Correlations between First 72 h Hypophosphatemia, Energy Deficit, Length of Ventilation, and Mortality—A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. Admission Outcomes
3.3. Survivors’ Analysis
3.4. Multivariate Analysis
4. Discussion
4.1. Baseline Charectaristics & Energy Delivery
4.2. Mortality & Prolonged Ventilation
4.3. Survivor’s Length of Ventilation
4.4. The Interaction of Energy Delivery, Hypophsphatemia, & Patient Outcomes
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, S.; Egi, M.; Schneider, A.G.; Bellomo, R.; Hart, G.K.; Hegarty, C. Hypophosphatemia in Critically Ill Patients. J. Crit. Care 2013, 28, e9–e19. [Google Scholar] [CrossRef] [PubMed]
- Sin, J.C.K.; King, L.; Ballard, E.; Llewellyn, S.; Laupland, K.B.; Tabah, A. Hypophosphatemia and Outcomes in ICU: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2020, 36, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Appelberg, O.; Reintam-Blaser, A.; Ichai, C.; Joannes-Boyau, O.; Casaer, M.; Schaller, S.J.; Gunst, J.; Starkopf, J. ESICM-MEN section Prevalence of Hypophosphatemia in the ICU—Results of an International One-Day Point Prevalence Survey. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Shor, R.; Halabe, A.; Rishver, S.; Tilis, Y.; Matas, Z.; Fux, A.; Boaz, M.; Weinstein, J. Severe Hypophosphatemia in Sepsis as a Mortality Predictor. Ann. Clin. Lab. Sci. 2006, 36, 67–72. [Google Scholar] [PubMed]
- Marik, P.E.; Bedigian, M.K. Refeeding Hypophosphatemia in Critically Ill Patients in an Intensive Care Unit. A Prospective Study. Arch. Surg. 1996, 131, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Rimaz, S.; Moghadam, A.D.; Mobayen, M.; Nasab, M.M.; Rimaz, S.; Aghebati, R.; Jafaryparvar, Z.; Rad, E.H. Changes in Serum Phosphorus Level in Patients with Severe Burns: A Prospective Study. Burns 2019, 45, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Pistolesi, V.; Zeppilli, L.; Fiaccadori, E.; Regolisti, G.; Tritapepe, L.; Morabito, S. Hypophosphatemia in Critically Ill Patients with Acute Kidney Injury on Renal Replacement Therapies. J. Nephrol. 2019, 32, 895–908. [Google Scholar] [CrossRef]
- Hendrix, R.J.; Hastings, M.C.; Samarin, M.; Hudson, J.Q. Predictors of Hypophosphatemia and Outcomes during Continuous Renal Replacement Therapy. Blood Purif. 2020, 49, 700–707. [Google Scholar] [CrossRef]
- Paleologos, M.; Stone, E.; Braude, S. Persistent, Progressive Hypophosphataemia after Voluntary Hyperventilation. Clin. Sci. 2000, 98, 619–625. [Google Scholar] [CrossRef]
- Larsson, L.; Rebel, K.; Sörbo, B. Severe Hypophosphatemia—A Hospital Survey. Acta Med. Scand. 1983, 214, 221–223. [Google Scholar] [CrossRef]
- Reintam Blaser, A.; Gunst, J.; Ichai, C.; Casaer, M.P.; Benstoem, C.; Besch, G.; Dauger, S.; Fruhwald, S.M.; Hiesmayr, M.; Joannes-Boyau, O.; et al. Hypophosphatemia in Critically Ill Adults and Children—A Systematic Review. Clin. Nutr. 2020, 40, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Betro, M.G.; Pain, R.W. Hypophosphataemia and Hyperphosphataemia in a Hospital Population. Br. Med. J. 1972, 1, 273–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaasbeek, A.; Meinders, A.E. Hypophosphatemia: An Update on Its Etiology and Treatment. Am. J. Med. 2005, 118, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xiao, C.; Chen, L.; Zhang, X.; Kou, Q. Impact of Hypophosphatemia on Outcome of Patients in Intensive Care Unit: A Retrospective Cohort Study. BMC Anesthesiol. 2019, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Zemlin, A.E.; Meyer, W.P.; Erasmus, R.T. Hypophosphataemia at a Large Academic Hospital in South Africa. J. Clin. Pathol. 2008, 61, 1104–1107. [Google Scholar] [CrossRef]
- Federspiel, C.K.; Itenov, T.S.; Thormar, K.; Liu, K.D.; Bestle, M.H. Hypophosphatemia and Duration of Respiratory Failure and Mortality in Critically Ill Patients. Acta Anaesthesiol. Scand. 2018, 62, 1098–1104. [Google Scholar] [CrossRef]
- Cohen, J.; Kogan, A.; Sahar, G.; Lev, S.; Vidne, B.; Singer, P. Hypophosphatemia Following Open Heart Surgery: Incidence and Consequences. Eur. J. Cardio-Thorac. Surg. 2004, 26, 306–310. [Google Scholar] [CrossRef] [Green Version]
- Geerse, D.A.; Bindels, A.J.; Kuiper, M.A.; Roos, A.N.; Spronk, P.E.; Schultz, M.J. Treatment of Hypophosphatemia in the Intensive Care Unit: A Review. Crit. Care 2010, 14, R147. [Google Scholar] [CrossRef] [Green Version]
- Alsumrain, M.H.; Jawad, S.A.; Imran, N.B.; Riar, S.; DeBari, V.A.; Adelman, M. Association of Hypophosphatemia with Failure-to-Wean from Mechanical Ventilation. Ann. Clin. Lab. Sci. 2010, 40, 144–148. [Google Scholar]
- Miller, C.J.; Doepker, B.A.; Springer, A.N.; Exline, M.C.; Phillips, G.; Murphy, C.V. Impact of Serum Phosphate in Mechanically Ventilated Patients with Severe Sepsis and Septic Shock. J. Intensive Care Med. 2020, 35, 485–493. [Google Scholar] [CrossRef]
- Singer, P.; Anbar, R.; Cohen, J.; Shapiro, H.; Shalita-Chesner, M.; Lev, S.; Grozovski, E.; Theilla, M.; Frishman, S.; Madar, Z. The Tight Calorie Control Study (TICACOS): A Prospective, Randomized, Controlled Pilot Study of Nutritional Support in Critically Ill Patients. Intensive Care Med. 2011, 37, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Braunschweig, C.L.; Freels, S.; Sheean, P.M.; Peterson, S.J.; Perez, S.G.; McKeever, L.; Lateef, O.; Gurka, D.; Fantuzzi, G. Role of Timing and Dose of Energy Received in Patients with Acute Lung Injury on Mortality in the Intensive Nutrition in Acute Lung Injury Trial (INTACT): A Post Hoc Analysis. Am. J. Clin. Nutr. 2017, 105, 411–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabi, Y.M.; Aldawood, A.S.; Haddad, S.H.; Al-Dorzi, H.M.; Tamim, H.M.; Jones, G.; Mehta, S.; McIntyre, L.; Solaiman, O.; Sakkijha, M.H.; et al. Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults. N. Engl. J. Med. 2015, 372, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting Energy Expenditure, Calorie and Protein Consumption in Critically Ill Patients: A Retrospective Cohort Study. Crit. Care 2016, 20, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faisy, C.; Guerot, E.; Diehl, J.-L.; Labrousse, J.; Fagon, J.-Y. Assessment of Resting Energy Expenditure in Mechanically Ventilated Patients. Am. J. Clin. Nutr. 2003, 78, 241–249. [Google Scholar] [CrossRef]
- Savard, J.-F.; Faisy, C.; Lerolle, N.; Guerot, E.; Diehl, J.-L.; Fagon, J.-Y. Validation of a Predictive Method for an Accurate Assessment of Resting Energy Expenditure in Medical Mechanically Ventilated Patients. Crit. Care Med. 2008, 36, 1175–1183. [Google Scholar] [CrossRef] [Green Version]
- Boles, J.-M.; Bion, J.; Connors, A.; Herridge, M.; Marsh, B.; Melot, C.; Pearl, R.; Silverman, H.; Stanchina, M.; Vieillard-Baron, A.; et al. Weaning from Mechanical Ventilation. Eur. Respir. J. 2007, 29, 1033–1056. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Kwon, J.; Park, S.; Jhee, J.H.; Yun, H.-R.; Kim, H.; Kee, Y.K.; Yoon, C.-Y.; Chang, T.-I.; Kang, E.W.; et al. Phosphate Is a Potential Biomarker of Disease Severity and Predicts Adverse Outcomes in Acute Kidney Injury Patients Undergoing Continuous Renal Replacement Therapy. PLoS ONE 2018, 13, e0191290. [Google Scholar] [CrossRef] [Green Version]
- Chung, P. Serum Phosphorus Levels Predict Clinical Outcome in Fulminant Hepatic Failure. Liver Transplant. 2003, 9, 248–253. [Google Scholar] [CrossRef]
- Pomposelli, J. Life-Threatening Hypophosphatemia after Right Hepatic Lobectomy for Live Donor Adult Liver Transplantation. Liver Transplant. 2001, 7, 637–642. [Google Scholar] [CrossRef]
- Doig, G.S.; Simpson, F.; Heighes, P.T.; Bellomo, R.; Chesher, D.; Caterson, I.D.; Reade, M.C.; Harrigan, P.W.J. Restricted versus Continued Standard Caloric Intake during the Management of Refeeding Syndrome in Critically Ill Adults: A Randomised, Parallel-Group, Multicentre, Single-Blind Controlled Trial. Lancet Respir. Med. 2015, 3, 943–952. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN Guideline on Clinical Nutrition in the Intensive Care Unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.M.; Reintam-Blaser, A.; Calder, P.C.; Casaer, M.; Hiesmayr, M.J.; Mayer, K.; Montejo, J.C.; Pichard, C.; Preiser, J.-C.; van Zanten, A.R.H.; et al. Monitoring Nutrition in the ICU. Clin. Nutr. 2019, 38, 584–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Waele, E.; Opsomer, T.; Mattens, S.; Diltoer, M.; Honoré, P.M.; Spapen, H.; Huyghens, L. Pp192-Sun Measured Versus Calculated Resting Energy Expenditure in Critically Ill Adult Patients. Do Mathematics Match the Golden Standard? Clin. Nutr. 2013, 32, S95. [Google Scholar] [CrossRef]
Total | Without Hypophosphatemia Minimal p ≥ 2.5 mg/dL | With Hypophosphatemia Minimal p < 2.5 mg/dL | ||
---|---|---|---|---|
825 | 501 (60.73%) | 324 (39.27%) | ||
Age (years) | 58.36 ± 17.58 | 60.03 ± 16.95 | 55.76 ± 18.24 | p < 0.01 |
Male sex (n, %) | 523 (63.39%) | 320 (61.19%) | 203 (38.81%) | p = 0.767 |
BMI (kg/m2) | 28.00 ± 6.53 | 28.08 ± 6.52 | 27.87 ± 6.55 | p = 0.654 |
APACHE II | 22.09 ± 7.68 | 23.38 ± 8.02 | 20.35 ± 6.84 | p < 0.001 |
SOFA24 | 8.34 ± 3.51 | 8.91 ± 3.59 | 7.53 ± 3.23 | p < 0.001 |
ΔSOFA24-72 | −0.70 ± 2.79 | −0.40 ± 2.98 | −1.08 ± 2.49 | p = 0.005 |
pH | 7.38 ± 0.07 | 7.36 ± 0.8 | 7.4 ± 0.05 | p < 0.001 |
pCO2 (mmHg) | 42.90 ± 8.05 | 42.46 ± 8.16 | 43.57 ± 7.86 | p = 0.013 |
HCO3− (mmol/L) | 24.53 ± 4.37 | 23.51 ± 4.45 | 26.11 ± 3.71 | p < 0.001 |
Base Excess (mmol/L) | −0.02 ± 5.11 | −1.23 ± 5.26 | 1.83 ± 4.32 | p < 0.001 |
Kidney SOFA score | 1.05 ± 1.32 | 1.5 ± 1.39 | 0.45 ± 0.92 | p < 0.001 |
Admission reason (n,%) | ||||
Medical | 437 (52.97%) | 259 (51.70%) | 178 (54.94%) | p < 0.001 |
Surgical | 183 (22.18%) | 126 (25.15%) | 57 (17.59%) | |
Trauma | 135 (16.36%) | 58 (11.58%) | 77 (23.77%) | |
Obstetrics | 10 (1.21%) | 9 (1.80%) | 1 (0.31) | |
Transplantation | 60 (7.27%) | 49 (9.78%) | 11 (3.40%) |
Total | Without Hypophosphatemia Minimal p ≥ 2.5 mg/dL | With Hypophosphatemia Minimal p < 2.5 mg/dL | ||
---|---|---|---|---|
N | 825 | 501 | 324 | |
Length of stay (days) | 8.93 ± 9.83 | 8.11 ± 9.97 | 10.19 ± 9.48 | p < 0.001 |
Length of ventilation (days) | 7.55 ± 8.85 | 6.69 ± 8.65 | 8.90 ± 8.99 | p < 0.001 |
Prolonged ventilation (n, %) | 291 (35.27%) | 149 (29.74%) | 142 (43.83%) | p < 0.01 |
Average daily energy deficit (Kcal/day) | −1091.05 ± 574.41 | −1175.88 ± 566.51 | −959.89 ± 562.59 | p < 0.01 |
Death (n, %) | 297 (36.0%) | 219 (43.71%) | 78 (24.07%) | p < 0.01 |
Vent7Mort (n, %) | 478 (57.94%) | 299 (59.68%) | 179 (55.25%) | p = 0.2 |
Total | Without Hypophosphatemia Minimal p ≥ 2.5 mg/dL | With Hypophosphatemia Minimal p < 2.5 mg/dL | ||
---|---|---|---|---|
N | 528 | 282 | 246 | |
Age (years) | 54.60 ± 17.99 | 55.38 ± 17.48 | 53.70 ± 18.55 | p = 0.28 |
Male sex (n, %) | 333 (63.07%) | 175 (62.06%) | 158 (64.23%) | p = 0.61 |
BMI (kg/m2) | 28.13 ± 6.59 | 28.15 ± 6.59 | 28.11 ± 6.60 | p = 0.95 |
APACHE II | 19.53 ± 6.81 | 20.08 ± 7.11 | 18.99 ± 6.49 | p = 0.16 |
SOFA24 | 7.61 ± 3.22 | 8.12 ± 3.51 | 7.06 ± 2.79 | p = 0.001 |
ΔSOFA24-72 | −1.20 ± 2.87 | −1.13 ± 3.11 | −1.26 ± 2.64 | p = 0.74 |
pH | 7.40 ± 0.05 | 7.39 ± 0.06 | 7.41 ± 0.04 | p < 0.001 |
pCO2 (mmHg) | 42.8 ± 7.25 | 42.37 ± 6.72 | 43.30 ± 7.80 | p = 0.14 |
HCO3− (mmol/L) | 25.5 ± 3.68 | 24.79 ± 3.69 | 26.31 ± 3.52 | p < 0.001 |
Base Excess (mmol/L) | 1.14 ± 4.17 | 0.31 ± 4.11 | 2.09 ± 4.05 | p < 0.001 |
Kidney SOFA score | 0.83 ± 1.26 | 1.27 ± 1.39 | 0.38 ± 0.82 | p < 0.001 |
Admission reason | ||||
Medical | 258 (48.86%) | 133 (47.16%) | 125 (50.81%) | p < 0.001 |
Surgical | 100 (18.94%) | 58 (20.57%) | 42 (17.07%) | |
Trauma | 110 (20.83%) | 43 (15.25%) | 67 (27.24%) | |
Obstetrics | 10 (1.89%) | 9 (3.19%) | 1 (0.41%) | |
Transplantation | 50 (9.47%) | 39 (13.83%) | 11 (4.47%) | |
Average daily energy deficit (Kcal/day) | −1087.30 ± 593.10 | −1177.76 ± 594.84 | −983.60 ± 547.98 | p < 0.001 |
Length of stay (days) | 8.87 ± 9.35 | 7.83 + 9.02 | 10.07 ± 9.59 | p < 0.01 |
Length of ventilation (days) | 7.27 ± 8.71 | 6.17 ± 8.24 | 8.53 ± 9.08 | p = 0.002 |
Prolonged ventilation | 181 (34.28%) | 80 (28.37%) | 101 (41.06%) | p = 0.02 |
(a) | ||||
---|---|---|---|---|
Effect | OR | 95% Confidence Limits | ||
hypophosphatemia | 0.773 | 0.416 | 1.435 | |
age | 1.028 | 1.007 | 1.049 | |
female sex | 1.113 | 0.590 | 2.099 | |
BMI | 1.000 | 0.956 | 1.047 | |
APACHEE-II | 1.046 | 0.994 | 1.101 | |
SOFA24 | 1.135 | 1.021 | 1.262 | |
ΔSOFA | 1.379 | 1.203 | 1.580 | |
Obgyn (vs. medical) | 0.828 | 0.021 | 32.872 | |
Transplant (vs. medical) | 0.365 | 0.076 | 1.750 | |
Trauma (vs. medical) | 0.183 | 0.060 | 0.562 | |
Surgical (vs. medical) | 0.656 | 0.321 | 1.341 | |
Average daily energy deficit | 1.000 | 0.999 | 1.000 | |
(b) | ||||
Effect | OR | 95% Confidence Limits | ||
hypophosphatemia | 2.242 | 0.797 | 6.289 | |
age | 1.026 | 0.996 | 1.058 | |
female sex | 0.143 | 0.043 | 0.473 | |
BMI | 1.039 | 0.961 | 1.123 | |
APACHEE-II | 0.973 | 0.889 | 1.066 | |
SOFA24 | 1.311 | 1.090 | 1.576 | |
ΔSOFA | 1.267 | 1.045 | 1.537 | |
Obgyn (vs. medical) | 0.003 | 0.001 | 0.384 | |
Transplant (vs. medical) | 0.711 | 0.045 | 11.339 | |
Trauma (vs. medical) | 3.825 | 0.866 | 16.897 | |
Surgical (vs. medical) | 1.025 | 0.319 | 3.280 | |
Average daily energy deficit | 1.005 | 1.003 | 1.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Statlender, L.; Raphaeli, O.; Bendavid, I.; Hellerman, M.; Kagan, I.; Fishman, G.; Singer, P. Correlations between First 72 h Hypophosphatemia, Energy Deficit, Length of Ventilation, and Mortality—A Retrospective Cohort Study. Nutrients 2022, 14, 1332. https://doi.org/10.3390/nu14071332
Statlender L, Raphaeli O, Bendavid I, Hellerman M, Kagan I, Fishman G, Singer P. Correlations between First 72 h Hypophosphatemia, Energy Deficit, Length of Ventilation, and Mortality—A Retrospective Cohort Study. Nutrients. 2022; 14(7):1332. https://doi.org/10.3390/nu14071332
Chicago/Turabian StyleStatlender, Liran, Orit Raphaeli, Itai Bendavid, Moran Hellerman, Ilya Kagan, Guy Fishman, and Pierre Singer. 2022. "Correlations between First 72 h Hypophosphatemia, Energy Deficit, Length of Ventilation, and Mortality—A Retrospective Cohort Study" Nutrients 14, no. 7: 1332. https://doi.org/10.3390/nu14071332
APA StyleStatlender, L., Raphaeli, O., Bendavid, I., Hellerman, M., Kagan, I., Fishman, G., & Singer, P. (2022). Correlations between First 72 h Hypophosphatemia, Energy Deficit, Length of Ventilation, and Mortality—A Retrospective Cohort Study. Nutrients, 14(7), 1332. https://doi.org/10.3390/nu14071332