Dietary Assessment Tools and Metabolic Syndrome: Is It Time to Change the Focus?
Abstract
:1. Introduction
2. The Aetiology of Metabolic Syndrome
3. Diet and Lifestyle Interventions—Moving beyond Weight Loss
3.1. Carbohydrate Restriction
3.2. Minimising Ultra-Processed Food
3.3. Meal Timing and Frequency
4. Existing Tools for Assessing Dietary Risk for Metabolic Syndrome
4.1. MEDAS
4.2. REAP-S
4.3. Starting the Conversation Tool
4.4. Evaluation of MEDAS, REAP-S and Starting the Conversation Tool
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kylin, E. Studien ueber das Hypertonie-Hyperglyka “mie-Hyperurika” miesyndrom. Zentralblatt für Innere Medizin 1923, 44, 105–127. [Google Scholar]
- Vague, J. La différentiation sexuelle facteur déterminant des formes de l’obésité. Presse Med. 1947, 30, 339–340. [Google Scholar]
- Haller, H.; Hanefeld, M. Synoptische betrachtung metabolischer risikofaktoren. In Lipidstoffwechselstörungen; Gustav Fischer Verlag: Jena, Germany, 1975; pp. 254–264. [Google Scholar]
- Reaven, G.M. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 2005, 28, 2745–2749. [Google Scholar] [CrossRef] [Green Version]
- Chew, G.T.; Gan, S.K.; Watts, G.F. Revisiting the metabolic syndrome. Med. J. Aust. 2006, 185, 445–449. [Google Scholar] [CrossRef]
- Hirode, G.; Wong, R.J. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011–2016. JAMA 2020, 323, 2526–2528. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Australian Institute of Health and Welfare. Disease Expenditure in Australia; AIHW: Canberra, Australia, 2019. [Google Scholar]
- Boudreau, D.M.; Malone, D.C.; Raebel, M.A.; Fishman, P.A.; Nichols, G.A.; Feldstein, A.C.; Boscoe, A.N.; Ben-Joseph, R.H.; Magid, D.J.; Okamoto, L.J. Health Care Utilization and Costs by Metabolic Syndrome Risk Factors. Metab. Syndr. Relat. Disord. 2009, 7, 305–314. [Google Scholar] [CrossRef]
- Eckel, R.H.; Alberti, K.G.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2010, 375, 181–183. [Google Scholar] [CrossRef]
- Harris, M.F. The metabolic syndrome. Aust. Fam. Physician 2013, 42, 524–527. [Google Scholar] [PubMed]
- Riccardi, G.; Giacco, R.; Rivellese, A.A. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr. 2004, 23, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Lustig, R.H. Which Comes First? The Obesity or the Insulin? The Behavior or the Biochemistry? J. Pediatr. 2008, 152, 601–602. [Google Scholar] [CrossRef] [PubMed]
- The Diabetes Control Complications Trial Research Group. Influence of intensive diabetes treatment on body weight and composition of adults with type 1 diabetes in the Diabetes Control and Complications Trial. Diabetes Care 2001, 24, 1711–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, R.R.; Gumbiner, B.; Ditzler, T.; Wallace, P.; Lyon, R.; Glauber, H.S. Intensive conventional insulin therapy for type II diabetes. Metabolic effects during a 6-mo outpatient trial. Diabetes Care 1993, 16, 21–31. [Google Scholar] [CrossRef]
- Wiebe, N.; Ye, F.; Crumley, E.T.; Bello, A.; Stenvinkel, P.; Tonelli, M. Temporal Associations Among Body Mass Index, Fasting Insulin, and Systemic Inflammation: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e211263. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. The Clinical Practice Guidelines for the Management of Overweight and Obesity in Adults, Adolescents and Children in Australia; NHMRC: Canberra, Australia, 2013. [Google Scholar]
- Flier, J.S.; Maratos-Flier, E. What fuels fat. Sci. Am. 2007, 297, 72–81. [Google Scholar] [CrossRef]
- Fothergill, E.; Guo, J.; Howard, L.; Kerns, J.C.; Knuth, N.D.; Brychta, R.; Chen, K.Y.; Skarulis, M.C.; Walter, M.; Walter, P.J.; et al. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity 2016, 24, 1612–1619. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, W.J.; Spence, C.B.; Bhimla, A.; Ma, G.X. Lean Yet Unhealthy: Asian American Adults Had Higher Risks for Metabolic Syndrome than Non-Hispanic White Adults with the Same Body Mass Index: Evidence from NHANES 2011-2016. Healthcare 2021, 9, 1518. [Google Scholar] [CrossRef]
- Shi, T.H.; Wang, B.; Natarajan, S. The Influence of Metabolic Syndrome in Predicting Mortality Risk Among US Adults: Importance of Metabolic Syndrome Even in Adults With Normal Weight. Prev. Chronic Dis. 2020, 17, E36. [Google Scholar] [CrossRef] [PubMed]
- Caleyachetty, R.; Barber, T.M.; Mohammed, N.I.; Cappuccio, F.P.; Hardy, R.; Mathur, R.; Banerjee, A.; Gill, P. Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: A population-based cohort study. Lancet Diabetes Endocrinol. 2021, 9, 419–426. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Hyde, P.N.; Sapper, T.N.; Crabtree, C.D.; LaFountain, R.A.; Bowling, M.L.; Buga, A.; Fell, B.; McSwiney, F.T.; Dickerson, R.M.; Miller, V.J.; et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight 2019, 4, e128308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Bentov, I.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Ultra-processed food is associated with features of metabolic syndrome and non-alcoholic fatty liver disease. Liver Int. 2021, 41, 2635–2645. [Google Scholar] [CrossRef]
- Świątkiewicz, I.; Woźniak, A.; Taub, P.R. Time-Restricted Eating and Metabolic Syndrome: Current Status and Future Perspectives. Nutrients 2021, 13, 221. [Google Scholar] [CrossRef]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; Agricultural Research Service; USDA: Washington, DC, USA, 2020. [Google Scholar]
- Volek, J.S.; Phinney, S.D.; Krauss, R.M.; Johnson, R.J.; Saslow, L.R.; Gower, B.; Yancy, W.S.; King, J.C.; Hecht, F.M.; Teicholz, N.; et al. Alternative Dietary Patterns for Americans: Low-Carbohydrate Diets. Nutrients 2021, 13, 3299. [Google Scholar] [CrossRef]
- Volek, J.S.; Phinney, S.D.; Forsythe, C.E.; Quann, E.E.; Wood, R.J.; Puglisi, M.J.; Kraemer, W.J.; Bibus, D.M.; Fernandez, M.L.; Feinman, R.D. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 2009, 44, 297–309. [Google Scholar] [CrossRef]
- Sackner-Bernstein, J.; Kanter, D.; Kaul, S. Dietary Intervention for Overweight and Obese Adults: Comparison of Low-Carbohydrate and Low-Fat Diets. A Meta-Analysis. PLoS ONE 2015, 10, e0139817. [Google Scholar] [CrossRef]
- Athinarayanan, S.J.; Adams, R.N.; Hallberg, S.J.; McKenzie, A.L.; Bhanpuri, N.H.; Campbell, W.W.; Volek, J.S.; Phinney, S.D.; McCarter, J.P. Long-Term Effects of a Novel Continuous Remote Care Intervention Including Nutritional Ketosis for the Management of Type 2 Diabetes: A 2-Year Non-randomized Clinical Trial. Front. Endocrinol. 2019, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Unwin, D.J.; Tobin, S.D.; Murray, S.W.; Delon, C.; Brady, A.J. Substantial and Sustained Improvements in Blood Pressure, Weight and Lipid Profiles from a Carbohydrate Restricted Diet: An Observational Study of Insulin Resistant Patients in Primary Care. Int. J. Environ. Res. Public Health 2019, 16, 2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Perez, C.; San-Cristobal, R.; Guallar-Castillon, P.; Martínez-González, M.; Salas-Salvadó, J.; Corella, D.; Castañer, O.; Martinez, J.A.; Alonso-Gómez, Á.; Wärnberg, J.; et al. Use of Different Food Classification Systems to Assess the Association between Ultra-Processed Food Consumption and Cardiometabolic Health in an Elderly Population with Metabolic Syndrome (PREDIMED-Plus Cohort). Nutrients 2021, 13, 2471. [Google Scholar] [CrossRef] [PubMed]
- Avena, N.M.; Gold, M.S. Variety and hyperpalatability: Are they promoting addictive overeating? Am. J. Clin. Nutr. 2011, 94, 367–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, M.; Bonaccio, M.; Martini, D.; Madarena, M.P.; Vitale, M.; Pagliai, G.; Esposito, S.; Ferraris, C.; Guglielmetti, M.; Rosi, A.; et al. Reproducibility and validity of a food-frequency questionnaire (NFFQ) to assess food consumption based on the NOVA classification in adults. Int. J. Food Sci. Nutr. 2021, 72, 861–869. [Google Scholar] [CrossRef]
- O’Halloran, S.A.; Lacy, K.E.; Grimes, C.A.; Woods, J.; Campbell, K.J.; Nowson, C.A. A novel processed food classification system applied to Australian food composition databases. J. Hum. Nutr. Diet. 2017, 30, 534–541. [Google Scholar] [CrossRef]
- Drewnowski, A.; Gupta, S.; Darmon, N. An Overlap Between “Ultraprocessed” Foods and the Preexisting Nutrient Rich Foods Index? Nutr. Today 2020, 55, 75–81. [Google Scholar] [CrossRef]
- Gordon, E.L.; Ariel-Donges, A.H.; Bauman, V.; Merlo, L.J. What Is the Evidence for “Food Addiction?” A Systematic Review. Nutrients 2018, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Mills, K.T.; Yao, L.; Demanelis, K.; Eloustaz, M.; Yancy, W.S.; Kelly, T.N.; He, J.; Bazzano, L.A. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: A meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol. 2012, 176 (Suppl. 7), S44–S54. [Google Scholar] [CrossRef] [Green Version]
- Fanti, M.; Mishra, A.; Longo, V.D.; Brandhorst, S. Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Curr. Obes. Rep. 2021, 10, 70–80. [Google Scholar] [CrossRef]
- Chaix, A.; Manoogian, E.N.; Melkani, G.C.; Panda, S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr. 2019, 39, 291–315. [Google Scholar] [CrossRef]
- Popkin, B.M.; Duffey, K.J. Does hunger and satiety drive eating anymore? Increasing eating occasions and decreasing time between eating occasions in the United States. Am. J. Clin. Nutr. 2010, 91, 1342–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cermakian, N.; Boivin, D. The regulation of central and peripheral circadian clocks in humans. Obes. Rev. 2009, 10, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Tang, Q.; Chen, G.; Xie, M.; Yu, S.; Zhao, J.; Chen, L. New insights into the circadian rhythm and its related diseases. Front. Physiol. 2019, 10, 682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.P.; Cunningham, R.P.; Dashek, R.J.; Mucinski, J.M.; Rector, R.S. A Fad too Far? Dietary Strategies for the Prevention and Treatment of NAFLD. Obesity 2020, 28, 1843–1852. [Google Scholar] [CrossRef]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef]
- Vadiveloo, M.; Lichtenstein, A.H.; Anderson, C.; Aspry, K.; Foraker, R.; Griggs, S.; Hayman, L.L.; Johnston, E.; Stone, N.J.; Thorndike, A.N.; et al. Rapid Diet Assessment Screening Tools for Cardiovascular Disease Risk Reduction Across Healthcare Settings: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e000094. [Google Scholar] [CrossRef]
- Yamaoka, K.; Tango, T. Effects of lifestyle modification on metabolic syndrome: A systematic review and meta-analysis. BMC Med. 2012, 10, 138. [Google Scholar] [CrossRef]
- Kastorini, C.M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef] [Green Version]
- Huo, R.; Du, T.; Xu, Y.; Xu, W.; Chen, X.; Sun, K.; Yu, X. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: A meta-analysis. Eur. J. Clin. Nutr. 2015, 69, 1200–1208. [Google Scholar] [CrossRef]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Papadaki, A.; Johnson, L.; Toumpakari, Z.; England, C.; Rai, M.; Toms, S.; Penfold, C.; Zazpe, I.; Martínez-González, M.A.; Feder, G. Validation of the English Version of the 14-Item Mediterranean Diet Adherence Screener of the PREDIMED Study, in People at High Cardiovascular Risk in the UK. Nutrients 2018, 10, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerwinske, L.A.; Rasmussen, H.E.; Lipson, S.; Volgman, A.S.; Tangney, C.C. Evaluation of a dietary screener: The Mediterranean Eating Pattern for Americans tool. J. Hum. Nutr. Diet. 2017, 30, 596–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkhondeh, A.; Mohammad, A.; Kamran, S. The Effect of 6-months Fruit-rich Diet on Liver Steatosis, Liver Enzymes, Insulin Resistance, and Lipid Profile in Patients With Non-alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Djoussé, L.; Arnett, D.K.; Eckfeldt, J.H.; Province, M.A.; Singer, M.R.; Ellison, R.C. Alcohol consumption and metabolic syndrome: Does the type of beverage matter? Obes. Res. 2012, 12, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.; Sheron, N. No level of alcohol consumption improves health. Lancet 2018, 392, 987–988. [Google Scholar] [CrossRef] [Green Version]
- Gribbin, S.; Enticott, J.; Hodge, A.M.; Moran, L.; Thong, E.; Joham, A.; Zaman, S. Association of carbohydrate and saturated fat intake with cardiovascular disease and mortality in Australian women. Heart 2021. [Google Scholar] [CrossRef]
- Johnston, C.S.; Bliss, C.; Knurick, J.R.; Scholtz, C. Rapid Eating Assessment for Participants [shortened version] scores are associated with Healthy Eating Index-2010 scores and other indices of diet quality in healthy adult omnivores and vegetarians. Nutr. J. 2018, 17, 89. [Google Scholar] [CrossRef]
- Gans, K.M.; Risica, P.M.; Wylie-Rosett, J.; Ross, E.M.; Strolla, L.O.; McMurray, J.; Eaton, C.B. Development and evaluation of the nutrition component of the Rapid Eating and Activity Assessment for Patients (REAP): A new tool for primary care providers. J. Nutr. Educ. Behav. 2006, 38, 286–292. [Google Scholar] [CrossRef]
- Chung, S.T.; Magge, S.N. Dietary sugar restriction reduces hepatic de novo lipogenesis in boys with fatty liver disease. J. Clin. Investig. 2021, 131, e154645. [Google Scholar] [CrossRef]
- Paxton, A.E.; Strycker, L.A.; Toobert, D.J.; Ammerman, A.S.; Glasgow, R.E. Starting the conversation: Performance of a brief dietary assessment and intervention tool for health professionals. Am. J. Prev. Med. 2011, 40, 67–71. [Google Scholar] [CrossRef]
- De Lorgeril, M. Commentary on the clinical management of metabolic syndrome: Why a healthy lifestyle is important. BMC Med. 2012, 10, 139. [Google Scholar] [CrossRef] [PubMed]
Tool | Questionnaire Items | Relevance to Alternative Approaches | ||
---|---|---|---|---|
Low Carbohydrate | Minimising UPFs | Meal timing and Frequency | ||
Starting the Conversation | Frequency of intakes over the previous few months: | |||
Fast food meals or snacks per month? | More detail required | ✓ | ✕ | |
Servings of fruit per day? | More detail required | ✓ | ✕ | |
Servings of vegetables per day? | More detail required | ✓ | ✕ | |
Regular sodas, juices or other sugary beverages per day? | ✓ | ✓ | ✕ | |
Servings of beans, nuts, chicken or fish per week? | Include all protein sources | More detail required | ✕ | |
Regular snack chips or crackers per week? | ✓ | ✓ | ✕ | |
Desserts and other sweets per week? | ✓ | More detail required | ✕ | |
Use of butter or meat fat? | ✕ | ✕ | ✕ | |
REAP-S | In an average week, how often do you: | |||
Skip breakfast? | ✕ | ✕ | More detail required | |
Eat ≥ 4 meals from sit-down or take-out restaurants? | More detail required | More detail required | ✕ | |
Eat <2 servings of fruit a day? | More detail required | More detail required | ✕ | |
Eat <2 servings of vegetables a day? | More detail required | More detail required | ✕ | |
Eat >8 oz meat, chicken, turkey or fish per day? | Include all protein sources | Include all protein sources | ✕ | |
Eat regular processed meats instead of low-fat processed meats? | ✕ | ✕ | ✕ | |
Eat fried foods such as chicken, fish, French fries, plantains, tostones, yukka? | ✕ | ✕ | ✕ | |
Eat regular potato chips, nacho chips, corn chips, crackers or regular popcorn instead of unsalted nuts or air popped popcorn? | Limited relevance | ✓ | ✕ | |
Eat sweets such as cake, cookies, donuts, muffins, chocolate and candies ≥2 times per day? | ✕ | More detail required | ✕ | |
Drink ≥16 oz of non-diet soda, fruit drink/punch, or Kool-Aid a day? | Requires lower threshold | Requires lower threshold | ✕ | |
Usually shop and cook rather than eating sit-down or take-out restaurant food? | ✕ | ✕ | ✕ | |
Usually feel well enough to shop or cook | ✕ | ✕ | ✕ | |
How willing are you to make changes in your eating habits to be healthier | ✕ | ✕ | ✕ | |
MEDAS | Do you use olive oil as the principal source of fat for cooking? | ✓ | ✓ | ✕ |
How much olive oil do you consume per day? | ✕ | ✕ | ✕ | |
How many servings of vegetables do you consume per day? | More detail required | ✓ | ✕ | |
How many servings of red meat, hamburger or meat products do you consume per day? | ✓ | ✓ | ✕ | |
How many servings of butter, margarine or cream so you consume per day? | ✕ | ✕ | ✕ | |
How many sugar-sweetened beverages do you drink per day? | ✓ | More detail required | ✕ | |
How much wine do you drink per week? | ✕ | ✕ | ✕ | |
How many servings of pulses do you consume per week? | ✓ | ✓ | ✕ | |
How many servings of fish/shellfish do you consume per week? | ✓ | ✓ | ✕ | |
How many times do you consume commercial sweets or pastries (not homemade) such as cakes, cookies, biscuits or custard? | ✓ | ✓ | ✕ | |
Do you prefer to eat chicken, turkey or rabbit instead of beef, pork, hamburgers or sausages? | ✕ | ✕ | ✕ | |
How many times per week do you consume cooked vegetables, pasta, rice or other dishes prepared with a sauce of tomato, garlic, onions or leeks sauteed in olive oil? | ✕ | ✕ | ✕ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, H.; Belski, R.; Bryant, E.; Cooke, M. Dietary Assessment Tools and Metabolic Syndrome: Is It Time to Change the Focus? Nutrients 2022, 14, 1557. https://doi.org/10.3390/nu14081557
Chauhan H, Belski R, Bryant E, Cooke M. Dietary Assessment Tools and Metabolic Syndrome: Is It Time to Change the Focus? Nutrients. 2022; 14(8):1557. https://doi.org/10.3390/nu14081557
Chicago/Turabian StyleChauhan, Helen, Regina Belski, Eleanor Bryant, and Matthew Cooke. 2022. "Dietary Assessment Tools and Metabolic Syndrome: Is It Time to Change the Focus?" Nutrients 14, no. 8: 1557. https://doi.org/10.3390/nu14081557
APA StyleChauhan, H., Belski, R., Bryant, E., & Cooke, M. (2022). Dietary Assessment Tools and Metabolic Syndrome: Is It Time to Change the Focus? Nutrients, 14(8), 1557. https://doi.org/10.3390/nu14081557