0.96) | 0.50 (0.31–0.80) | 0.002 | |
NH Black | 1.00 | 0.71 (0.38–1.33) | 0.48 (0.26–0.91) | 0.48 (0.26–0.89) | 0.016 | |
Mex American | 1.00 | 1.20 (0.46–3.14) | 0.58 (0.24–1.40) | 0.59 (0.28–1.25) | 0.040 | |
Other race/ethnicity | 1.00 | 0.68 (0.32–1.42) | 0.58 (0.32–1.05) | 0.53 (0.27–1.02) | 0.052 | |
Income to poverty ratio | 0.560 | |||||
<1.30 | 1.00 | 0.45 (0.25–0.81) | 0.39 (0.21–0.75) | 0.34 (0.18–0.64) | 0.003 | |
1.3–3.5 | 1.00 | 0.88 (0.49–1.58) | 0.75 (0.46–1.21) | 0.59 (0.35–1.00) | 0.027 | |
>3.5 | 1.00 | 0.67 (0.36–1.26) | 0.51 (0.29–0.89) | 0.44 (0.26–0.75) | 0.001 | |
Education | 0.186 | |||||
<11 grade | 1.00 | 0.73 (0.29–1.82) | 0.60 (0.30–1.23) | 0.28 (0.13–0.60) | 0.001 | |
HS diploma or GED | 1.00 | 0.39 (0.18–0.83) | 0.32 (0.13–0.79) | 0.40 (0.18–0.88) | 0.040 | |
College | 1.00 | 0.67 (0.41–1.09) | 0.57 (0.36–0.92) | 0.68 (0.39–1.18) | 0.120 | |
>Post-graduate school | 1.00 | 1.13 (0.63–2.04) | 0.74 (0.37–1.49) | 0.51 (0.26–0.99) | 0.027 | |
Smoking | 0.204 | |||||
Never | 1.00 | 0.73 (0.45–1.17) | 0.47 (0.30–0.73) | 0.40 (0.24–0.65) | <0.001 | |
Former | 1.00 | 0.88 (0.49–1.55) | 0.74 (0.39–1.41) | 0.50 (0.25–0.99) | 0.039 | |
Current smoker | 1.00 | 0.51 (0.24–1.08) | 0.63 (0.28–1.44) | 0.73 (0.34–1.55) | 0.734 | |
Hypertension | 0.707 | |||||
No | 1.00 | 0.78 (0.55–1.10) | 0.61 (0.43–0.85) | 0.56 (0.36–0.85) | 0.002 | |
Yes | 1.00 | 0.72 (0.34–1.50) | 0.52 (0.24–1.10) | 0.39 (0.20–0.76) | 0.004 | |
Overweight/obese | 0.866 | |||||
No | 1.00 | 0.67 (0.25–1.84) | 0.61 (0.25–1.53) | 0.61 (0.25–1.49) | 0.354 | |
Yes | 1.00 | 0.74 (0.54–1.03) | 0.59 (0.41–0.84) | 0.50 (0.32–0.79) | <0.001 | |
Physical activity (METs minutes/week) | 0.804 | |||||
<600 | 1.00 | 0.93 (0.41–2.09) | 0.48 (0.21–1.09) | 0.42 (0.20–0.89) | 0.005 | |
600–1200 | 1.00 | 0.91 (0.28–3.01) | 0.73 (0.24–2.21) | 0.66 (0.17–2.61) | 0.451 | |
≥1200 | 1.00 | 0.64 (0.37–1.09) | 0.59 (0.38–0.91) | 0.51 (0.31–0.84) | 0.006 | |
A. Women Age ≥ 50 years | 0.306 | |||||
No | 1.00 | 1.56 (0.91–2.69) | 1.28 (0.77–2.12) | 1.15 (0.64–2.06) | 0.858 | |
Yes | 1.00 | 1.01 (0.65–1.58) | 0.60 (0.39–0.92) | 0.57 (0.37–0.90) | 0.002 | |
Race | 0.464 | |||||
NH White | 1.00 | 1.43 (0.95–2.15) | 0.98 (0.67–1.44) | 0.96 (0.57–1.64) | 0.438 | |
NH Black | 1.00 | 0.88 (0.38–2.00) | 0.62 (0.33–1.19) | 0.45 (0.22–0.91) | 0.010 | |
Mex American | 1.00 | 0.65 (0.24–1.76) | 0.53 (0.20–1.39) | 0.68 (0.26–1.77) | 0.316 | |
Other race/ethnicity | 1.00 | 0.71 (0.42–1.17) | 0.72 (0.41–1.25) | 0.52 (0.29–0.93) | 0.039 | |
Income to poverty ratio | 0.254 | |||||
<1.30 | 1.00 | 0.90 (0.49–1.65) | 0.91 (0.63–1.30) | 0.72 (0.44–1.20) | 0.197 | |
1.3–3.5 | 1.00 | 1.18 (0.66–2.11) | 1.02 (0.64–1.62) | 0.87 (0.49–1.55) | 0.480 | |
>3.5 | 1.00 | 1.50 (0.85–2.64) | 0.69 (0.35–1.35) | 0.80 (0.40–1.61) | 0.133 | |
Education | 0.285 | |||||
<11 grade | 1.00 | 0.76 (0.36–1.59) | 0.57 (0.30–1.07) | 0.63 (0.28–1.41) | 0.140 | |
HS diploma or GED | 1.00 | 1.21 (0.57–2.56) | 1.50 (0.74–3.04) | 0.77 (0.30–1.93) | 0.627 | |
Some college | 1.00 | 1.49 (0.83–2.69) | 1.08 (0.55–2.10) | 0.92 (0.54–1.59) | 0.401 | |
>College | 1.00 | 1.20 (0.62–2.33) | 0.58 (0.35–0.96) | 0.82 (0.42–1.61) | 0.111 | |
Smoking | 0.525 | |||||
Never | 1.00 | 0.90 (0.60–1.35) | 0.81 (0.54–1.22) | 0.72 (0.46–1.14) | 0.112 | |
Former | 1.00 | 2.64 (1.06–6.58) | 0.97 (0.51–1.87) | 0.83 (0.36–1.95) | 0.181 | |
Current smoker | 1.00 | 1.58 (0.56–4.49) | 0.88 (0.38–2.04) | 1.02 (0.38–2.72) | 0.698 | |
Hypertension | 0.679 | |||||
No | 1.00 | 1.11 (0.81–1.52) | 0.86 (0.63–1.19) | 0.81 (0.55–1.19) | 0.117 | |
Yes | 1.00 | 1.41 (0.70–2.84) | 0.90 (0.46–1.74) | 0.71 (0.35–1.44) | 0.215 | |
Overweight/obese | 0.376 | |||||
No | 1.00 | 0.79 (0.40–1.56) | 0.69 (0.35–1.34) | 0.79 (0.39–1.60) | 0.428 | |
Yes | 1.00 | 1.31 (0.84–2.06) | 0.94 (0.63–1.40) | 0.78 (0.51–1.20) | 0.082 | |
Physical activity (METs minutes/week) | 0.259 | |||||
<600 | 1.00 | 1.09 (0.64–1.85) | 0.88 (0.60–1.30) | 0.99 (0.61–1.60) | 0.704 | |
600–1200 | 1.00 | 1.13 (0.36–3.53) | 0.91 (0.35–2.36) | 0.53 (0.15–1.92) | 0.267 | |
≥1200 | 1.00 | 1.23 (0.73–2.07) | 0.76 (0.46–1.26) | 0.69 (0.42–1.15) | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yan, A.F.; Cheskin, L.J.; Shi, Z. Higher Serum Testosterone Level Was Associated with a Lower Risk of Prediabetes in US Adults: Findings from Nationally Representative Data. Nutrients 2023, 15, 9. https://doi.org/10.3390/nu15010009
Wang J, Yan AF, Cheskin LJ, Shi Z. Higher Serum Testosterone Level Was Associated with a Lower Risk of Prediabetes in US Adults: Findings from Nationally Representative Data. Nutrients. 2023; 15(1):9. https://doi.org/10.3390/nu15010009
Chicago/Turabian StyleWang, Jason, Alice F. Yan, Lawrence J. Cheskin, and Zumin Shi. 2023. "Higher Serum Testosterone Level Was Associated with a Lower Risk of Prediabetes in US Adults: Findings from Nationally Representative Data" Nutrients 15, no. 1: 9. https://doi.org/10.3390/nu15010009
APA StyleWang, J., Yan, A. F., Cheskin, L. J., & Shi, Z. (2023). Higher Serum Testosterone Level Was Associated with a Lower Risk of Prediabetes in US Adults: Findings from Nationally Representative Data. Nutrients, 15(1), 9. https://doi.org/10.3390/nu15010009