Gastric Mobility and Gastrointestinal Hormones in Older Patients with Sarcopenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Sarcopenia
2.4. Gastric Emptying Test
2.5. Laboratory Test
2.6. Statistical Analysis
3. Results
3.1. Baseline Demographic Characteristics
3.2. Gastric Empty Time between Groups
3.3. The Analysis of Gastrointestinal Hormone Levels between Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beaudart, C.; Rizzoli, R.; Bruyère, O.; Reginster, J.Y.; Biver, E. Sarcopenia: Burden and challenges for public health. Arch. Public Health 2014, 72, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Auyeung, T.W.; Kwok, T.; Lau, E.M.; Leung, P.C.; Woo, J. Associated factors and health impact of sarcopenia in older chinese men and women: A cross-sectional study. Gerontology 2007, 53, 404–410. [Google Scholar] [CrossRef]
- Mijnarends, D.M.; Luiking, Y.C.; Halfens, R.J.G.; Evers, S.M.A.A.; Lenaerts, E.L.A.; Verlaan, S.; Wallace, M.; Schols, J.M.G.A.; Meijers, J.M.M. Muscle, Health and Costs: A Glance at their Relationship. J. Nutr. Health Aging 2018, 22, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Schaap, L.A.; van Schoor, N.M.; Lips, P.; Visser, M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: The longitudinal aging study Amsterdam. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1199–1204. [Google Scholar] [CrossRef]
- De Buyser, S.L.; Petrovic, M.; Taes, Y.E.; Toye, K.R.; Kaufman, J.M.; Lapauw, B.; Goemaere, S. Validation of the FNIH sarcopenia criteria and SOF frailty index as predictors of long-term mortality in ambulatory older men. Age Ageing 2016, 45, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Kurose, S.; Nishikawa, S.; Nagaoka, T.; Kusaka, M.; Kawamura, J.; Nishioka, Y.; Sato, S.; Tsutsumi, H.; Kimura, Y. Prevalence and risk factors of sarcopenia in community-dwelling older adults visiting regional medical institutions from the Kadoma Sarcopenia Study. Sci. Rep. 2020, 10, 19129. [Google Scholar] [CrossRef]
- Papadopoulou, S.K. Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients 2020, 12, 1293. [Google Scholar] [CrossRef]
- Sousa, A.S.; Guerra, R.S.; Fonseca, I.; Pichel, F.; Ferreira, S.; Amaral, T.F. Financial impact of sarcopenia on hospitalization costs. Eur. J. Clin. Nutr. 2016, 70, 1046–1051. [Google Scholar] [CrossRef]
- Antunes, A.C.; Araújo, D.A.; Veríssimo, M.T.; Amaral, T.F. Sarcopenia and hospitalisation costs in older adults: A cross-sectional study. Nutr. Diet. 2017, 74, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Roubenoff, R. Origins and clinical relevance of sarcopenia. Can. J. Appl. Physiol. 2001, 26, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Ryall, J.G.; Schertzer, J.D.; Lynch, G.S. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 2008, 9, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Sayer, A.A.; Syddall, H.E.; Gilbody, H.J.; Dennison, E.M.; Cooper, C. Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, M930–M934. [Google Scholar] [CrossRef] [Green Version]
- Chung, G.E.; Kim, M.J.; Yim, J.Y.; Kim, J.S.; Yoon, J.W. Sarcopenia is significantly associated with presence and severity of nonalcoholic fatty liver disease. J. Obes. Metab. Syndr. 2019, 28, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.S. Low skeletal muscle mass is associated with insulin resistance, diabetes, and metabolic syndrome in the Korean population: The Korea national health and nutrition examination survey (KNHANES) 2009–2010. Endocr. J. 2014, 61, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Marzetti, E.; Calvani, R.; Cesari, M.; Buford, T.W.; Lorenzi, M.; Behnke, B.J.; Leeuwenburgh, C. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials. Int. J. Biochem. Cell Biol. 2013, 45, 2288–2301. [Google Scholar] [CrossRef] [Green Version]
- Romanello, V. The Interplay between Mitochondrial Morphology and Myomitokines in Aging Sarcopenia. Int. J. Mol. Sci. 2020, 22, 91. [Google Scholar] [CrossRef]
- Abbatecola, A.M.; Paolisso, G.; Fattoretti, P.; Evans, W.J.; Fiore, V.; Dicioccio, L.; Lattanzio, F. Discovering pathways of sarcopenia in older adults: A role for insulin resistance on mitochondria dysfunction. J. Nutr. Health Aging 2011, 15, 890–895. [Google Scholar] [CrossRef]
- Protasi, F.; Pietrangelo, L.; Boncompagni, S. Improper remodeling of organelles deputed to Ca2+ handling and aerobic ATP production underlies muscle dysfunction in ageing. Int. J. Mol. Sci. 2021, 22, 6195. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Wu, M.; Hao, Y.; Deng, H. Exploring the preventive effect and mechanism of senile sarcopenia based on “Gut-Muscle Axis”. Front. Bioeng. Biotechnol. 2020, 8, 590869. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Huang, Y.; Yu, X. A narrative review of gut-muscle axis and sarcopenia: The potential role of gut microbiota. Int. J. Gen. Med. 2021, 14, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. Gut microbiota—At the intersection of everything? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Tankel, J.; Dagan, A.; Vainberg, E.; Boaz, E.; Mogilevsky, L.; Hadas, I.; Reissman, P.; Ben Haim, M. Sarcopenia is associated with a greater incidence of delayed gastric emptying following pancreaticoduodenectomy. Clin. Nutr. ESPEN 2018, 27, 105–109. [Google Scholar] [CrossRef]
- Shintakuya, R.; Sasaki, M.; Nakamitsu, A.; Kohyama, M.; Tazaki, T.; Sugiyama, Y.; Hirano, T.; Kaiki, Y. Sarcopenia is an independent predictor of delayed gastric emptying following pancreaticoduodenectomy: A retrospective study. ANZ J. Surg. 2019, 89, E433–E437. [Google Scholar] [CrossRef]
- Serra-Prat, M.; Mans, E.; Palomera, E.; Clavé, P. Gastrointestinal peptides, gastrointestinal motility, and anorexia of aging in frail elderly persons. Neurogastroenterol. Motil. 2013, 25, 291-e245. [Google Scholar] [CrossRef]
- Camilleri, M. Gastrointestinal hormones and regulation of gastric emptying. Curr. Opin. Endocrinol. Diabetes Obes. 2019, 26, 3–10. [Google Scholar] [CrossRef]
- Morley, J.E. Anorexia of ageing: A key component in the pathogenesis of both sarcopenia and cachexia. J. Cachexia Sarcopenia Muscle 2017, 8, 523–526. [Google Scholar] [CrossRef] [Green Version]
- Frese, T.; Deutsch, T.; Keyser, M.; Sandholzer, H. In-home preventive comprehensive geriatric assessment (CGA) reduces mortality—A randomized controlled trial. Arch. Gerontol. Geriatr. 2012, 55, 639–644. [Google Scholar] [CrossRef]
- Sandholzer, H.; Hellenbrand, W.; Renteln-Kruse, W.; Van Weel, C.; Walker, P. STEP—Standardized assessment of elderly people in primary care. Dtsch. Med. Wochenschr. 2004, 129 (Suppl. 4), S183–S226. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.E.; Zocchi, K.A.; Bettencourt, D.M.; Gambrel, M.L.; Freeman, J.L.; Zhang, D.; Goodwin, J.S. Measuring frailty in the hospitalized elderly: Concept of functional homeostasis. Am. J. Phys. Med. Rehabil. 1998, 77, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Collin, C.; Wade, D.T.; Davies, S.; Horne, V. The Barthel ADL index: A reliability study. Int. Disabil. Stud. 1988, 10, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Hoyl, M.T.; Alessi, C.A.; Harker, J.O.; Josephson, K.R.; Pietruszka, F.M.; Koelfgen, M.; Mervis, J.R.; Fitten, L.J.; Rubenstein, L.Z. Development and testing of a five-item version of the Geriatric Depression Scale. J. Am. Geriatr. Soc. 1999, 47, 873–878. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF): A practical tool for identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Hwang, A.C.; Zhan, Y.R.; Lee, W.J.; Peng, L.N.; Chen, L.Y.; Lin, M.H.; Liu, L.K.; Chen, L.K. Higher daily physical activities continue to preserve muscle strength after mid-life, but not muscle mass after age of 75. Medicine 2016, 95, e3809. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Tougas, G.; Eaker, E.Y.; Abell, T.L.; Abrahamsson, H.; Boivin, M.; Chen, J.; Hocking, M.P.; Quigley, E.M.; Koch, K.L.; Tokayer, A.Z.; et al. Assessment of gastric emptying using a low fat meal: Establishment of international control values. Am. J. Gastroenterol. 2000, 95, 1456–1462. [Google Scholar] [CrossRef]
- Abell, T.L.; Camilleri, M.; Donohoe, K.; Hasler, W.L.; Lin, H.C.; Maurer, A.H.; McCallum, R.W.; Nowak, T.; Nusynowitz, M.L.; Parkman, H.P.; et al. Consensus recommendations for gastric emptying scintigraphy: A joint report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. J. Nucl. Med. Technol. 2008, 36, 44–54. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, D.; O’Leary, P.; Quigley, E.M. Aging and intestinal motility: A review of factors that affect intestinal motility in the aged. Drugs Aging 2002, 19, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Soenen, S.; Rayner, C.K.; Horowitz, M.; Jones, K.L. Gastric Emptying in the Elderly. Clin. Geriatr. Med. 2015, 31, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.J.; Bowyer, R.C.E.; Ni Lochlainn, M.; Wells, P.M.; Roberts, H.C.; Steves, C.J. The composition of the gut microbiome differs among community dwelling older people with good and poor appetite. J. Cachexia Sarcopenia Muscle 2021, 12, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, M.; Maddern, G.J.; Chatterton, B.E.; Collins, P.J.; Harding, P.E.; Shearman, D.J. Changes in gastric emptying rates with age. Clin. Sci. 1984, 67, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, V.; Berkenstadt, H.; Goitein, D.; Dickman, R.; Bernstine, H.; Rubin, M. Gastric emptying is not prolonged in obese patients. Surg. Obes. Relat. Dis. 2013, 9, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Verdich, C.; Madsen, J.L.; Toubro, S.; Buemann, B.; Holst, J.J.; Astrup, A. Effect of obesity and major weight reduction on gastric emptying. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 899–905. [Google Scholar] [CrossRef] [Green Version]
- Cornali, C.; Franzoni, S.; Frisoni, G.B.; Trabucchi, M. Anorexia as an independent predictor of mortality. J. Am. Geriatr. Soc. 2005, 53, 354–355. [Google Scholar] [CrossRef]
- Morley, J.E.; Thomas, D.R.; Wilson, M.M. Cachexia: Pathophysiology and clinical relevance. Am. J. Clin. Nutr. 2006, 83, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Willems, M.; Quartero, A.O.; Numans, M.E. How useful is paracetamol absorption as a marker of gastric emptying? A systematic literature study. Dig. Dis. Sci. 2001, 46, 2256–2262. [Google Scholar] [CrossRef]
- Ziessman, H.A.; Okolo, P.I.; Mullin, G.E.; Chander, A. Liquid gastric emptying is often abnormal when solid emptying is normal. J. Clin. Gastroenterol. 2009, 43, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Ziessman, H.A.; Chander, A.; Clarke, J.O.; Ramos, A.; Wahl, R.L. The added diagnostic value of liquid gastric emptying compared with solid emptying alone. J. Nucl. Med. 2009, 50, 726–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdeva, P.; Malhotra, N.; Pathikonda, M.; Khayyam, U.; Fisher, R.S.; Maurer, A.H.; Parkman, H.P. Gastric emptying of solids and liquids for evaluation for gastroparesis. Dig. Dis. Sci. 2011, 56, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Goyal, R.K.; Guo, Y.; Mashimo, H. Advances in the physiology of gastric emptying. Neurogastroenterol. Motil. 2019, 31, e13546. [Google Scholar] [CrossRef] [Green Version]
- MacIntosh, C.G.; Morley, J.E.; Wishart, J.; Morris, H.; Jansen, J.B.; Horowitz, M.; Chapman, I.M. Effect of exogenous cholecystokinin (CCK)-8 on food intake and plasma CCK, leptin, and insulin concentrations in older and young adults: Evidence for increased CCK activity as a cause of the anorexia of aging. J. Clin. Endocrinol. Metab. 2001, 86, 5830–5837. [Google Scholar] [CrossRef]
- Moss, C.; Dhillo, W.S.; Frost, G.; Hickson, M. Gastrointestinal hormones: The regulation of appetite and the anorexia of ageing. J. Hum. Nutr. Diet. 2012, 25, 3–15. [Google Scholar] [CrossRef]
- Johnson, K.O.; Shannon, O.M.; Matu, J.; Holliday, A.; Ispoglou, T.; Deighton, K. Differences in circulating appetite-related hormone concentrations between younger and older adults: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2020, 32, 1233–1244. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Lee, J.H.; Jeong, K.W.; Choi, C.S.; Jun, H.S. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J. Cachexia Sarcopenia Muscle 2019, 10, 903–918. [Google Scholar] [CrossRef]
- Camilleri, M.; Grudell, A.B. Appetite and obesity: A gastroenterologist’s perspective. Neurogastroenterol. Motil. 2007, 19, 333–341. [Google Scholar] [CrossRef]
- Meyer, F.; Bannert, K.; Wiese, M.; Esau, S.; Sautter, L.F.; Ehlers, L.; Aghdassi, A.A.; Metges, C.C.; Garbe, L.A.; Jaster, R.; et al. Molecular Mechanism Contributing to Malnutrition and Sarcopenia in Patients with Liver Cirrhosis. Int. J. Mol. Sci. 2020, 21, 5357. [Google Scholar] [CrossRef]
- Folgueira, C.; Seoane, L.M.; Casanueva, F.F. The brain-stomach connection. Front. Horm. Res. 2014, 42, 83–92. [Google Scholar] [PubMed]
- Stoyanova, I.I. Ghrelin: A link between ageing, metabolism and neurodegenerative disorders. Neurobiol. Dis. 2014, 72 Pt A, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Colldén, G.; Tschöp, M.H.; Müller, T.D. Therapeutic Potential of Targeting the Ghrelin Pathway. Int. J. Mol. Sci. 2017, 18, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.H.; Kwon, K.S. Receptor-Mediated Muscle Homeostasis as a Target for Sarcopenia Therapeutics. Endocrinol. Metab. 2021, 36, 478–490. [Google Scholar] [CrossRef]
- Wu, C.S.; Wei, Q.; Wang, H.; Kim, D.M.; Balderas, M.; Wu, G.; Lawler, J.; Safe, S.; Guo, S.; Devaraj, S.; et al. Protective Effects of Ghrelin on Fasting-Induced Muscle Atrophy in Aging Mice. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 621–630. [Google Scholar] [CrossRef]
- Serra-Prat, M.; Papiol, M.; Monteis, R.; Palomera, E.; Cabré, M. Relationship between Plasma Ghrelin Levels and Sarcopenia in Elderly Subjects: A Cross-Sectional Study. J. Nutr. Health Aging 2015, 19, 669–672. [Google Scholar] [CrossRef]
All (n = 52) | Non-Sarcopenia @ (n = 17) | Pre-Sarcopenia # (n = 17) | Sarcopenia (n = 18) | p-Value | |
---|---|---|---|---|---|
Age, y | 86.9 ± 7.5 | 85.4 ± 8.1 | 84.6 ± 8.2 | 90.3 ± 4.9 | 0.046 * |
Sex | 0.388 | ||||
Male | 44 (84.6) | 16 (94.1) | 14 (82.4) | 14 (77.8) | |
Female | 8 (15.4) | 1 (5.9) | 3 (17.6) | 4 (22.2) | |
Height | 160.0 ± 7.9 | 160.9 ± 8.3 | 160.8 ± 8.2 | 158.5 ± 7.5 | 0.602 |
Weight | 58.1 ± 12.4 | 66.2 ± 9.7 | 54.5 ± 10.7 @ | 54.0 ± 12.9 @ | 0.003 * |
BMI | 22.6 ± 4.4 | 25.6 ± 3.9 | 20.9 ± 3.7 @ | 21.3 ± 4.2 @ | 0.001 * |
Percent body fat, % | 30.4 ± 9.9 | 34.2 ± 9.8 | 27.3 ± 7.2 | 29.7 ± 11.2 | 0.116 |
Skeletal muscle mass, kg | 21.0 ± 4.3 | 23.3 ± 4.0 | 20.6 ± 4.0 | 19.2 ± 4.1 @ | 0.015 * |
Total body water, % | 29.3 ± 5.4 | 32.0 ± 5.4 | 28.6 ±4.9 | 27.4 ± 4.9 @ | 0.029 * |
Soft lean mass, kg | 37.4 ± 6.9 | 40.9 ± 6.8 | 36.5 ± 6.3 | 34.8 ± 6.4 @ | 0.024 * |
Fat free mass, kg | 39.7 ± 7.2 | 43.3 ± 7.4 | 38.9 ± 6.6 | 37.1 ± 6.6 @ | 0.033 * |
Fat, kg | 18.4 ± 8.1 | 22.9 ± 7.6 | 15.2 ± 6.1 @ | 16.9 ± 8.6 | 0.013 * |
Arm circumference, cm | 27.9 ± 6.2 | 31.0 ± 8.2 | 26.5 ± 3.2 | 25.9 ± 6.2 @ | 0.030 * |
Waist circumference, cm | 83.4 ± 15.1 | 88.7 ± 19.9 | 81.4 ± 9.8 | 79.9 ± 12.8 | 0.192 |
Calf circumference, cm | 29.1 ± 3.9 | 31.8 ± 3.6 | 29.3 ± 1.6 | 26.8 ± 4.4 @ | 0.007 * |
Visceral fat area, cm2 | 100.0 ± 53.4 | 115.7 ± 69.4 | 80.1 ± 37.3 | 102.8 ± 44.8 | 0.153 |
CCI | 1.9 ± 1.8 | 1.6 ± 1.6 | 1.8 ± 1.7 | 2.3 ± 2.0 | 0.596 |
Barthel index | 77.3 ± 27.4 | 73.5 ± 30.6 | 95.3 ± 6.4 @ | 62.5 ± 28.5 # | 0.001 * |
IADL | 4.3 ± 2.9 | 4.3 ± 3.3 | 5.9 ± 1.6 | 2.3 ± 2.4 @ # | 0.001 * |
MMSE | 17.6 ± 6.6 | 18.3 ± 6.6 | 20.3 ± 5.3 | 14.3 ± 6.8 # | 0.030 * |
MNA-SF | 0.311 | ||||
Normal nutrition | 15 (33.3) | 7 (53.8) | 5 (31.3) | 3 (18.8) | |
At risk of malnutrition | 20 (44.4) | 5 (38.5) | 7 (43.8) | 8 (50.0) | |
Malnutrition | 10 (22.2) | 1 (7.7) | 4 (25.0) | 5 (31.3) | |
Frailty | 35 (67.3) | 9 (52.9) | 10 (58.8) | 16 (89.9) | 0.051 |
Hand grip, kg | 17.6 ± 9.0 | 17.1 ± 9.4 | 22.8 ± 8.5 | 13.0 ± 6.5 # | 0.006 * |
Fall in past year | 13 (28.9) | 2 (15.4) | 4 (25.0) | 7 (43.8) | 0.224 |
Incontinence | 9 (20.0) | 3 (23.1) | 0 | 6 (37.5) | 0.028 * |
All (n = 17) | Non-Sarcopenia @ (n = 5) | Pre-Sarcopenia # (n = 6) | Sarcopenia (n = 6) | p-Value * | |
---|---|---|---|---|---|
Delayed gastric emptying | 3 (17.6) | 1 (20.0) | 1 (16.7) | 1 (16.7) | 0.987 |
Gastric emptying half time (min) | 97.7 ± 42.2 | 105.8 ± 45.7 | 99.6 ± 46.7 | 88.9 ± 41.2 | 0.817 |
Gastric empty at HR1 (%) | 36.0 ± 15.6 | 27.2 ± 12.5 | 32.2 ± 14.8 | 47.2 ± 13.6 | 0.070 |
Gastric empty at HR2 (%) | 69.3 ± 21.0 | 68.2 ± 16.2 | 67.0 ± 27.4 | 72.5 ± 20.9 | 0.906 |
Gastric empty at HR3 (%) | 80.9 ± 18.4 | 82.0 ± 22.0 | 78.2 ± 18.5 | 82.3 ± 18.3 | 0.909 |
Gastric empty at HR4 (%) | 91.8 ± 8.7 | 95.2 ± 6.9 | 89.7 ± 8.5 | 91.0 ± 10.6 | 0.584 |
All (n = 52) | Non-Sarcopenia @ (n = 17) | Pre-Sarcopenia # (n = 17) | Sarcopenia (n = 18) | p-Value | |
---|---|---|---|---|---|
CCK (pg/mL) | 935.0 ± 167.7 | 725.2 ± 112.8 | 485.4 ± 72.3 | 1543.6 ± 429.6 # | 0.020 * |
GLP-1 (pg/mL) | 883.3 ± 69.8 | 835.2 ± 100.3 | 674.8 ± 120.3 | 1125.7 ± 119.9 # | 0.023 * |
PYY (pg/mL) | 39.4 ± 6.4 | 29.4 ± 5.2 | 25.2 ± 4.6 | 61.7 ± 16.0 # | 0.032 * |
Nesfatin (ng/mL) | 0.6 ± 0.2 | 0.3 ± 0.1 | 0.3 ± 0.1 | 1.1 ± 0.6 | 0.263 |
Ghrelin (ng/mL) | 25.0 ± 1.6 | 24.1 ± 2.9 | 26.3 ± 2.8 | 24.7 ± 12.2 | 0.858 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-H.; Wang, T.-Y.; Yao, S.-F.; Lin, P.-Y.; Chang, J.C.-Y.; Peng, L.-N.; Chen, L.-K.; Yen, D.H.-T. Gastric Mobility and Gastrointestinal Hormones in Older Patients with Sarcopenia. Nutrients 2022, 14, 1897. https://doi.org/10.3390/nu14091897
Huang H-H, Wang T-Y, Yao S-F, Lin P-Y, Chang JC-Y, Peng L-N, Chen L-K, Yen DH-T. Gastric Mobility and Gastrointestinal Hormones in Older Patients with Sarcopenia. Nutrients. 2022; 14(9):1897. https://doi.org/10.3390/nu14091897
Chicago/Turabian StyleHuang, Hsien-Hao, Tse-Yao Wang, Shan-Fan Yao, Pei-Ying Lin, Julia Chia-Yu Chang, Li-Ning Peng, Liang-Kung Chen, and David Hung-Tsang Yen. 2022. "Gastric Mobility and Gastrointestinal Hormones in Older Patients with Sarcopenia" Nutrients 14, no. 9: 1897. https://doi.org/10.3390/nu14091897
APA StyleHuang, H. -H., Wang, T. -Y., Yao, S. -F., Lin, P. -Y., Chang, J. C. -Y., Peng, L. -N., Chen, L. -K., & Yen, D. H. -T. (2022). Gastric Mobility and Gastrointestinal Hormones in Older Patients with Sarcopenia. Nutrients, 14(9), 1897. https://doi.org/10.3390/nu14091897