Dietary Patterns and Metabolic Disorders in Polish Adults with Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Sample Collection
2.2. Demographic and Socioeconomic Data
2.3. Diet
2.4. Lifestyle
2.5. Data Related to Health
2.6. Statistical Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple sclerosis-A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, P.B.; Waubant, E.; Gee, L.; Goodkin, D.E. Multiple sclerosis that is progressive from the time of onset: Clinical characteristics and progression of disability. Arch. Neurol. 1999, 56, 1138–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassmann, H.; Lassmann, H. Brain damage when multiple sclerosis is diagnosed clinically. Lancet 2003, 361, 1317–1318. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.J.; Polman, C.H.; Miller, D.H.; McDonald, W.I.; Brochet, B.; Filippi, M.; Montalban, X.; De Sá, J. Primary progressive multiple sclerosis. Brain 1997, 120, 1085–1096. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.H.; Leary, S.M. Primary-progressive multiple sclerosis. Lancet Neurol. 2007, 6, 903–912. [Google Scholar] [CrossRef]
- Cottrell, D.A.; Kremenchutzky, M.; Rice, G.P.A.; Koopman, W.J.; Hader, W.; Baskerville, J.; Ebers, G.C. The natural history of multiple sclerosis: A geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain 1999, 122, 625–639. [Google Scholar] [CrossRef] [Green Version]
- Atlas of MS 2020. Available online: https://www.msif.org/wp-content/uploads/2020/12/Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf (accessed on 8 June 2021).
- Kapica-Topczewska, K.; Brola, W.; Fudala, M.; Tarasiuk, J.; Chorazy, M.; Snarska, K.; Kochanowicz, J.; Kulakowska, A. Prevalence of multiple sclerosis in Poland. Mult. Scler. Relat. Disord. 2018, 21, 51–55. [Google Scholar] [CrossRef]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef]
- Alfredsson, L.; Olsson, T. Lifestyle and Environmental Factors in Multiple Sclerosis. Cold. Spring Harb. Perspect. Med. 2019, 9, a028944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer-Gould, A.; Brara, S.M.; Beaber, B.E.; Koebnick, C. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology 2013, 80, 548–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagur, M.J.; Murcia, M.A.; Jiménez-Monreal, A.M.; Tur, J.A.; Bibiloni, M.M.; Alonso, G.L.; Martínez-Tomé, M. Influence of Diet in Multiple Sclerosis: A Systematic Review. Adv. Nutr. 2017, 8, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz Sand, I. The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Curr. Nutr. Rep. 2018, 7, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azary, S.; Schreiner, T.; Graves, J.; Waldman, A.; Belman, A.; Guttman, B.W.; Aaen, G.; Tillema, J.M.; Mar, S.; Hart, J.; et al. Contribution of dietary intake to relapse rate in early paediatric multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 28–33. [Google Scholar] [CrossRef]
- Bisht, B.; Darling, W.G.; White, E.C.; White, K.A.; Shivapour, E.T.; Zimmerman, M.B.; Wahls, T.L. Effects of a multimodal intervention on gait and balance of subjects with progressive multiple sclerosis: A prospective longitudinal pilot study. Degener. Neurol. Neuromuscul. Dis. 2017, 7, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Jagannath, V.A.; Filippini, G.; Di Pietrantonj, C.; Asokan, G.V.; Robak, E.W.; Whamond, L.; Robinson, S.A. Vitamin D for the management of multiple sclerosis. Cochrane Database Syst. Rev. 2018, 9, CD008422. [Google Scholar] [CrossRef]
- Parks, N.E.; Jackson-Tarlton, C.S.; Vacchi, L.; Merdad, R.; Johnston, B.C. Dietary interventions for multiple sclerosis-related outcomes. Cochrane Database Syst. Rev. 2020, 5, CD004192. [Google Scholar]
- Hadgkiss, E.J.; Jelinek, G.A.; Weiland, T.J.; Pereira, N.G.; Marck, C.H.; van der Meer, D.M. The association of diet with quality of life, disability, and relapse rate in an international sample of people with multiple sclerosis. Nutr. Neurosci. 2015, 18, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Gascoyne, C.R.; Simpson, S., Jr.; Chen, J.; van der Mei, I.; Marck, C.H. Modifiable factors associated with depression and anxiety in multiple sclerosis. Acta Neurol. Scand. 2019, 140, 204–211. [Google Scholar] [CrossRef]
- Miller, E.D.; Dziedzic, A.; Saluk-Bijak, J.; Bijak, M. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients 2019, 11, 1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marck, C.H.; Probst, Y.; Chen, J.; Taylor, B.; van der Mei, I. Dietary patterns and associations with health outcomes in Australian people with multiple sclerosis. Eur. J. Clin. Nutr. 2021, 75, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.C.; Tyry, T.; Salter, A.; Cofield, S.S.; Cutter, G.; Fox, R.; Marrie, R.A. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology 2018, 90, e1–e11. [Google Scholar] [CrossRef] [PubMed]
- Ramsaransing, G.S.; Mellema, S.A.; De Keyser, J. Dietary patterns in clinical subtypes of multiple sclerosis: An exploratory study. Nutr. J. 2009, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Jahromi, S.R.; Toghae, M.; Jahromi, M.J.; Aloosh, M. Dietary pattern and risk of multiple sclerosis. Iran J. Neurol. 2012, 11, 47–53. [Google Scholar]
- Marrie, R.A.; Cohen, J.; Stuve, O.; Trojano, M.; Sørensen, P.S.; Reingold, S.; Cutter, G.; Reider, N. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: Overview. Mult. Scler. 2015, 21, 263–281. [Google Scholar] [CrossRef]
- Sicras-Mainar, A.; Ruíz-Beato, E.; Navarro-Artieda, R.; Maurino, J. Comorbidity and metabolic syndrome in patients with multiple sclerosis from Asturias and Catalonia, Spain. BMC Neurol. 2017, 17, 134. [Google Scholar] [CrossRef] [Green Version]
- Moss, B.P.; Rensel, M.R.; Hersh, C.M. Wellness and the Role of Comorbidities in Multiple Sclerosis. Neurotherapeutics 2017, 14, 999–1017. [Google Scholar] [CrossRef]
- Gawecki, J. (Ed.) KomPAN® Dietary Habits and Nutrition Beliefs Questionnaire and the Manual for Developing of Nutritional Data, 2nd ed.; Committee of Human Nutrition, Polish Academy of Sciences: Olsztyn, Poland, 2020.
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef] [Green Version]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Galinski, G.; Dlugosz, A.; Loboda, D.; Czlapka-Matyasik, M. Data-Driven Dietary Patterns and Diet Quality Scores: Reproducibility and Consistency in Sex and Age Subgroups of Poles Aged 15–65 Years. Nutrients 2020, 12, 3598. [Google Scholar] [CrossRef]
- González-Becerra, K.; Ramos-Lopez, O.; Barrón-Cabrera, E.; Riezu-Boj, J.I.; Milagro, F.I.; Martínez-López, E.; Martínez, J.A. Fatty acids, epigenetic mechanisms and chronic diseases: A systematic review. Lipids Health Dis. 2019, 18, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccio, P.; Rossano, R. Nutrition facts in multiple sclerosis. ASN Neuro. 2015, 7, 1759091414568185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, D.M.; Caldas, A.P.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016, 244, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Kotlyarov, S.; Kotlyarova, A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 1308. [Google Scholar] [CrossRef] [PubMed]
- Fanara, S.; Aprile, M.; Iacono, S.; Schirò, G.; Bianchi, A.; Brighina, F.; Dominguez, L.J.; Ragonese, P.; Salemi, G. The Role of Nutritional Lifestyle and Physical Activity in Multiple Sclerosis Pathogenesis and Management: A Narrative Review. Nutrients 2021, 13, 3774. [Google Scholar] [CrossRef]
- Yadav, V.; Marracci, G.; Kim, E.; Spain, R.; Cameron, M.; Overs, S.; Riddehough, A.; Li, D.K.; McDougall, J.; Lovera, J.; et al. Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial. Mult. Scler. Relat. Disord. 2016, 9, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Tettey, P.; Simpson, S., Jr.; Taylor, B.; Blizzard, L.; Ponsonby, A.L.; Dwyer, T.; Kostner, K.; van der Mei, I. An adverse lipid profile is associated with disability and progression in disability, in people with MS. Mult. Scler. 2014, 20, 1737–1744. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; van der Mei, I.; Simpson, S.; Ponsonby, A.L.; Lucas, R.M.; Tettey, P.; Charlesworth, J.; Kostner, K.; Taylor, B.V. Ausimmune/AusLong Investigators Group. Lipid-related genetic polymorphisms significantly modulate the association between lipids and disability progression in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Weinstock-Guttman, B.; Zivadinov, R.; Mahfooz, N.; Carl, E.; Drake, A.; Schneider, J.; Teter, B.; Hussein, S.; Mehta, B.; Weiskopf, M.; et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J. Neuroinflamm. 2011, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Altowaijri, G.; Fryman, A.; Yadav, V. Dietary Interventions and Multiple Sclerosis. Curr. Neurol. Neurosci. Rep. 2017, 17, 28. [Google Scholar] [CrossRef]
- Pineda-Torra, I.; Siddique, S.; Waddington, K.E.; Farrell, R.; Jury, E.C. Disrupted Lipid Metabolism in Multiple Sclerosis: A Role for Liver X Receptors? Front. Endocrinol. 2021, 12, 639757. [Google Scholar] [CrossRef] [PubMed]
- Rádiková, Ž.; Penesová, A.; Vlček, M.; Havranová, A.; Siváková, M.; Šiarnik, P.; Žitňanová, I.; Imrich, R.; Turčáni, P.; Kollár, B. Lipoprotein profiling in early multiple sclerosis patients: Effect of chronic inflammation? Lipids Health Dis. 2020, 19, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suliga, E.; Kozieł, D.; Cieśla, E.; Rębak, D.; Głuszek, S. Dietary Patterns in Relation to Metabolic Syndrome among Adults in Poland: A Cross-Sectional Study. Nutrients 2017, 9, 1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czekajło, A.; Różańska, D.; Zatońska, K.; Szuba, A.; Regulska-Ilow, B. Association between dietary patterns and metabolic syndrome in the selected population of Polish adults-results of the PURE Poland Study. Eur. J. Public Health 2019, 29, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, V.; Unnikrishnan, R.; Shobana, S.; Malavika, M.; Anjana, R.M.; Sudha, V. Are excess carbohydrates the main link to diabetes & its complications in Asians? Indian J. Med. Res. 2018, 148, 531–538. [Google Scholar]
- Fitzgerald, K.C.; Salter, A.; Tyry, T.; Fox, R.J.; Cutter, G.; Marrie, R.A. Measures of general and abdominal obesity and disability severity in a large population of people with multiple sclerosis. Mult. Scler. 2020, 26, 976–986. [Google Scholar] [CrossRef]
- Livne-Margolin, M.; Tokatly Latzer, I.; Pinhas-Hamiel, O.; Harari, G.; Achiron, A. Bodyweight Measures and Lifestyle Habits in Individuals with Multiple Sclerosis and Moderate to Severe Disability. J. Clin. Med. 2021, 10, 2083. [Google Scholar] [CrossRef]
- Penesová, A.; Vlček, M.; Imrich, R.; Vernerova, L.; Marko, A.; Meskova, M.; Grunnerova, L.; Turčáni, P.; Jezova, D.; Kollár, B. Hyperinsulinemia in newly diagnosed patients with multiple sclerosis. Metab. Brain Dis. 2015, 30, 895–901. [Google Scholar] [CrossRef]
- Drehmer, E.; Platero, J.L.; Carrera-Juliá, S.; Moreno, M.L.; Tvarijonaviciute, A.; Navarro, M.Á.; López-Rodríguez, M.M.; Ortí, J.E.R. The Relation between Eating Habits and Abdominal Fat, Anthropometry, PON1 and IL-6 Levels in Patients with Multiple Sclerosis. Nutrients 2020, 12, 744. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, Z.; Cheng, L.; Zhang, X.; Liu, Y.; Zhang, R.; Weng, P.; Wu, Z. Polysaccharides confer benefits in immune regulation and multiple sclerosis by interacting with gut microbiota. Food Res. Int. 2021, 149, 110675. [Google Scholar] [CrossRef]
- Albrechtsen, M.T.; Langeskov-Christensen, M.; Jørgensen, M.L.K.; Dalgas, U.; Hansen, M. Is diet associated with physical capacity and fatigue in persons with multiple sclerosis? - Results from a pilot study. Mult. Scler. Relat. Disord. 2020, 40, 101921. [Google Scholar] [CrossRef] [PubMed]
- Monsivais, P.; Aggarwal, A.; Drewnowski, A. Time spent on home food preparation and indicators of healthy eating. Am. J. Prev. Med. 2014, 47, 796–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Fast Food Pattern and Cardiometabolic Disorders: A Review of Current Studies. Health Promot. Perspect. 2016, 5, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, J. The Hidden Dangers of Fast and Processed Food. Am. J. Lifestyle Med. 2018, 12, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Crimarco, A.; Landry, M.J.; Gardner, C.D. Ultra-processed Foods, Weight Gain, and Co-morbidity Risk. Curr. Obes. Rep. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Noormohammadi, M.; Ghorbani, Z.; Naser Moghadasi, A.; Saeedirad, Z.; Shahemi, S.; Ghanaatgar, M.; Rezaeimanesh, N.; Hekmatdoost, A.; Ghaemi, A.; Razeghi Jahromi, S. MIND Diet Adherence Might be Associated with a Reduced Odds of Multiple Sclerosis: Results from a Case-Control Study. Neurol. Ther. 2022, 11, 397–412. [Google Scholar] [CrossRef]
- Al Wutayd, O.; Mohamed, A.G.; Saeedi, J.; Al Otaibi, H.; Al Jumah, M. Environmental exposures and the risk of multiple sclerosis in Saudi Arabia. BMC Neurol. 2018, 18, 86. [Google Scholar] [CrossRef] [Green Version]
- Appel, L.J.; Frohlich, E.D.; Hall, J.E.; Pearson, T.A.; Sacco, R.L.; Seals, D.R.; Sacks, F.M.; Smith, S.C., Jr.; Vafiadis, D.K.; Van Horn, L.V. The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: A call to action from the American Heart Association. Circulation 2011, 123, 1138–1143. [Google Scholar] [CrossRef]
- Dossi, D.E.; Chaves, H.; Heck, E.S.; Rodriguez Murúa, S.; Ventrice, F.; Bakshi, R.; Quintana, F.J.; Correale, J.; Farez, M.F. Effects of Systolic Blood Pressure on Brain Integrity in Multiple Sclerosis. Front. Neurol. 2018, 9, 487. [Google Scholar] [CrossRef]
- Mandrekar, P.; Catalano, D.; White, B.; Szabo, G. Moderate alcohol intake in humans attenuates monocyte inflammatory responses. Alcohol Clin. Exp. Res. 2006, 30, 135–139. [Google Scholar] [CrossRef]
- Stoutenberg, M.; Lee, D.C.; Sui, X.; Hooker, S.; Horigian, V.; Perrino, T.; Blair, S. Prospective study of alcohol consumption and the incidence of the metabolic syndrome in US men. Br. J. Nutr. 2013, 110, 901–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suliga, E.; Kozieł, D.; Ciesla, E.; Rebak, D.; Głuszek-Osuch, M.; Naszydłowska, E.; Głuszek, S. The Consumption of Alcoholic Beverages and the Prevalence of Cardiovascular Diseases in Men and Women: A Cross-Sectional Study. Nutrients 2019, 11, 1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2016, 392, 1015–1035. [Google Scholar]
- Ivashynka, A.; Copetti, M.; Naldi, P.; D’Alfonso, S.; Leone, M.A. The Impact of Lifetime Alcohol and Cigarette Smoking Loads on Multiple Sclerosis Severity. Front. Neurol. 2019, 10, 866. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Ye, X.; Zhang, T.; Lin, Z.; Shi, W.; Wei, X.; Liu, Y.; He, J. Association between alcohol consumption and multiple sclerosis: A meta-analysis of observational studies. Neurol. Sci. 2015, 36, 1543–1550. [Google Scholar] [CrossRef]
- Yahia, N.; Brown, C.A.; Rapley, M.; Chung, M. Level of nutrition knowledge and its association with fat consumption among college students. BMC Public Health 2016, 16, 1047. [Google Scholar] [CrossRef] [Green Version]
- Zeynalzadeh Borjloo, F.; Dehdari, T.; Abolghasemi, J.; Amiri, F.; Vasheghani-Farahani, A. The effect of a nutrition education intervention on knowledge, attitude, and intake of foods high in fats in women. J. Educ. Health Promot. 2021, 1, 216. [Google Scholar]
- Li, H.; Zeng, X.; Wang, Y.; Zhang, Z.; Zhu, Y.; Li, X.; Hu, A.; Zhao, Q.; Yang, W. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur. J. Nutr. 2022, 61, 387–398. [Google Scholar] [CrossRef]
- Hauer, L.; Perneczky, J.; Sellner, J. A global view of comorbidity in multiple sclerosis: A systematic review with a focus on regional differences, methodology, and clinical implications. J. Neurol. 2021, 268, 4066–4077. [Google Scholar] [CrossRef]
Variable | Percentage of the Sample (%) | p-Value | ||
---|---|---|---|---|
Total (n = 330) | Men (n = 77) | Women (n = 253) | ||
Age (years): mean (SD) | 41.9 (10.8) | 45.0 (11.3) | 41.0 (10.4) | <0.01 |
Place of residence | ||||
Village | 27.3 | 26.0 | 27.7 | ns |
Town < 20 k inhabitants | 10.3 | 10.4 | 10.3 | |
Town 20 k–100 k inhabitants | 16.4 | 15.6 | 16.6 | |
City > 100 k inhabitants | 46.1 | 48.1 | 45.5 | |
Financial situation 1 | ||||
Modest | 10.9 | 7.8 | 11.9 | ns |
Comfortable | 74.2 | 70.1 | 75.5 | |
Wealthy | 14.8 | 22.1 | 12.6 | |
Household situation | ||||
Very poor | 0.6 | 0.0 | 0.8 | ns |
Poor | 7.3 | 2.6 | 8.8 | |
Average | 53.2 | 47.4 | 55.0 | |
Good | 33.9 | 42.1 | 31.5 | |
Very good | 4.9 | 7.9 | 4.0 | |
Type of employment | ||||
No, retirement/disability | 21.7 | 26.0 | 20.4 | <0.01 |
No, unemployed | 8.3 | 1.3 | 10.4 | |
Yes, casual work | 4.6 | 2.6 | 5.2 | |
Yes, permanent employment | 61.5 | 70.1 | 58.8 | |
No, I’m studying | 4.0 | 0.0 | 5.2 | |
Education | ||||
Primary school | 2.4 | 3.9 | 2.0 | ns |
Basic vocational school | 9.2 | 14.3 | 7.6 | |
Secondary school | 24.2 | 29.9 | 22.4 | |
College | 64.2 | 51.9 | 68.0 | |
Type of MS | ||||
Relapsing-remitting MS (RRMS) | 86.1 | 79.2 | 88.1 | <0.05 |
Secondary progressive MS (SPMS) | 5.8 | 5.2 | 5.9 | |
Primary progressive MS (PPMS) | 8.2 | 15.6 | 5.9 | |
Declared health (due to MS) | ||||
Worse | 56.1 | 51.9 | 57.4 | ns |
Same | 36.0 | 35.1 | 36.3 | |
Better | 7.9 | 13.0 | 6.4 | |
Other diagnosed chronic diseases | 21.7 | 10.6 | 25.1 | <0.01 |
Number of meals per day | ||||
1–2 | 7.6 | 11.7 | 6.3 | ns |
3 | 39.4 | 39.0 | 39.5 | |
4 | 38.8 | 37.7 | 39.1 | |
5 or more | 14.2 | 11.7 | 15.0 | |
Eating at consistent times | ||||
Yes | 22.4 | 19.5 | 23.3 | ns |
Yes, but only some meals | 52.4 | 55.8 | 51.4 | |
No | 25.2 | 24.7 | 25.3 | |
Following a diet | 24.3 | 18.2 | 26.1 | ns |
Slimming (low-energy) | 7.6 | 10.4 | 6.7 | |
Reduced sugar | 2.7 | 3.9 | 2.4 | |
Easily digestible, varied | 4.8 | 1.3 | 5.9 | |
Vegetarian | 3.6 | 2.6 | 4.0 | |
Elimination (gluten- or lactose-free) | 3.9 | 0.0 | 5.1 | |
Ketogenic | 1.7 | 0.0 | 2.0 | |
Use of vitamin D supplementation | 55.3 | 39.0 | 57.7 | <0.01 |
Dietary supplements used in the last month | 73.9 | 59.7 | 78.2 | <0.01 |
Current smoking | 19.7 | 29.9 | 16.6 | <0.01 |
Smoking in the past | 48.9 | 61.3 | 45.2 | <0.01 |
Sleep time on working days | ||||
≤6 h/day | 22.4 | 24.7 | 21.7 | ns |
7–8 h/day | 65.5 | 63.6 | 70.0 | |
≥9 h/day | 9.1 | 11.7 | 8.3 | |
Physical activity at work or at school 2 | ||||
Low | 22.4 | 24.7 | 21.7 | <0.05 |
Moderate | 68.5 | 63.6 | 70.0 | |
High | 9.1 | 11.7 | 8.3 | |
Screen time 3 | ||||
<2 h/day | 20.3 | 24.7 | 19.0 | ns |
2 to <4 h/day | 25.5 | 23.4 | 26.1 | |
4 to <6 h/day | 14.5 | 14.3 | 14.6 | |
6 to <8 h/day | 14.2 | 14.3 | 14.2 | |
8 to <10 h/day | 16.7 | 16.9 | 16.6 | |
≥10 h/day | 8.8 | 6.5 | 9.5 |
Variable | Percentage of the Sample (%) | p-Value | ||
---|---|---|---|---|
Total (n = 330) | Men (n = 77) | Women (n = 253) | ||
BMI (kg/m2): mean (SD) | 24.5 (4.8) | 25.3 (4.4) | 24.2 (4.9) | ns |
Obesity (BMI ≥ 30.0 kg/m2) | 12.4 | 18.2 | 10.7 | ns |
WC (cm): mean (SD) | 85.1 (13.7) | 93.0 (12.6) | 82.7 (13.2) | <0.001 |
Abdominal obesity (WC > 94 cm in men, WC > 80 cm in women) (yes) | 56.1 | 39.0 | 61.3 | <0.001 |
Diagnosed hypertension (yes) | 15.8 | 23.4 | 13.4 | <0.05 |
Elevated glucose concentration or diagnosed diabetes (yes) | 4.2 | 6.5 | 3.6 | ns |
Low HDL-cholesterol concentration (yes) | 7.6 | 7.8 | 7.5 | ns |
Elevated triglyceride concentration (yes) | 2.4 | 5.2 | 1.6 | <0.05 |
At least 2 metabolic disorders | 16.1 | 16.9 | 15.8 | ns |
Food Groups | Dietary Patterns (DPs) | ||
---|---|---|---|
Factor I Traditional Polish DP | Factor II Prudent DP | Factor III Fast Food & Convenience Food DP | |
Cold cuts and sausages | 0.69 | ||
Refined bread | 0.61 | ||
White meats | 0.58 | ||
Red meats | 0.57 | ||
Sweets | 0.51 | ||
Potatoes | 0.48 | ||
Cottage cheese | 0.48 | 0.32 | |
Fried foods | 0.47 | 0.42 | |
Butter | 0.46 | ||
Cheese | 0.42 | ||
Milk | 0.41 | ||
Fermented milk beverages | 0.41 | 0.40 | |
Legumes | −0.36 | 0.47 | |
Fruit | 0.60 | ||
Wholemeal groats. flakes and pasta | 0.53 | ||
Vegetables | 0.51 | ||
Vegetable juices | 0.49 | ||
Fish | 0.48 | ||
Eggs | 0.44 | ||
Wholegrain bread | 0.41 | ||
Juices | 0.39 | ||
Canned vegetables | 0.35 | ||
Energy drinks | 0.64 | ||
Sweetened drinks | 0.61 | ||
Fast food | 0.61 | ||
Canned meats | 0.58 | ||
Instant soups | 0.55 | ||
Alcohol | 0.47 | ||
Lard | 0.32 | ||
Vegetable oils/margarine | |||
Refined groats. rice and pasta | |||
Percentage of variance explained (%) | 12.0 | 9.0 | 9.0 |
Diet Quality Index (DQI) and Nutritional Knowledge | Total n = 330 | Traditional Polish | p-Value | Prudent | p-Value | Fast Food & Convenience Food | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 n = 111 | T2 n = 107 | T3 n = 112 | T1 n = 110 | T2 n = 110 | T3 n = 110 | T1 n = 110 | T2 n = 109 | T3 n = 111 | |||||
DQI | |||||||||||||
Low levels of unhealthy traits | 1.2 | 0.0 | 1.9 | 1.8 | p < 0.05 | 2.7 | 0.0 | 0.9 | p < 0.001 | 0.0 | 0.0 | 3.6 | p < 0.001 |
Low intensity of unhealthy features and pro-healthy features | 90.0 | 84.7 | 89.7 | 95.5 | 97.3 | 96.4 | 76.4 | 83.6 | 91.7 | 94.6 | |||
High intensity of pro-healthy features | 8.8 | 15.3 | 8.4 | 2.7 | 0.0 | 3.6 | 22.7 | 16.4 | 8.3 | 1.8 | |||
Nutritional knowledge level | |||||||||||||
Insufficient | 12.1 | 12.6 | 13.1 | 10.7 | ns | 15.5 | 12.7 | 8.2 | ns | 5.5 | 11.0 | 19.8 | p < 0.001 |
Satisfactory | 72.4 | 73.9 | 67.3 | 75.9 | 76.4 | 70.0 | 70.9 | 74.5 | 71.6 | 71.2 | |||
Good | 15.5 | 13.5 | 19.6 | 13.4 | 8.2 | 17.3 | 20.9 | 20.0 | 17.4 | 9.0 |
Variable | Total n = 330 | Traditional Polish DP | p-Value | Prudent DP | p-Value | Fast Food & Convenience Food DP | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 n = 111 | T2 n = 107 | T3 n = 112 | T1 n = 110 | T2 n = 110 | T3 n = 110 | T1 n = 110 | T2 n = 109 | T3 n = 111 | |||||
BMI | |||||||||||||
Underweight | 5.1 | 3.6 | 7.5 | 4.5 | p < 0.05 | 7.3 | 3.6 | 4.6 | ns | 7.3 | 2.8 | 5.4 | p < 0.05 |
Normal | 55.7 | 66.7 | 54.2 | 46.4 | 51.8 | 52.7 | 62.7 | 58.2 | 60.6 | 48.7 | |||
Overweight | 26.6 | 23.4 | 27.1 | 29.5 | 30.0 | 29.1 | 20.9 | 26.4 | 28.4 | 25.2 | |||
Obese | 12.4 | 6.3 | 11.2 | 19.6 | 10.9 | 14.6 | 11.8 | 8.2 | 8.3 | 20.7 | |||
Abdominal obesity | 56.1 | 52.3 | 51,4 | 64.3 | ns | 58.2 | 56.4 | 53.6 | ns | 50.9 | 55.0 | 62.2 | ns |
Hypertension | 15.8 | 12.6 | 17.8 | 17.0 | ns | 19.1 | 16.4 | 11.8 | ns | 15.5 | 18.3 | 13.5 | ns |
Elevated glucose or diagnosed diabetes | 4.2 | 2.7 | 4.7 | 5.4 | ns | 3.6 | 5.5 | 3.6 | ns | 3.6 | 5.5 | 3.6 | ns |
Low concentrations of HDL-cholesterol | 7.6 | 2.7 | 6.5 | 13.4 | <0.01 | 6.4 | 8.2 | 8.2 | ns | 3.6 | 11.0 | 8.1 | ns |
Elevated triglyceride concentrations | 2.4 | 0.9 | 6.3 | 2.4 | <0.01 | 1.8 | 3.6 | 1.8 | ns | 2.7 | 3.7 | 0.9 | ns |
At least 2 metabolic disorders | 16.1 | 9.9 | 15.9 | 22.3 | <0.05 | 14.5 | 18.2 | 15.5 | ns | 14.5 | 17.4 | 16.2 | ns |
Dietary Patterns 1 | Abdominal Obesity | Diagnosed Hypertension | Elevated Glucose or Diagnosed Diabetes | Low Concentrations of HDL-Cholesterol | Elevated Triglyceride Concentrations | At Least 2 Metabolic Disorders |
---|---|---|---|---|---|---|
Traditional Polish DP | ||||||
Lower—T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate—T2 | 0.97 (0.57–1.64) | 1.50 (0.71–3.16) | 1.76 (0.41–7.57) | 2.52 (0.63–10.01) | 0.00 (0.00–0.00) | 1.72 (0.76–3.86) |
Higher—T3 | 1.64 (0.96–2.81) | 1.42 (0.67–2.99) | 2.04 (0.50–8.36) | 5.57 (1.56–19.81) ** | - | 2.61 (1.22–5.61) * |
Prudent DP | ||||||
Lower—T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate—T2 | 0.93 (0.54–1.58) | 0.83 (0.41–1.66) | 1.53 (0.42–5.57) | 1.31 (0.47–3.65) | 2.04 (0.37–11.36) | 1.31 (0.64–2.68) |
Higher—T3 | 0.83 (0.49–1.42) | 0.57 (0.27–1.20) | 1.00 (0.24–4.10) | 1.31 (0.47–3.65) | 1.00 (0.14–7.23) | 1.07 (0.51–2.25) |
Fast food & convenience food DP | ||||||
Lower—T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate—T2 | 1.18 (0.69–2.00) | 1.23 (0.61–2.50) | 1.54 (0.42–5.63) | 3.28 * (1.02–10.51) | 1.36 (0.30–6.22) | 1.24 (0.60–2.56) |
Higher—T3 | 1.58 (0.93–2.71) | 0.85 (0.40–1.81) | 0.99 (0.24–4.06) | 2.34 (0.70–7.83) | 0.32 (0.03–3.17) | 1.15 (0.55–2.36) |
Dietary Patterns 2 | Abdominal Obesity | Diagnosed Hypertension | Elevated Glucose Concentrations or Diagnosed Diabetes | Low Concentrations of HDL-Cholesterol | Elevated Triglyceride Concentrations | At Least 2 Metabolic Disorders |
---|---|---|---|---|---|---|
Traditional Polish DP | ||||||
Lower—T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate—T2 | 0.93 (0.54–1.60) | 1.04 (0.45–2.41) | 1.59 (0.35–7.12) | 2.53 (0.63–10.20) | - | 1.31 (0.55–3.13) |
Higher—T3 | 1.66 (0.98–2.84) * | 0.82 (0.35–1.90) | 1.78 (0.41–7.67) | 5.22 (1.42–19.12) ** | - | 1.71 (0.75–3.91) |
Prudent DP | ||||||
Lower—T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate—T2 | 0.86 (0.49–1.51) | 0.82 (0.37–1.78) | 1.62 (0.42–6.19) | 1.38 (0.49–3.88) | 3.07 (0.46–20.43) | 1.33 (0.61–2.91) |
Higher—T3 | 0.78 (0.44–1.39) | 0.92 (0.39–2.13) | 1.32 (0.29–5.91) | 1.42 (0.47–4.23) | 2.97 (0.3–28.95) | 1.54 (0.67–3.55) |
Fast food & convenience food DP | ||||||
Lower—T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Moderate—T2 | 1.49 (0.84–2.65) | 1.68 (0.74–3.85) | 2.17 (0.54–8.76) | 3.69 * (1.11–12.32) | 2.06 (0.34–12.49) | 1.84 (0.80–4.21) |
Higher—T3 | 2.45 (1.33–4.51) ** | 1.04 (0.42–2.57) | 1.52 (0.32–7.35) | 2.43 (0.67–8.88) | 0.40 (0.03–4.98) | 1.64 (0.69–3.90) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suliga, E.; Brola, W.; Sobaś, K.; Cieśla, E.; Jasińska, E.; Gołuch, K.; Głuszek, S. Dietary Patterns and Metabolic Disorders in Polish Adults with Multiple Sclerosis. Nutrients 2022, 14, 1927. https://doi.org/10.3390/nu14091927
Suliga E, Brola W, Sobaś K, Cieśla E, Jasińska E, Gołuch K, Głuszek S. Dietary Patterns and Metabolic Disorders in Polish Adults with Multiple Sclerosis. Nutrients. 2022; 14(9):1927. https://doi.org/10.3390/nu14091927
Chicago/Turabian StyleSuliga, Edyta, Waldemar Brola, Kamila Sobaś, Elżbieta Cieśla, Elżbieta Jasińska, Katarzyna Gołuch, and Stanisław Głuszek. 2022. "Dietary Patterns and Metabolic Disorders in Polish Adults with Multiple Sclerosis" Nutrients 14, no. 9: 1927. https://doi.org/10.3390/nu14091927
APA StyleSuliga, E., Brola, W., Sobaś, K., Cieśla, E., Jasińska, E., Gołuch, K., & Głuszek, S. (2022). Dietary Patterns and Metabolic Disorders in Polish Adults with Multiple Sclerosis. Nutrients, 14(9), 1927. https://doi.org/10.3390/nu14091927