Low-Density Lipoprotein Cholesterol, Structural Atherosclerosis, and Functional Atherosclerosis in Older Japanese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Laboratory Measurements
2.3. Evaluation of Structural Atherosclerosis
2.4. Evaluation of Functional Atherosclerosis
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Association between Structural and Functional Atherosclerosis
3.3. Association between LDLc and Both Structural and Functional Atherosclerosis
3.4. Sex-Specific Associations between LDLc and Both Structural and Functional Atherosclerosis
3.5. Association between LDLc and Functional Atherosclerosis According to the Status of Structural Atherosclerosis
3.6. Associations between LDLc and Both Structural and Functional Atherosclerosis by Age Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimizu, Y.; Yamanashi, H.; Noguchi, Y.; Koyamatsu, J.; Nagayoshi, M.; Kiyoura, K.; Fukui, S.; Tamai, M.; Kawashiri, S.-Y.; Kondo, H.; et al. Cardio-ankle vascular index and circulating CD34-positive cell levels as indicators of endothelial repair activity in older Japanese men. Geriatr. Gerontol. Int. 2019, 19, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Aroor, A.R.; Jia, C.; Sowers, J.R. Endothelial cell senescence in aging-related vascular dysfunction. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2019, 1865, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Zyriax, B.-C.; Dransfeld, K.; Windler, E. Carotid intima–media thickness and cardiovascular risk factors in healthy volunteers. Ultrasound J. 2021, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Jukema, R.A.; Ahmed, T.A.N.; Tardif, J.-C. Does low-density lipoprotein cholesterol induce inflammation? If so, does it matter? Current insights and future perspectives for novel therapies. BMC Med. 2019, 17, 197. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Friera, L.; Fuster, V.; López-Melgar, B.; Oliva, B.; García-Ruiz, J.M.; Mendiguren, J.; Bueno, H.; Pocock, S.; Ibáñez, B.; Fernández-Ortiz, A.; et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J. Am. Coll. Cardiol. 2017, 70, 2979–2991. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Rafii, S.; Wu, M.H.; Wijelath, E.S.; Yu, C.; Ishida, A.; Fujita, Y.; Kothari, S.; Mohle, R.; Sauvage, L.R.; et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998, 92, 362–367. [Google Scholar] [CrossRef]
- Cimato, T.R.; Palka, B.A.; Lang, J.K.; Young, R.F. LDL cholesterol modulates human CD34+ HSPCs through effects on proliferation and the IL-17 G-CSF axis. PLoS ONE 2013, 8, e73861. [Google Scholar] [CrossRef]
- Shimizu, Y.; Maeda, T. Influence of height on endothelial maintenance activity: A narrative review. Environ. Health. Prev. Med. 2021, 26, 19. [Google Scholar] [CrossRef]
- Hara, T.; Takamura, N.; Akashi, S.; Nakazato, M.; Maeda, T.; Wada, M.; Nakashima, K.; Abe, Y.; Kusano, Y.; Aoyagi, K. Evaluation of clinical markers of atherosclerosis in young and elderly Japanese adults. Clin. Chem. Lab. Med. 2006, 44, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Yanase, T.; Nasu, S.; Mukuta, Y.; Shimizu, Y.; Nishihara, T.; Okabe, T.; Nomura, M.; Inoguchi, T.; Nawata, H. Evaluation of a new carotid intima-media thickness measurement by B-mode ultrasonography using an innovative measurement software, intimascope. Am. J. Hypertens. 2006, 19, 1206–1212. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawashiri, S.-Y.; Kiyoura, K.; Koyamatsu, J.; Fukui, S.; Tamai, M.; Nobusue, K.; Yamanashi, H.; Nagata, Y.; Maeda, T. Circulating CD34+ cells and active arterial wall thickening among elderly men: A prospective study. Sci. Rep. 2020, 10, 4656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y.; Sato, S.; Noguchi, Y.; Koyamatsu, J.; Yamanashi, H.; Higashi, M.; Nagayoshi, M.; Kawashiri, S.-Y.; Nagata, Y.; Takamura, N.; et al. Association between tongue pressure and subclinical carotid atherosclerosis in relation to platelet levels in hypertensive elderly men: A cross-sectional study. Environ. Health Prev. Med. 2018, 23, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashina, A.; Tomiyama, H.; Arai, T.; Koji, Y.; Yambe, M.; Motobe, H.; Glunizia, Z.; Yamamoto, Y.; Hori, S. Nomogram of the relation of brachial-ankle pulse wave velocity with blood pressure. Hypertens. Res. 2003, 26, 801–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirai, K.; Hiruta, N.; Song, M.; Kurosu, T.; Suzuki, J.; Tomaru, T.; Miyashita, Y.; Saiki, A.; Takahashi, M.; Suzuki, K.; et al. Cardio-ankle vascular index (CAVI) as a novel indicator of arterial stiffness: Theory, evidence and perspectives. J. Atheroscler. Thromb. 2011, 18, 924–938. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, L.; Erkan, H.; Korkmaz, A.A.; Acar, Z.; Ağaç, M.T.; Bektaş, H.; Akyüz, A.R.; Adar, A.; Çelik, S. Relationship of aortic knob width with cardio-ankle vascular stiffness index and its value in diagnosis of subclinical atherosclerosis in hypertensive patients: A study on diagnostic accuracy. Anadolu Kardiyol. Derg./Anatol. J. Cardiol. 2012, 12, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, L.; Adar, A.; Korkmaz, A.A.; Erkan, H.; Agac, M.T.; Acar, Z.; Kurt, I.H.; Akyuz, A.R.; Celik, S. Atherosclerosis burden and coronary artery lesion complexity in acute coronary syndrome patients. Cardiol. J. 2012, 19, 295–300. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nakazato, M.; Sekita, T.; Kadota, K.; Yamasaki, H.; Takamura, N.; Aoyagi, K.; Maeda, T. Association of arterial stiffness and diabetes with triglycerides-to-HDL cholesterol ratio for Japanese men: The Nagasaki Islands Study. Atherosclerosis 2013, 228, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Jarauta, E.; Mateo-Gallego, R.; Bea, A.; Burillo, E.; Calmarza, P.; Civeira, F. Carotid intima-media thickness in subjects with no cardiovascular risk factors. Revista Española Cardiología 2010, 63, 97–102. [Google Scholar] [CrossRef]
- Kadota, K.; Takamura, N.; Aoyagi, K.; Yamasaki, H.; Usa, T.; Nakazato, M.; Maeda, T.; Wada, M.; Nakashima, K.; Abe, K.; et al. Availability of cardio-ankle vascular index (CAVI) as a screening tool for atherosclerosis. Circ. J. 2008, 72, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [Google Scholar] [CrossRef]
- Stellos, K.; Seizer, P.; Bigalke, B.; Daub, K.; Geisler, T.; Gawaz, M. Platelet aggregates-induced human CD34+ progenitor cell proliferation and differentiation to macrophages and foam cells is mediated by stromal cell derived factor 1 in vitro. Semin. Thromb. Hemost. 2010, 36, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, J.; Yan, F.; Leung, H.H.L.; Chong, B.H. Megakaryocyte differentiation and platelet formation from human cord blood-derived CD34+ cells. J. Vis. Exp. 2017, 56420. [Google Scholar] [CrossRef]
- Stellos, K.; Langer, H.; Daub, K.; Schoenberger, T.; Gauss, A.; Geisler, T.; Bigalke, B.; Mueller, I.; Schumm, M.; Schaefer, I.; et al. Platelet-derived stromal cell–derived factor-1 regulates adhesion and promotes differentiation of human CD34 + cells to endothelial progenitor cells. Circulation 2008, 117, 206–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chistiakov, D.A.; Melnichenko, A.A.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Mechanisms of foam cell formation in atherosclerosis. J. Mol. Med. 2017, 95, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Brusnahan, S.K.; McGuire, T.R.; Jackson, J.D.; Lane, J.T.; Garvin, K.L.; O’Kane, B.J.; Berger, A.M.; Tuljapurkar, S.R.; Kessinger, M.A.; Sharp, J.G. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: Correlation with cytokines. Mech. Ageing Dev. 2010, 131, 718–722. [Google Scholar] [CrossRef] [Green Version]
- Garvin, K.; Feschuk, C.; Sharp, J.G.; Berger, A. Does the number or quality of pluripotent bone marrow stem cells decrease with age? Clin. Orthop. Relat. Res. 2007, 465, 202–207. [Google Scholar] [CrossRef]
- Shimizu, Y. Mechanism underlying vascular remodeling in relation to circulating CD34-positive cells among older Japanese men. Sci. Rep. 2022, 12, 21823. [Google Scholar] [CrossRef] [PubMed]
- Odden, M.C.; Rawlings, A.M.; Arnold, A.M.; Cushman, M.; Biggs, M.L.; Psaty, B.M.; Newman, A.B. Patterns of cardiovascular risk factors in old age and survival and health status at 90. J. Gerontol. A. Biol. Sci. Med. Sci. 2020, 75, 2207–2214. [Google Scholar] [CrossRef]
- Mora, S.; Akinkuolie, A.O.; Sandhu, R.K.; Conen, D.; Albert, C.M. Paradoxical association of lipoprotein measures with incident atrial fibrillation. Circ. Arrhythm Electrophysiol. 2014, 7, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Nagayama, D.; Fujishiro, K.; Nakamura, K.; Watanabe, Y.; Yamaguchi, T.; Suzuki, K.; Shimizu, K.; Saiki, A.; Shirai, K. Cardio-ankle vascular index is associated with prevalence and new-appearance of atrial fibrillation in Japanese urban residents: A retrospective cross-sectional and cohort study. Vasc. Health Risk Manag. 2022, 18, 5–15. [Google Scholar] [CrossRef]
LDL Cholesterol | p for Trend | |||
---|---|---|---|---|
T1 (Low) | T2 | T3 (High) | ||
No. of participants | 486 | 489 | 483 | |
Men, % | 35.0 | 36.2 | 34.4 | 0.832 |
Age | 70.8 ± 5.2 | 69.8 ± 5.3 | 69.7 ± 5.5 | 0.003 |
Overweight, %, | 24.5 | 23.5 | 25.1 | 0.853 |
Underweight, % | 7.8 | 8.6 | 7.5 | 0.800 |
Hypertension, % | 67.7 | 59.9 | 58.4 | 0.006 |
Drinking status: daily, % | 18.7 | 18.2 | 13.0 | 0.032 |
Drinking status, often, % | 11.5 | 13.9 | 17.0 | 0.051 |
Current smoker, % | 9.3 | 9.0 | 7.2 | 0.475 |
Former smoker, % | 22.8 | 20.7 | 22.8 | 0.646 |
High triglycerides, % | 12.6 | 14.1 | 16.8 | 0.169 |
Low HDLc, % | 4.7 | 4.3 | 2.9 | 0.313 |
Diabetes, % | 10.1 | 5.7 | 8.7 | 0.040 |
Lipid-lowering medication use, % | 44.2 | 16.4 | 10.4 | <0.001 |
CIMT, mm | 0.91 ± 0.19 | 0.90 ± 0.19 | 0.94 ± 0.20 | 0.017 |
CAVI | 8.7 ± 1.1 | 8.5 ± 1.0 | 8.5 ± 1.1 | 0.014 |
Functional Atherosclerosis | p for Trend | |||
---|---|---|---|---|
Normal (CAVI < 8.0) | Early Atherosclerosis (CAVI: 8.0–8.9) | Atherosclerosis (CAVI ≥ 9.0) | ||
Structural atherosclerosis | ||||
No. at risk | 408 | 556 | 494 | |
No. of cases (%) | 37 (9.1) | 93 (16.7) | 107 (21.7) | |
Model 1 | Ref | 1.58 (1.04, 2.40) | 1.62 (1.05, 2.48) | 0.048 |
Model 2 | Ref | 1.50 (0.99, 2.30) | 1.39 (0.90, 2.16) | 0.069 |
Model 3 | Ref | 1.51 (0.99, 2.30) | 1.39 (0.90, 2.16) | 0.231 |
LDL Cholesterol (LDLc) | p for Trend | 1 SD Increment of LDLc | |||
---|---|---|---|---|---|
T1 (Low) | T2 | T3 (High) | |||
Structural atherosclerosis | |||||
No. at risk | 486 | 489 | 483 | ||
No. of cases (%) | 70 (14.4) | 80 (16.4) | 87 (18.0) | ||
Model 1 | Ref | 1.28 (0.89, 1.83) | 1.48 (1.04, 2.11) | 0.031 | 1.22 (1.06, 1.42) |
Model 2 | Ref | 1.37 (0.95, 1.97) | 1.59 (1.10, 2.29) | 0.013 | 1.25 (1.08, 1.45) |
Model 3 | Ref | 1.44 (0.98, 2.10) | 1.69 (1.15, 2.50) | 0.008 | 1.28 (1.10, 1.50) |
Functional atherosclerosis | |||||
No. at risk | 486 | 489 | 483 | ||
No. of cases (%) | 199 (40.9) | 151 (30.9) | 144 (29.8) | ||
Model 1 | Ref | 0.68 (0.51, 0.90) | 0.66 (0.50, 0.87) | 0.003 | 0.82 (0.73, 0.92) |
Model 2 | Ref | 0.73 (0.55, 0.97) | 0.72 (0.54, 0.96) | 0.024 | 0.85 (0.75, 0.95) |
Model 3 | Ref | 0.73 (0.55, 0.99) | 0.73 (0.53, 0.99) | 0.040 | 0.85 (0.75, 0.96) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, Y.; Yamanashi, H.; Honda, Y.; Nonaka, F.; Miyata, J.; Kawashiri, S.-Y.; Noguchi, Y.; Nakamichi, S.; Nagata, Y.; Maeda, T. Low-Density Lipoprotein Cholesterol, Structural Atherosclerosis, and Functional Atherosclerosis in Older Japanese. Nutrients 2023, 15, 183. https://doi.org/10.3390/nu15010183
Shimizu Y, Yamanashi H, Honda Y, Nonaka F, Miyata J, Kawashiri S-Y, Noguchi Y, Nakamichi S, Nagata Y, Maeda T. Low-Density Lipoprotein Cholesterol, Structural Atherosclerosis, and Functional Atherosclerosis in Older Japanese. Nutrients. 2023; 15(1):183. https://doi.org/10.3390/nu15010183
Chicago/Turabian StyleShimizu, Yuji, Hirotomo Yamanashi, Yukiko Honda, Fumiaki Nonaka, Jun Miyata, Shin-Ya Kawashiri, Yuko Noguchi, Seiko Nakamichi, Yasuhiro Nagata, and Takahiro Maeda. 2023. "Low-Density Lipoprotein Cholesterol, Structural Atherosclerosis, and Functional Atherosclerosis in Older Japanese" Nutrients 15, no. 1: 183. https://doi.org/10.3390/nu15010183
APA StyleShimizu, Y., Yamanashi, H., Honda, Y., Nonaka, F., Miyata, J., Kawashiri, S. -Y., Noguchi, Y., Nakamichi, S., Nagata, Y., & Maeda, T. (2023). Low-Density Lipoprotein Cholesterol, Structural Atherosclerosis, and Functional Atherosclerosis in Older Japanese. Nutrients, 15(1), 183. https://doi.org/10.3390/nu15010183