Testing the Impact of Familiarity with Health Benefits Information on Dietary Supplement Choice in Pregnancy: An Online Choice Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Discrete Choice Experiment (DCE)
2.2. Attributes and Attribute Levels
2.3. Experimental Design and Information Treatments
2.4. Questionnaire
2.5. Sample and Data Collection
2.6. Statistical Analysis
3. Results
3.1. Attribute Preferences of Each Segment
3.1.1. Segment 1 (20%)
3.1.2. Segment 2 (22%)
3.1.3. Segment 3 (43%)
3.1.4. Segment 4 (15%)
3.2. The Effect of Information Conditions on Preferences for Specific Nutrients
3.2.1. Folate
3.2.2. Iodine
3.2.3. Omega-3
3.2.4. Vitamin D
4. Discussion
4.1. Policy Implications
4.1.1. Creating Awareness Prior to Purchase (BEFORE entering the Shopping Environment)
4.1.2. Creating Awareness at POP
4.2. Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osmond, C.; Barker, D.J. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ. Health Perspect. 2000, 108, 545–553. [Google Scholar] [PubMed]
- National Health and Medical Research Council. Revised statement on the relationship between dietary folic acid and neural tube defects such as spina bifida. J. Paediatr. Child Health 1994, 30, 476–477. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council. Iodine Supplementation for Pregnant and Breastfeeding Women; NHMRC: Canberra, Australia, 2010.
- AIHW. Monitoring the Health Impacts of Mandatory Folic Acid and Iodine Fortification 2016; AIHW: Canberra, Australia, 2016.
- Brown, R.D.; Langshaw, M.R.; Uhr, E.J.; Gibson, J.N.; Joshua, D.E. The impact of mandatory fortification of flour with folic acid on the blood folate levels of an Australian population. Med. J. Aust. 2011, 194, 65–67. [Google Scholar] [CrossRef]
- Clifton, V.L.; Hodyl, N.A.; Fogarty, P.A.; Torpy, D.J.; Roberts, R.; Nettelbeck, T.; Ma, G.; Hetzel, B. The impact of iodine supplementation and bread fortification on urinary iodine concentrations in a mildly iodine deficient population of pregnant women in South Australia. Nutr. J. 2013, 12, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Eastman, C.J. The changing epidemiology of iodine deficiency. Nat. Rev. Endocrinol. 2012, 8, 434–440. [Google Scholar] [CrossRef]
- Malek, L.; Umberger, W.; Makrides, M.; Zhou, S.J. Poor adherence to folic acid and iodine supplement recommendations in preconception and pregnancy: A cross-sectional analysis. Aust. N. Z. J. Public Health 2016, 40, 424–429. [Google Scholar] [CrossRef]
- Nilsen, R.M.; Vollset, S.E.; Gjessing, H.K.; Magnus, P.; Meltzer, H.M.; Haugen, M.; Ueland, P.M. Patterns and predictors of folic acid supplement use among pregnant women: The Norwegian Mother and Child Cohort Study. Am. J. Clin. Nutr. 2006, 84, 1134–1141. [Google Scholar] [CrossRef] [Green Version]
- Timmermans, S.; Jaddoe, V.W.V.; MacKenbach, J.P.; Hofman, A.; Steegers-Theunissen, R.P.M.; Steegers, E.A.P. Determinants of folic acid use in early pregnancy in a multi-ethnic urban population in The Netherlands: The Generation R study. Prev. Med. 2008, 47, 427–432. [Google Scholar] [CrossRef]
- Malek, L.; Umberger, W.; Makrides, M.; Zhou, S.J. Adherence to the Australian dietary guidelines during pregnancy: Evidence from a national study. Public Health Nutr. 2016, 19, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Malek, L.; Umberger, W.J.; Makrides, M.; Collins, C.T.; Zhou, S.J. Understanding motivations for dietary supplementation during pregnancy: A focus group study. Midwifery 2018, 57, 59–68. [Google Scholar] [CrossRef]
- Sobal, J.; Bisogni, C.A. Constructing Food Choice Decisions. Ann. Behav. Med. 2009, 38, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Malek, L.; Umberger, W.J.; Zhou, S.J.; Makrides, M. Understanding drivers of dietary behavior before and during pregnancy in industrialized countries. In Health and Nutrition in Adolescents and Young Women: Programming for Future Generationsii; Bhutta, Z., Makrides, M., Prentice, A., Eds.; Nestec Ltd.: Vevey, Switzerland; Karger AG: Basel, Switzerland, 2015; Volume 80, pp. 117–140. [Google Scholar]
- Miller, C.K.; Russell, T.; Kissling, G. Decision-making patterns for dietary supplement purchases among women aged 25 to 45 years. J. Am. Diet. Assoc. 2003, 103, 1523–1526. [Google Scholar] [CrossRef]
- Randall, E.; Sanjur, D. Food preferences—Their conceptualization and relationship to consumption. Ecol. Food Nutr. 1981, 11, 151–161. [Google Scholar] [CrossRef]
- Grunert, K.G.; Wills, J.M. A review of European research on consumer response to nutrition information on food labels. J. Public Health 2007, 15, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.M.S.; Cassady, D.L. The effects of nutrition knowledge on food label use. A review of the literature. Appetite 2015, 92, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higginson, C.; Kirk, T.; Rayner, M.; Draper, S. How do consumers use nutrition label information? Nutr. Food Sci. 2002, 32, 145–152. [Google Scholar] [CrossRef]
- Volkova, E.; Mhurchu, C.N. The influence of nutrition labeling and point-of-purchase information on food behaviours. Curr. Obes. Rep. 2015, 4, 19–29. [Google Scholar] [CrossRef]
- Hobin, E.; Bollinger, B.; Sacco, J.; Liebman, E.; Vanderlee, L.; Zuo, F.; Rosella, L.; L’Abbe, M.; Manson, H.; Hammond, D. Consumers’ Response to an On-Shelf Nutrition Labelling System in Supermarkets: Evidence to Inform Policy and Practice. Milbank Q. 2017, 95, 494–534. [Google Scholar] [CrossRef]
- Cox, D.; Evans, G.; Lease, H. The influence of product attributes, consumer attitudes and characteristics on the acceptance of: (1) Novel bread and milk, and dietary supplements and (2) fish and novel meats as dietary vehicles of long chain omega 3 fatty acids. Food Qual. Prefer. 2011, 22, 205–212. [Google Scholar] [CrossRef]
- West, G.E.; Gendron, C.; LaRue, B.; Lambert, R. Consumers’ Valuation of Functional Properties of Foods: Results from a Canada-wide Survey. Can. J. Agric. Econ. Can. D'agroeconomie 2002, 50, 541–558. [Google Scholar] [CrossRef]
- Teratanavat, R.; Hooker, N.H. Consumer Valuations and Preference Heterogeneity for a Novel Functional Food. J. Food Sci. 2006, 71, S533–S541. [Google Scholar] [CrossRef]
- Bitzios, M.; Fraser, I.; Haddock-Fraser, J. Functional ingredients and food choice: Results from a dual-mode study employing means-end-chain analysis and a choice experiment. Food Policy 2011, 36, 715–725. [Google Scholar] [CrossRef]
- Hailu, G.; Boecker, A.; Henson, S.; Cranfield, J. Consumer valuation of functional foods and nutraceuticals in Canada. A conjoint study using probiotics. Appetite 2009, 52, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Malek, L.; Umberger, W.J.; Zhou, S.J.; Makrides, M.; Huynh, E. Understanding Preferences for Dietary Supplements and Fortified Food during Pregnancy: A Discrete Choice Experiment. J. Food Prod. Mark. 2019, 25, 500–526. [Google Scholar] [CrossRef]
- Adamowicz, W.; Boxall, P.; Williams, M.; Louviere, J. Stated Preference Approaches for Measuring Passive Use Values: Choice Experiments and Contingent Valuation. Am. J. Agric. Econ. 1998, 80, 64–75. [Google Scholar] [CrossRef]
- Quaife, M.; Terris-Prestholt, F.; Di Tanna, G.L.; Vickerman, P. How well do discrete choice experiments predict health choices? A systematic review and meta-analysis of external validity. Eur. J. Health Econ. 2018, 19, 1053–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, R.L.; Currim, I.S. A Comparison of Segment Retention Criteria for Finite Mixture Logit Models. J. Mark. Res. 2003, 40, 235–243. [Google Scholar] [CrossRef]
- Greene, W.H.; Hensher, D.A. A latent class model for discrete choice analysis: Contrasts with mixed logit. Transp. Res. Part B Methodol. 2003, 37, 681–698. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behaviour. In Frontiers in Economics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar]
- Scarpa, R.; Thiene, M. Destination Choice Models for Rock Climbing in the Northeastern Alps: A Latent-Class Approach Based on Intensity of Preferences. Land Econ. 2005, 81, 426–444. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. Australia’s Mothers and Babies 2013—In Brief; Perinatal Statistics Series no. 31. Cat no. PER 72; AIHW: Canberra, Australia, 2015.
- Guess, K.; Malek, L.; Anderson, A.; Makrides, M.; Zhou, S.J. Knowledge and practices regarding iodine supplementation: A national survey of healthcare providers. Women Birth 2016, 30, e56–e60. [Google Scholar] [CrossRef]
- Barbour, R.S.; Macleod, M.; Mires, G.; Anderson, A.S. Uptake of folic acid supplements before and during pregnancy: Focus group analysis of women’s views and experiences. J. Hum. Nutr. Diet. 2012, 25, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Tessema, J.; Jefferds, M.E.; Cogswell, M.; Carlton, E. Motivators and Barriers to Prenatal Supplement Use among Minority Women in the United States. J. Am. Diet. Assoc. 2009, 109, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Fulford, B.; Macklon, N.; Boivin, J. Mental models of pregnancy may explain low adherence to folic acid supplementation guidelines: A cross-sectional international survey. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 176, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Soliday, E.; Strahm, A.; Mammenga, S. Fetal health locus of control: Scale properties and applications in preconception health programs. Eval. Program Plan. 2016, 55, 85–90. [Google Scholar] [CrossRef]
- Labs, S.M.; Wurtele, S.K. Fetal Health Locus of Control scale: Development and validation. J. Consult. Clin. Psychol. 1986, 54, 814–819. [Google Scholar] [CrossRef]
- Szwajcer, E.M.; Hiddink, G.J.; Koelen, M.A.; van Woerkum, C.M. Nutrition awareness and pregnancy: Implications for the life course perspective. Eur. J. Obstet. Gynecol. Reprod. Biol. 2007, 135, 58–64. [Google Scholar] [CrossRef]
- Szwajcer, E.; Hiddink, G.J.; Maas, L.; Koelen, M.; Van Woerkum, C. Nutrition awareness before and throughout different trimesters in pregnancy: A quantitative study among Dutch women. Fam. Pract. 2012, 29, i82–i88. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.; Verbeke, W. Consumer evaluation, use and health relevance of health claims in the European Union. Food Qual. Prefer. 2019, 74, 88–99. [Google Scholar] [CrossRef]
- Lucas, C.; Charlton, K.; Yeatman, H. Nutrition Advice During Pregnancy: Do Women Receive it and Can Health Professionals Provide it? Matern. Child Health J. 2014, 18, 2465–2478. [Google Scholar] [CrossRef] [Green Version]
- Lucas, C.J.; Charlton, K.E.; Brown, L.; Brock, E.; Cummins, L. Antenatal shared care: Are pregnant women being adequately informed about iodine and nutritional supplementation? Aust. N. Z. J. Obstet. Gynaecol. 2014, 54, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Helinski, D.T.; Trauth, J.M.; Jernigan, J.C.; Kerr, M.J. Describing a Folic Acid Intervention for Health Care Providers: Implications for Professional Practice and Continuing Education. Health Promot. Pract. 2004, 5, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.G.; Skov, L.R.; Skov, K.L. Making Healthy Choices Easier: Regulation versus Nudging. Annu. Rev. Public Health 2016, 37, 237–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegrist, M.; Leins-Hess, R.; Keller, C. Which front-of-pack nutrition label is the most efficient one? The results of an eye-tracker study. Food Qual. Prefer. 2015, 39, 183–190. [Google Scholar] [CrossRef]
- Becker, M.W.; Bello, N.M.; Sundar, R.P.; Peltier, C.; Bix, L. Front of pack labels enhance attention to nutrition information in novel and commercial brands. Food Policy 2015, 56, 76–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, D.J.; Orquin, J.L.; Visschers, V.H.M. Eye tracking and nutrition label use: A review of the literature and recommendations for label enhancement. Food Policy 2012, 37, 378–382. [Google Scholar] [CrossRef]
- Peschel, A.O.; Orquin, J.L.; Loose, S.M. Increasing consumers’ attention capture and food choice through bottom-up effects. Appetite 2019, 132, 1–7. [Google Scholar] [CrossRef]
Attribute | Levels of Attributes |
---|---|
Specific product 2 (3 levels per alternative) | Fortified food: Yoghurt (1 tub/200 g), Bread (2 slices), Cereal (1 cup) Fortified drink: Juice (1 cup/250 mL), Milk (1 cup/250 mL), Water (1 cup/250 mL) Supplement tablet: Multivitamin tablet 1/day, Multivitamin tablet 2/day, Vitamin tablet 1/day |
Folate (3 levels) | 0, 400, 800 µg |
Iodine (3 levels) | 0, 150, 250 µg |
Omega-3 (3 levels) | 0, 115, 500 mg |
Vitamin D (3 levels) | 0, 200, 400 IU |
Endorsement (6 levels) | Endorsed by the: (1) National Health and Medical Research Council (NHMRC); (2) Dietitians Association of Australia (DAA); (3) National Heart Foundation; (4) CSIRO (Commonwealth Scientific and Industrial Research Organisation). (5) Scientifically proven (6) No endorsement |
Absorption (2 levels) | Easy to digest and absorb; No claim |
Brand (2 levels) | A specific brand; No specific brand or a generic brand |
Daily cost ($) 3 (3 levels per product) | Yoghurt: 0.90, 2.45, 4.00 Cereal: 0.25, 0.70, 1.20 Bread: 0.25, 0.75, 1.25 Juice: 0.30, 1.20, 2.20 Milk: 0.25, 0.90, 1.50 Water: 0.15, 1.20, 2.20 Multivitamin tablet (1/day): 0.25, 0.65, 1.10 Multivitamin tablet (2/day): 0.25, 0.65, 1.10 Vitamin tablet (1/day): 0.15, 0.35, 0.65 |
Information treatments | |
Nutrient | Health benefits information |
Folate | Adequate folate helps prevent neural tube defects such as spina bifida. |
Iodine | Iodine plays an important role in the normal development of the baby’s brain. |
Omega-3 | Omega-3 fatty acids play an important role in the normal development of the baby’s brain and may help prevent premature birth and childhood allergy. |
Vitamin D | Vitamin D plays an essential role in strengthening the baby’s bones. |
Parameter Estimates, β (SE) | Allocation to Each Information Condition | |||||
---|---|---|---|---|---|---|
Segment 1 (20%) | Segment 2 (22%) | Segment 3 (43%) | Segment 4 (15%) | n | % | |
Folate IC *Folate (every 100 µg) | ||||||
Not aware of benefit, Shown information | 0.009 (0.017) | −0.049 * (0.022) | 0.023 (0.023) | −0.025 (0.033) | 103 | 13% |
Not aware of benefit, Not shown information | −0.007 (0.020) | 0 (0.019) | −0.133 (0.024) *** | −0.049 (0.033) | 102 | 12% |
Aware of benefit, Shown information | 0.033 (0.016) * | 0.035 * (0.016) | 0.091 (0.015) *** | 0.055 * (0.022) | 306 | 37% |
Aware of benefit, Not shown information | −0.035 (0.015) * | 0.014 (0.016) | 0.020 (0.015) | 0.019 (0.025) | 307 | 38% |
Iodine IC *Iodine (every 100 µg) | ||||||
Not aware of benefit, Shown information | −0.092 (0.049) | 0.115 (0.054) * | 0.079 (0.039) * | 0.025 (0.07) | 227 | 28% |
Not aware of benefit, Not shown information | −0.084 (0.048) | −0.011 (0.049) | −0.213 (0.042) *** | −0.092 (0.065) | 227 | 28% |
Aware of benefit, Shown information | 0.152 (0.070) * | −0.128 (0.062) * | 0.183 (0.041) *** | 0.138 (0.074) | 182 | 22% |
Aware of benefit, Not shown information | 0.024 (0.064) | 0.024 (0.059) | −0.049 (0.041) | −0.070 (0.079) | 182 | 22% |
Omega-3 IC *Omega-3 (every 100 mg) | ||||||
Not aware of benefit, Shown information | -0.024 (0.025) | 0.0260 (0.025) | 0.027 (0.019) | -0.025 (0.041) | 158 | 19% |
Not aware of benefit, Not shown information | −0.025 (0.026) | −0.020 (0.031) | −0.063 (0.019) *** | −0.061 (0.043) | 157 | 19% |
Aware of benefit, Shown information | 0.039 (0.024) | −0.024 (0.026) | 0.070 (0.016) *** | 0.036 (0.032) | 250 | 31% |
Aware of benefit, Not shown information | 0.010 (0.026) | 0.018 (0.024) | −0.034 (0.016) * | 0.050 (0.035) | 253 | 31% |
Vitamin D IC * Vitamin D (every 1 µg) | ||||||
Not aware of benefit, Shown information | −0.007 (0.012) | −0.003 (0.015) | 0.059 (0.012) *** | 0.016 (0.020) | 173 | 21% |
Not aware of benefit, Not shown information | −0.023 (0.013) | 0.001 (0.013) | −0.058 (0.012) *** | −0.032 (0.018) | 164 | 20% |
Aware of benefit, Shown information | 0.036 (0.012) | 0.008 (0.013) | 0.019 (0.010) * | 0.007 (0.019) | 240 | 29% |
Aware of benefit, Not shown information | −0.006 (0.013) | −0.006 (0.012) | −0.021 (0.010) * | 0.010 (0.020) | 241 | 29% |
Folate | Iodine | Omega-3 Fatty Acids | Vitamin D | |
---|---|---|---|---|
Important for baby’s brain development | 29% | 44% | 56% | 12% |
Prevents neural tube defects such as spina bifida | 75% | 17% | 8% | 7% |
Lowers risk of premature birth | 15% | 13% | 7% | 9% |
Lowers risk of childhood allergy | 5% | 5% | 10% | 8% |
Strengthens baby’s bones | 14% | 8% | 12% | 59% |
Improves general health and well-being | 23% | 23% | 39% | 36% |
No benefit | 0% | 1% | 1% | 0% |
Don’t know | 8% | 31% | 17% | 17% |
Parameter Estimates, β Coefficient (Standard Error, SE) | ||||
---|---|---|---|---|
Segment 1 (20%) | Segment 2 (22%) | Segment 3 (43%) | Segment 4 (15%) | |
Utility function | ||||
Alternative 1 | ||||
Fortified food | −10.831 (4.947) * | −9.756 (4.947) * | −14.140 (4.948) ** | −11.571 (4.948) * |
Fortified drink | −9.932 (4.947) * | −10.799 (4.947) * | −14.145 (4.947) ** | −11.766 (4.949) * |
Supplement tablet | −11.662 (4.948) * | −12.960 (4.949) * | −14.180 (4.948) ** | −10.072 (4.949) * |
None | 0.000 | 0.000 | 0.000 | 0.000 |
Folate (every 100 µg) | 0.006 (0.018) | 0.014 (0.019) | 0.255 (0.020) *** | 0.029 (0.029) |
Iodine (every 100 µg) | 0.026 (0.057) | −0.041 (0.059) | 0.503 (0.053) *** | 0.043 (0.080) |
Omega-3 fatty acids (every 100 mg) | 0.030 (0.015) * | 0.038 (0.015) * | 0.251 (0.013) *** | 0.013 (0.023) |
Vitamin D (every 1 µg) | 0.025 (0.007) ** | 0.023 (0.008) ** | 0.107 (0.007) *** | 0.055 (0.011) *** |
Folate (every 100 µg) * Iodine (every 100 µg) | 0.035 (0.017) * | 0.020 (0.019) | 0.010 (0.014) | 0.033 (0.025) |
Endorsement: fortified foods | ||||
No endorsement | −0.273 (0.314) | −0.544 (0.133) *** | −0.320 (0.175) * | −0.195 (0.144) |
Endorsed by the DAA | −0.228 (0.666) | 0.645 (0.096) *** | 0.123 (0.160) | 0.028 (0.128) |
Endorsed by the NHMRC | 0.178 (0.480) | −0.101 (0.114) | −0.062 (0.205) | 0.060 (0.156) |
Endorsed by the National Heart Foundation | −0.071 (0.267) | −0.532 (0.085) *** | 0.091 (0.119) | 0.098 (0.113) |
Endorsed by the CSIRO | 0.356 (0.181) ** | 0.662 (0.074) *** | 0.275 (0.12) ** | 0.195 (0.132) |
Scientifically proven | 0.037 (0.25) | −0.131 (0.086) | −0.107 (0.108) | −0.186 (0.111) * |
Endorsement: fortified beverages | ||||
No endorsement | −0.494 (0.271) * | −0.305 (0.112) *** | 0.067 (0.161) | −0.181 (0.163) |
Endorsed by the DAA | 0.350 (0.184) * | 0.503 (0.112) *** | −0.164 (0.116) | 0.238 (0.138) * |
Endorsed by the NHMRC | 0.068 (0.334) | −0.339 (0.130) *** | −0.086 (0.151) | 0.086 (0.172) |
Endorsed by the National Heart Foundation | 0.179 (0.182) | −0.326 (0.086) *** | −0.090 (0.101) | −0.039 (0.131) |
Endorsed by the CSIRO | −0.079 (0.201) | 0.504 (0.073) *** | 0.324 (0.099) *** | 0.028 (0.107) |
Scientifically proven | −0.024 (0.260) | −0.036 (0.090) | −0.051 (0.097) | −0.133 (0.137) |
Endorsement: supplement tablets | ||||
No endorsement | −0.466 (0.292) | −0.580 (0.117) *** | −0.110 (0.191) | −0.573 (0.623) |
Endorsed by the DAA | 0.186 (0.194) | 0.352 (0.097) *** | 0.092 (0.169) | 0.052 (0.346) |
Endorsed by the NHMRC | −0.214 (0.270) | −0.007 (0.121) | 0.286 (0.171) * | 0.398 (0.317) |
Endorsed by the National Heart Foundation | −0.045 (0.185) | −0.330 (0.086) *** | 0.169 (0.161) | 0.096 (0.279) |
Endorsed by the CSIRO | 0.428 (0.142) *** | 0.616 (0.077) *** | −0.407 (0.229) * | 0.139 (0.182 |
Scientifically proven | 0.110 (0.151) | −0.050 (0.084) | −0.029 (0.111) | −0.112 (0.283) |
Brand | ||||
A specific brand | −0.090 (0.060) | 0.035 (0.023) | −0.002 (0.035) | −0.011 (0.032) |
No specific brand or a generic brand | 0.090 (0.060) | −0.035 (0.023) | 0.002 (0.035) | 0.011 (0.032) |
Absorption | ||||
No claim | 0.017 (0.078) | −0.085 (0.026) *** | −0.034 (0.046) | −0.031 (0.035) |
Easy to digest and absorb | −0.017 (0.078) | 0.085 (0.026) *** | 0.034 (0.046) | 0.031 (0.035) |
Specific product: fortified foods | ||||
Yoghurt (1 tub, 200 g) | −0.003 (0.482) | −0.250 (0.115) ** | 0.194 (0.258) | 0.278 (0.355) |
Bread (2 slices) | 0.672 (0.216) *** | 0.143 (0.111) | 0.146 (0.219) | 0.031 (0.250) |
Cereal (1 cup) | −0.669 (0.400) * | 0.106 (0.099) | −0.340 (0.169) ** | −0.308 (0.202) |
Specific product: fortified beverages | ||||
Juice (1 cup, 250 mL) | −0.091 (0.288) | −0.096 (0.111) | 0.398 (0.237) * | −0.163 (0.229) |
Milk (1 cup, 250 mL) | −0.099 (0.252) | 0.242 (0.111) ** | −0.320 (0.215) | 0.307 (0.198) |
Water (1 cup, 250 mL) | 0.190 (0.240) | −0.146 (0.103) | −0.077 (0.149) | −0.144 (0.177) |
Specific product: tablets | ||||
Multivitamin tablet 1 (1 per day) | −0.028 (0.310) | 0.342 (0.116) *** | 0.137 (0.172) | 0.213 (0.548) |
Multivitamin tablet (2 per day) | −0.074 (0.190) | −0.221 (0.093) ** | −0.333 (0.194) * | −0.338 (0.617) |
Vitamin tablet (1 per day) | 0.102 (0.182) | −0.121 (0.090) | 0.196 (0.149) | 0.125 (0.273) |
Price: fortified foods | ||||
Yoghurt (1 tub, 200 g) | −0.249 (0.221) | 0.026 (0.062) | −0.051 (0.085) | −0.129 (0.106) |
Bread (2 slices) | −1.158 (0.385) *** | −0.728 (0.174) *** | −0.021 (0.288) | −0.029 (0.245) |
Cereal (1 cup) | 0.131 (0.202) | −0.043 (0.061) | 0.138 (0.154) | 0.058 (0.177) |
Price: fortified beverages | ||||
Juice (1 cup, 250 mL) | −0.316 (0.266) | −0.275 (0.082) *** | −0.166 (0.113) | 0.053 (0.131) |
Milk (1 cup, 250 mL) | −0.217 (0.208) | −0.064 (0.092) | −0.107 (0.132) | −0.076 (0.121) |
Water (1 cup, 250 mL) | −0.215 (0.192) | −0.276 (0.067) *** | −0.021 (0.082) | −0.224 (0.085) *** |
Price: tablets | ||||
Multivitamin tablet 2 (1 per day) | 0.378 (0.722) | −0.733 (0.232) *** | −0.121 (0.327) | 0.328 (0.731) |
Multivitamin tablet (2 per day) | −0.091 (0.327) | −0.220 (0.151) | 0.056 (0.268) | 0.513 (0.664) |
Vitamin tablet (1 per day) | −0.476 (0.444) | 0.349 (0.168) ** | −0.233 (0.350) | −0.249 (0.431) |
Class membership model | ||||
Cohort | ||||
South Australia | 0.157 (0.076) * | −0.001 (0.072) | 0.000 (0.060) | −0.156 (0.082) |
National | −0.157 (0.076) * | 0.001 (0.072) | 0.000 (0.060) | 0.156 (0.082) |
University degree | ||||
No | 0.108 (0.075) | 0.066 (0.071) | −0.060 (0.060) | −0.115 (0.082) |
Yes | −0.108 (0.075) | −0.066 (0.071) | 0.060 (0.060) | 0.115 (0.082) |
Intercepts of class membership model | −0.131 (0.083) | −0.045 (0.080) | 0.612 (0.070) *** | −0.436 (0.102) *** |
Segment 1 (20%) | Segment 2 (22%) | Segment 3 (43%) | Segment 4 (15%) | Total (n = 818) | F/X2 Value 1 | df 2 | p-Value | |
---|---|---|---|---|---|---|---|---|
Age, mean (SD) | 29.5 (5.3) a | 31.3 (5.6) b | 31.0 (4.5) b | 33.2 (4.6) c | 31.1 (5.0) | 13.63 | 3.337 | <0.001 |
Body Mass Index (BMI), mean (SD) | 24.4 (5.4) | 24.4 (5.5) | 25.2 (6.2) | 26.1 (6.2) | 25.0 (5.9) | 2.44 | 3.814 | 0.063 |
Live in metropolitan area | 77.4% | 74.9% | 79.8% | 79.5% | 78.2% | 1.83 | 3 | 0.608 |
University educated | 50.6% | 50.9% | 57.6% | 59.8% | 55.1% | 4.60 | 3 | 0.204 |
Planned pregnancy | 72.0% | 73.1% | 75.9% | 75.4% | 74.4% | 1.16 | 3 | 0.762 |
Previous birth(s) | 53.7% a,b,c | 60.8% c | 46.5% b | 61.5% a,c | 53.2% | 13.79 | 3 | 0.003 |
Took supplements during this pregnancy | 89.0% a,b | 84.8% b | 97.2% c | 95.1% a,c | 92.7% | 30.86 | 3 | 0.000 |
Adhered to folic acid supplement recommendation | 22.0% | 22.4% | 30.2% | 30.6% | 27.0% | 6.48 | 3 | 0.090 |
Adhered to iodine supplement recommendation | 17.3% a | 18.1% a,b | 25.5% a,b | 31.1% b | 23.2% | 11.05 | 3 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malek, L.; Umberger, W.J.; Zhou, S.-J.; Huynh, E.; Makrides, M. Testing the Impact of Familiarity with Health Benefits Information on Dietary Supplement Choice in Pregnancy: An Online Choice Experiment. Nutrients 2022, 14, 1707. https://doi.org/10.3390/nu14091707
Malek L, Umberger WJ, Zhou S-J, Huynh E, Makrides M. Testing the Impact of Familiarity with Health Benefits Information on Dietary Supplement Choice in Pregnancy: An Online Choice Experiment. Nutrients. 2022; 14(9):1707. https://doi.org/10.3390/nu14091707
Chicago/Turabian StyleMalek, Lenka, Wendy J. Umberger, Shao-Jia Zhou, Elisabeth Huynh, and Maria Makrides. 2022. "Testing the Impact of Familiarity with Health Benefits Information on Dietary Supplement Choice in Pregnancy: An Online Choice Experiment" Nutrients 14, no. 9: 1707. https://doi.org/10.3390/nu14091707
APA StyleMalek, L., Umberger, W. J., Zhou, S. -J., Huynh, E., & Makrides, M. (2022). Testing the Impact of Familiarity with Health Benefits Information on Dietary Supplement Choice in Pregnancy: An Online Choice Experiment. Nutrients, 14(9), 1707. https://doi.org/10.3390/nu14091707