Impact of Continuous Veno-Venous HemoDiALYsis with Regional Citrate Anticoagulation on Non-NUTRItional Calorie Balance in Patients on the ICU—The NUTRI-DAY Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. CVVHD Protocol
2.3. Data Protocol
2.4. Calculations of Lactate, Glucose and Citrate Balance
2.5. Statistics
3. Results
3.1. Study Cohort
3.2. Lactate Caloric Balance
3.3. Glucose Caloric Balance
3.4. Citrate Caloric Balance
3.5. Net Caloric Balance
4. Discussion
4.1. Lactate Balance
4.2. Glucose Balance
4.3. Citrate Balance
4.4. Net Balance for Lactate, Glucose, Citrate and Bedside Equation
4.5. Limitations
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stevenson, J.M.; Heung, M.; Vilay, A.M.; Eyler, R.F.; Patel, C.; Mueller, B.A. In vitro glucose kinetics during continuous renal replacement therapy: Implications for caloric balance in critically ill patients. Int. J. Artif. Organs 2013, 36, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Balik, M.; Zakharchenko, M.; Otahal, M.; Hruby, J.; Polak, F.; Rusinova, K.; Stach, Z.; Vavrova, J.; Jabor, A. Quantification of systemic delivery of substrates for intermediate metabolism during citrate anticoagulation of continuous renal replacement therapy. Blood Purif. 2012, 33, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Balik, M.; Zakharchenko, M.; Leden, P.; Otahal, M.; Hruby, J.; Polak, F.; Rusinova, K.; Stach, Z.; Tokarik, M.; Vavrova, J.; et al. Bioenergetic gain of citrate anticoagulated continuous hemodiafiltration—A comparison between 2 citrate modalities and unfractionated heparin. J. Crit. Care 2013, 28, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Bousie, E.; Van Blokland, D.; Lammers, H.J.W.; Van Zanten, A.R.H. Relevance of non-nutritional calories in mechanically ventilated critically ill patients. Eur. J. Clin. Nutr. 2016, 70, 1443–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- New, A.M.; Nystrom, E.M.; Frazee, E.; Dillon, J.J.; Kashani, K.B.; Miles, J.M. Continuous renal replacement therapy: A potential source of calories in the critically ill. Am. J. Clin. Nutr. 2017, 105, 1559–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. Edinb. Scotl. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012, 2, 1–138. [Google Scholar]
- Merrill, A.L.; Watt, B.K. Energy Value of Foods: Basis and Derivation; Human Nutrition Research Branch, Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- PubChem. Citric Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/311 (accessed on 16 December 2021).
- Bellomo, R.; Cass, A.; Cole, L.; Finfer, S.; Gallagher, M.; Lee, J.; Lo, S.; McArthur, C.; McGuinness, S.; Myburgh, J.; et al. Calorie intake and patient outcomes in severe acute kidney injury: Findings from the randomized evaluation of normal vs. augmented level of replacement therapy (RENAL) study trial. Crit. Care Lond. Engl. 2014, 18, R45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundi, M.S.; Nystrom, E.M.; Hurley, D.L.; McMahon, M.M. Management of parenteral nutrition in hospitalized adult patients. JPEN J. Parenter. Enteral Nutr. 2017, 41, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Weijs, P.J.; Looijaard, W.G.; Beishuizen, A.; Girbes, A.R.; Oudemans-van Straaten, H.M. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit. Care Lond. Engl. 2014, 18, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.H.; Ma, B.; Yang, K.; Liu, Y.; Tan, J.; Liu, T.X. Bicarbonate- versus lactate-buffered solutions for acute continuous haemodiafiltration or haemofiltration. Cochrane Database Syst. Rev. 2015, 3, CD006819. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, B.P.; McCowen, K.C. Clinical practice. Glycemic control in the ICU. N. Engl. J. Med. 2010, 363, 2540–2546. [Google Scholar] [CrossRef] [PubMed]
- Jonckheer, J.; Van Hoorn, A.; Oshima, T.; De Waele, E. Bioenergetic balance of continuous venovenous hemofiltration, a retrospective analysis. Nutrients 2022, 14, 2112. [Google Scholar] [CrossRef] [PubMed]
- Kindgen-Milles, D.; Amman, J.; Kleinekofort, W.; Morgera, S. Treatment of metabolic alkalosis during continuous renal replacement therapy with regional citrate anticoagulation. Int. J. Artif. Organs 2008, 31, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Hetzel, G.R.; Taskaya, G.; Sucker, C.; Hennersdorf, M.; Grabensee, B.; Schmitz, M. Citrate plasma levels in patients under regional anticoagulation in continuous venovenous hemofiltration. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2006, 48, 806–811. [Google Scholar] [CrossRef] [PubMed]
Content | Ci-Ca® Dialysate K2 |
---|---|
Sodium, mmol/L | 133.0 |
Potassium, mmol/L | 2.0 |
Chloride, mmol/L | 116.5 |
Sodium bicarbonate, mmol/L | 20.0 |
Magnesium, mmol/L | 0.75 |
Glucose, g/L | 1.0 |
Characteristic | Value |
---|---|
Age (years) | 67 ± 14 |
Men/Women (n) | 24/9 |
Body weight (kg) | 86 ± 24 |
BMI (kg/m2) | 29 ± 8 |
Nutrition administration (n) | |
| 20 3 10 |
SOFA Score | 12 ± 4 |
Glucose mg/dL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | ||
Lactate mg/dL | 10 | 119.6 | 29.6 | −60.4 | −150.4 | −240.4 | −330.4 | −420.4 | −510.4 | −600.4 |
20 | 102.2 | 12.2 | −77.8 | −167.8 | −257.8 | −347.8 | −437.8 | −527.8 | −617.8 | |
30 | 84.9 | −5.1 | −95.1 | −185.1 | −275.1 | −365.1 | −455.1 | −545.1 | −635.1 | |
40 | 67.5 | −22.5 | −112.5 | −202.5 | −292.5 | −382.5 | −472.5 | −562.5 | −652.5 | |
50 | 50.1 | −39.9 | −129.9 | −219.9 | −309.9 | −399.9 | −489.9 | −579.9 | −669.9 | |
60 | 32.7 | −57.3 | −147.3 | −237.3 | −327.3 | −417.3 | −507.3 | −597.3 | −687.3 | |
70 | 15.4 | −74.6 | −164.6 | −254.6 | −344.6 | −434.6 | −524.6 | −614.6 | −704.6 | |
80 | −2.0 | −92.0 | −182.0 | −272.0 | −362.0 | −452.0 | −542.0 | −632.0 | −722.0 | |
90 | −19.4 | −109.4 | −199.4 | −289.4 | −379.4 | −469.4 | −559.4 | −649.4 | −739.4 | |
100 | −36.8 | −126.8 | −216.8 | −306.8 | −396.8 | −486.8 | −576.8 | −666.8 | −756.8 |
Glucose mg/dL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | ||
Lactate mg/dL | 10 | 178.9 | 43.9 | −91.1 | −226.1 | −361.1 | −496.1 | −631.1 | −766.1 | −901.1 |
20 | 152.9 | 17.9 | −117.1 | −252.1 | −387.1 | −522.1 | −657.1 | −792.1 | −927.1 | |
30 | 126.8 | −8.2 | −143.2 | −278.2 | −413.2 | −548.2 | −683.2 | −818.2 | −953.2 | |
40 | 100.7 | −34.3 | −169.3 | −304.3 | −439.3 | −574.3 | −709.3 | −844.3 | −979.3 | |
50 | 74.7 | −60.3 | −195.3 | −330.3 | −465.3 | −600.3 | −735.3 | −870.3 | −1005.3 | |
60 | 48.6 | −86.4 | −221.4 | −356.4 | −491.4 | −626.4 | −761.4 | −896.4 | −1031.4 | |
70 | 22.6 | −112.4 | −247.4 | −382.4 | −517.4 | −652.4 | −787.4 | −922.4 | −1057.4 | |
80 | −3.5 | −138.5 | −273.5 | −408.5 | −543.5 | −678.5 | −813.5 | −948.5 | −1083.5 | |
90 | −29.6 | −164.6 | −299.6 | −434.6 | −569.6 | −704.6 | −839.6 | −974.6 | −1109.6 | |
100 | −55.6 | −190.6 | −325.6 | −460.6 | −595.6 | −730.6 | −865.6 | −1000.6 | −1135.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wechselberger, S.; Compton, F.; Schilling, J. Impact of Continuous Veno-Venous HemoDiALYsis with Regional Citrate Anticoagulation on Non-NUTRItional Calorie Balance in Patients on the ICU—The NUTRI-DAY Study. Nutrients 2023, 15, 63. https://doi.org/10.3390/nu15010063
Wechselberger S, Compton F, Schilling J. Impact of Continuous Veno-Venous HemoDiALYsis with Regional Citrate Anticoagulation on Non-NUTRItional Calorie Balance in Patients on the ICU—The NUTRI-DAY Study. Nutrients. 2023; 15(1):63. https://doi.org/10.3390/nu15010063
Chicago/Turabian StyleWechselberger, Simon, Friederike Compton, and Johannes Schilling. 2023. "Impact of Continuous Veno-Venous HemoDiALYsis with Regional Citrate Anticoagulation on Non-NUTRItional Calorie Balance in Patients on the ICU—The NUTRI-DAY Study" Nutrients 15, no. 1: 63. https://doi.org/10.3390/nu15010063
APA StyleWechselberger, S., Compton, F., & Schilling, J. (2023). Impact of Continuous Veno-Venous HemoDiALYsis with Regional Citrate Anticoagulation on Non-NUTRItional Calorie Balance in Patients on the ICU—The NUTRI-DAY Study. Nutrients, 15(1), 63. https://doi.org/10.3390/nu15010063