Low-Density Lipoprotein Cholesterol and the Risk of Rheumatoid Arthritis: A Prospective Study in a Chinese Cohort
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Standard Protocol Approvals, Registrations, and Patient Consent
2.3. Assessment of Lipid Profile
2.4. Assessment of Rheumatoid Arthritis Diagnoses
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Solomon, D.H.; Goodson, N.J.; Katz, J.N.; Weinblatt, M.E.; Avorn, J.; Setoguchi, S.; Canning, C.; Schneeweiss, S. Patterns of cardiovascular risk in rheumatoid arthritis. Ann. Rheum. Dis. 2006, 65, 1608–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maradit-Kremers, H.; Crowson, C.S.; Nicola, P.J.; Ballman, K.V.; Roger, V.L.; Jacobsen, S.J.; Gabriel, S.E. Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: A population-based cohort study. Arthritis Rheum. 2005, 52, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Myasoedova, E.; Crowson, C.S.; Kremers, H.M.; Roger, V.L.; Fitz-Gibbon, P.D.; Therneau, T.M.; Gabriel, S.E. Lipid paradox in rheumatoid arthritis: The impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann. Rheum. Dis. 2011, 70, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halacoglu, J.; Shea, L.A. Cardiovascular Risk Assessment and Therapeutic Implications in Rheumatoid Arthritis. J. Cardiovasc. Transl. Res. 2020, 13, 878–890. [Google Scholar] [CrossRef]
- Liao, K.P.; Cai, T.; Gainer, V.; Murphy, S.; Cagan, A.; Churchill, S.; Shaw, S.; Kohane, I.; Plenge, R.M.; Karlson, E.W. Lipid and lipoprotein levels and trends in rheumatoid arthritis compared to the general population. Arthritis Care Res. 2013, 65, 2046–2050. [Google Scholar] [CrossRef]
- Turesson, C.; Bergström, U.; Pikwer, M.; Nilsson, J.-Å.; Jacobsson, L.T. High serum cholesterol predicts rheumatoid arthritis in women, but not in men: A prospective study. Arthritis Res. Ther. 2015, 17, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myasoedova, E.; Crowson, C.S.; Kremers, H.M.; Fitz-Gibbon, P.D.; Therneau, T.M.; Gabriel, S.E. Total cholesterol and LDL levels decrease before rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 1310–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surowiec, I.; Ärlestig, L.; Rantapää-Dahlqvist, S.; Trygg, J. Metabolite and Lipid Profiling of Biobank Plasma Samples Collected Prior to Onset of Rheumatoid Arthritis. PLoS ONE 2016, 11, e0164196. [Google Scholar] [CrossRef] [PubMed]
- Costenbader, K.H.; DiIorio, M.; Chu, S.H.; Cui, J.; Sparks, J.A.; Lu, B.; Moss, L.; Kelmenson, L.; Feser, M.; Edison, J.; et al. Circulating blood metabolite trajectories and risk of rheumatoid arthritis among military personnel in the Department of Defense Biorepository. Ann. Rheum. Dis. 2021, 80, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Nikiphorou, E.; de Lusignan, S.; Mallen, C.D.; Khavandi, K.; Bedarida, G.; Buckley, C.D.; Galloway, J.; Raza, K. Cardiovascular risk factors and outcomes in early rheumatoid arthritis: A population-based study. Heart 2020, 106, 1566–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deane, K.D.; El-Gabalawy, H. Pathogenesis and prevention of rheumatic disease: Focus on preclinical RA and SLE. Nat. Rev. Rheumatol. 2014, 10, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Y.; Gurol, M.E.; Liu, Y.; Yang, P.; Shi, J.; Zhuang, S.; Forman, M.R.; Wu, S.; Gao, X. In utero exposure to the Great Chinese Famine and risk of intracerebral hemorrhage in midlife. Neurology 2020, 94, e1996–e2004. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, Z.; Jin, W.; Rimm, E.B.; Lichtenstein, A.H.; Kris-Etherton, P.M.; Wu, S.; Gao, X. Peripheral Inflammatory Biomarkers for Myocardial Infarction Risk: A Prospective Community-Based Study. Clin. Chem. 2017, 63, 663–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanEvery, H.; Yang, W.-h.; Olsen, N.; Zhang, X.; Shu, R.; Lu, B.; Wu, S.; Cui, L.; Gao, X. In utero and early life exposure to the Great Chinese Famine and risk of rheumatoid arthritis in adulthood. Arthritis Rheumatol. 2021, 73, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Gurol, M.E.; Huang, Z.; Lichtenstein, A.H.; Wang, X.; Wang, Y.; Neumann, S.; Wu, S.; Gao, X. Low-density lipoprotein cholesterol and risk of intracerebral hemorrhage: A prospective study. Neurology 2019, 93, e445–e457. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; An, S.; Li, W.; Lichtenstein, A.H.; Gao, J.; Kris-Etherton, P.M.; Wu, Y.; Jin, C.; Huang, S.; Hu, F.B.; et al. Association of Trajectory of Cardiovascular Health Score and Incident Cardiovascular Disease. JAMA Netw. Open 2019, 2, e194758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Luo, Z.; Li, C.; Huang, X.; Shiroma, E.J.; Simonsick, E.M.; Chen, H. Changes in Body Composition Before and After Parkinson’s Disease Diagnosis. Mov. Disord. 2021, 36, 1617–1623. [Google Scholar] [CrossRef]
- van Halm, V.P.; Nielen, M.M.J.; Nurmohamed, M.T.; van Schaardenburg, D.; Reesink, H.W.; Voskuyl, A.E.; Twisk, J.W.R.; van de Stadt, R.J.; de Koning, M.H.M.T.; Habibuw, M.R.; et al. Lipids and inflammation: Serial measurements of the lipid profile of blood donors who later developed rheumatoid arthritis. Ann. Rheum. Dis. 2007, 66, 184. [Google Scholar] [CrossRef] [Green Version]
- Semb, A.G.; Holme, I.; Kvien, T.K.; Pedersen, T.R. Intensive lipid lowering in patients with rheumatoid arthritis and previous myocardial infarction: An explorative analysis from the incremental decrease in endpoints through aggressive lipid lowering (IDEAL) trial. Rheumatology 2011, 50, 324–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles-Schoeman, C.; Fleischmann, R.; Davignon, J.; Schwartz, H.; Turner, S.M.; Beysen, C.; Milad, M.; Hellerstein, M.K.; Luo, Z.; Kaplan, I.V.; et al. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol. 2015, 67, 616–625. [Google Scholar] [CrossRef]
- Singh, J.A.; Beg, S.; Lopez-Olivo, M.A. Tocilizumab for rheumatoid arthritis: A Cochrane systematic review. J. Rheumatol. 2011, 38, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Millán, I.; Charles-Schoeman, C.; Yang, S.; Bathon, J.M.; Bridges, S.L., Jr.; Chen, L.; Cofield, S.S.; Dell’Italia, L.J.; Moreland, L.W.; O’Dell, J.R.; et al. Changes in lipoproteins associated with methotrexate or combination therapy in early rheumatoid arthritis: Results from the treatment of early rheumatoid arthritis trial. Arthritis Rheum. 2013, 65, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.; Porter, D.; Sattar, N.; Packard, C.J.; Caslake, M.; McInnes, I.; McCarey, D. Interleukin-6 blockade raises LDL via reduced catabolism rather than via increased synthesis: A cytokine-specific mechanism for cholesterol changes in rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 1949–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safiri, S.; Kolahi, A.A.; Hoy, D.; Smith, E.; Bettampadi, D.; Mansournia, M.A.; Almasi-Hashiani, A.; Ashrafi-Asgarabad, A.; Moradi-Lakeh, M.; Qorbani, M.; et al. Global, regional and national burden of rheumatoid arthritis 1990–2017: A systematic analysis of the Global Burden of Disease study 2017. Ann. Rheum. Dis. 2019, 78, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lv, X.; Xie, N.; Fang, Z.; Ren, W.; Gong, Y.; Jin, Y.; Zhang, J. Time trends analysis of statin prescription prevalence, therapy initiation, dose intensity, and utilization from the hospital information system of Jinshan Hospital, Shanghai (2012–2018). BMC Cardiovasc. Disord 2020, 20, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blais, J.E.; Chan, E.W.; Law, S.W.Y.; Mok, M.T.; Huang, D.; Wong, I.C.K.; Siu, C.-W. Trends in statin prescription prevalence, initiation, and dosing: Hong Kong, 2004–2015. Atherosclerosis 2019, 280, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romão, V.C.; Fonseca, J.E. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. Front. Med. 2021, 8, 689698. [Google Scholar] [CrossRef] [PubMed]
Low-Density Lipoprotein Cholesterol | |||
---|---|---|---|
<2.02 mmol/L | 2.02–2.65 mmol/L | ≥2.65 mmol/L | |
N | 32,727 | 32,251 | 32,433 |
Women, % | 25.0 | 18.3 | 16.8 |
Age, year | 52.2 ± 0.07 | 49.3 ± 0.08 | 50.4 ± 0.08 |
Alcohol intake, grams/day | 4.32 ± 0.14 | 4.86 ± 0.14 | 7.27 ± 0.14 |
Smoking status, % | |||
Never | 65.9 | 60.0 | 53.2 |
Past | 5.57 | 5.88 | 6.38 |
Current | 28.5 | 34.1 | 40.4 |
CRP b, mg/L | 3.09 ± 0.04 | 2.03 ± 0.04 | 2.13 ± 0.04 |
BMI c, kg/m2 | 24.5 ± 0.02 | 25.0 ± 0.02 | 25.3 ± 0.02 |
Diabetes status, % | |||
Normoglycemic | 77.6 | 69.2 | 64.0 |
Pre-diabetic | 14.2 | 22.1 | 25.6 |
Diabetic | 8.18 | 8.75 | 10.4 |
Hypertension status, % | |||
Normotensive | 22.7 | 20.3 | 16.4 |
Pre-hypertensive | 48.6 | 49.2 | 48.4 |
Hypertensive | 28.8 | 30.6 | 35.3 |
LDL-C d, mmol/L | - | - | - |
HDL-C e, mmol/L | 1.57 ± 0.00 | 1.58 ± 0.00 | 1.56 ± 0.00 |
Triglycerides, mmol/L | 1.63 ± 0.01 | 1.56 ± 0.01 | 1.60 ± 0.01 |
Tertile of LDL-C Concentrations | p-Trend | |||
---|---|---|---|---|
Baseline LDL-C | T1 (<2.02 mmol/L) | T2 (2.02–2.65 mmol/L) | T3 (≥2.65 mmol/L) | |
# of case/population | 43/32,727 | 31/32,251 | 23/32,433 | |
Incidence rate (/10,000 person-years) | 1.64 | 1.19 | 0.89 | |
Sex- and age-adjusted hazard ratio | 1.00 (Ref.) | 0.87 (0.55, 1.39) | 0.64 (0.39, 1.07) | 0.09 |
Multivariate-adjusted a | 1.00 (Ref.) | 0.85 (0.53, 1.37) | 0.64 (0.38, 1.09) | 0.10 |
Multivariate-adjusted and hs-CRP-adjusted b | 1.00 (Ref.) | 0.87 (0.54, 1.39) | 0.66 (0.39, 1.11) | 0.12 |
Updated LDL-C | T1 (<2.42 mmol/L) | T2 (2.43–3.11 mmol/L) | T3 (≥3.12 mmol/L) | |
Multivariate-adjusted c | 1.00 (Ref.) | 0.56 (0.35, 0.90) | 0.38 (0.22, 0.64) | < 0.01 |
Multivariate-adjusted and hs-CRP-adjusted d | 1.00 (Ref.) | 0.58 (0.36, 0.94) | 0.39 (0.23, 0.67) | < 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
VanEvery, H.; Yang, W.; Su, J.; Olsen, N.; Bao, L.; Lu, B.; Wu, S.; Cui, L.; Gao, X. Low-Density Lipoprotein Cholesterol and the Risk of Rheumatoid Arthritis: A Prospective Study in a Chinese Cohort. Nutrients 2022, 14, 1240. https://doi.org/10.3390/nu14061240
VanEvery H, Yang W, Su J, Olsen N, Bao L, Lu B, Wu S, Cui L, Gao X. Low-Density Lipoprotein Cholesterol and the Risk of Rheumatoid Arthritis: A Prospective Study in a Chinese Cohort. Nutrients. 2022; 14(6):1240. https://doi.org/10.3390/nu14061240
Chicago/Turabian StyleVanEvery, Hannah, Wenhao Yang, Jinmei Su, Nancy Olsen, Le Bao, Bing Lu, Shouling Wu, Liufu Cui, and Xiang Gao. 2022. "Low-Density Lipoprotein Cholesterol and the Risk of Rheumatoid Arthritis: A Prospective Study in a Chinese Cohort" Nutrients 14, no. 6: 1240. https://doi.org/10.3390/nu14061240
APA StyleVanEvery, H., Yang, W., Su, J., Olsen, N., Bao, L., Lu, B., Wu, S., Cui, L., & Gao, X. (2022). Low-Density Lipoprotein Cholesterol and the Risk of Rheumatoid Arthritis: A Prospective Study in a Chinese Cohort. Nutrients, 14(6), 1240. https://doi.org/10.3390/nu14061240