Calcifediol (25OH Vitamin D3) Deficiency: A Risk Factor from Early to Old Age
Abstract
:1. Introduction
- Should we relabel what we up till now usually described as “vitamin D deficiency” as “calcifediol deficiency”?
- What are the clinical consequences of such “calcifediol deficiency”? Should we taper down the hype while avoiding minimizing the consequences of “vitamin D/calcifediol” deficiency?
2. History
3. Vitamin D or Calcifediol Deficiency?
- The obligatory intermediate 25OHD is between vitamin D and the active hormone, 1,25(OH)2D;
- Nutritional vitamin D deficiency implies calcifediol deficiency;
- Mutations in CYP2R1 result in clinical rickets (also called vitamin D-dependent rickets) and this can be corrected by low (physiologic) doses of calcifediol, whereas a normal supply of vitamin D cannot cure this disease;
- Serum concentrations of 25OHD are the best marker of nutritional vitamin D deficiency. Low serum calcifediol is thus the hallmark of this deficiency and used for confirmation of the diagnosis or for the estimation of risk of this disease in a population.
- Measure serum 25OHD using accurate methods in subjects with nutritional rickets as to better define the threshold and relative risk of low vitamin D status;
- Implement vitamin D supplementation for all children below the age of 3 years and even more so in infants during their first year of life;
- Implement minimal dietary calcium in the diets of infants in countries or regions of the world with usually low calcium intake.
4. Consequences of Vitamin D or Calcifediol Deficiency
Musculoskeletal Effects
5. Extra-Skeletal Consequences of Calcifediol Deficiency
5.1. The Immune System
5.2. Cardiovascular System
5.3. Cell Proliferation and Cancer
6. Reproduction
6.1. Vitamin D and Fertility
6.2. Vitamin D and Pregnancy Outcome
7. Brain
8. Mortality
- (1)
- Lower serum calcifediol concentrations are linked with increased overall or cause-specific (cardiovascular or cancer) mortality;
- (2)
- Genetically lower serum calcifediol did not change mortality in the overall study group;
- (3)
- Genetically lower serum calcifediol increased overall cardiovascular (both significantly) and cancer (just not significant) mortality in the subgroup with measured low-serum calcifediol (below 10 ng/mL).
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Riordan, J.L.; Bijvoet, O.L. Rickets before the discovery of vitamin D. Bonekey Rep. 2014, 3, 478. [Google Scholar] [CrossRef] [Green Version]
- O’Riordan, J.L. Rickets in the 17th century. J. Bone Miner. Res. 2006, 21, 1506–1510. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R. Vitamin D: Photosynthesis, metabolism, and action to clinical applications. In Endocrinology: Adult and Pediatric, 7th ed.; Jamson, L.J., de Groot, L.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Bouillon, R.; Antonio, L. Nutritional rickets: Historic overview and plan for worldwide eradication. J. Steroid Biochem. Mol. Biol. 2020, 198, 105563. [Google Scholar] [CrossRef] [PubMed]
- Deluca, H.F. Historical overview of vitamin D. In Vitamin D, 4th ed.; Feldman, D., Pike, W., Hewison, M., Bouillon, R., Giovannucci, E., Goltzman, D., Eds.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Mays, S.; Brickley, M.; Ives, R. Skeletal manifestations of rickets in infants and young children in a historic population from England. Am. J. Phys. Anthropol. 2006, 129, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
- Carpenter, T.O.; Shaw, N.J.; Portale, A.; Ward, L.M.; Abrams, S.A.; Pettifor, J.M. Rickets. Nat. Rev. Dis. Primers 2007, 3, 17101. [Google Scholar] [CrossRef]
- World Health Organization. Nutritional Rickets: A Review of Disease Burden, Causes, Diagnosis, Prevention and Treatment. 2019. Available online: https://www.who.int/publications/i/item/9789241516587 (accessed on 23 February 2022).
- Við Streym, S.; Højskov, C.S.; Møller, U.K.; Heickendorff, L.; Vestergaard, P.; Mosekilde, L.; Rejnmark, L. Vitamin D content in human breast milk: A 9-mo follow-up study. Am. J. Clin. Nutr. 2016, 103, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Tsugawa, N.; Nishino, M.; Kuwabara, A.; Ogasawara, H.; Kamao, M.; Kobayashi, S.; Yamamura, J.; Higurashi, S. Comparison of Vitamin D and 25-Hydroxyvitamin D Concentrations in Human Breast Milk between 1989 and 2016–2017. Nutrients 2021, 13, 573. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef]
- St-Arnaud, R.; Dardenne, O.; Prud’homme, J.; Hacking, S.A.; Glorieux, F.H. Conventional and tissue-specific inactivation of the 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). J. Cell. Biochem. 2003, 88, 245–251. [Google Scholar] [CrossRef]
- Al Mutair, A.N.; Nasrat, G.H.; Russell, D.W. Mutation of the CYP2R1 Vitamin D 25-Hydroxylase in a Saudi Arabian Family with Severe Vitamin D Deficiency. J. Clin. Endocrinol. Metab. 2012, 97, E2022–E2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molin, A.; Wiedemann, A.; Demers, N.; Kaufmann, M.; Do Cao, J.; Mainard, L.; Dousset, B.; Journeau, P.; Abeguile, G.; Coudray, N.; et al. Vitamin D-Dependent Rickets Type 1B (25-Hydroxylase Deficiency): A Rare Condition or a Misdiagnosed Condition? J. Bone Miner. Res. 2017, 32, 1893–1899. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.G.; Ochalek, J.T.; Kaufmann, M.; Jones, G.; DeLuca, H.F. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc. Natl. Acad. Sci. USA 2013, 110, 15650–15655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sempos, C.T.; Durazo-Arvizu, R.A.; Fischer, P.R.; Munns, C.F.; Pettifor, J.M.; Thacher, T.D. Serum 25-hydroxyvitamin D requirements to prevent nutritional rickets in Nigerian children on a low-calcium diet—A multivariable reanalysis. Am. J. Clin. Nutr. 2021, 114, 231–237. [Google Scholar] [CrossRef]
- Verlinden, L.; Carmeliet, G. Integrated View on the Role of Vitamin D Actions on Bone and Growth Plate Homeostasis. JBMR Plus 2021, 5, e10577. [Google Scholar] [CrossRef]
- Christakos, S. Vitamin D: A Critical Regulator of Intestinal Physiology. JBMR Plus 2021, 5, e10554. [Google Scholar] [CrossRef]
- Li, S.; De La Cruz, J.; Hutchens, S.; Mukhopadhyay, S.; Criss, Z.K.; Aita, R.; Pellon-Cardenas, O.; Hur, J.; Soteropoulos, P.; Husain, S.; et al. Analysis of 1,25-Dihydroxyvitamin D3 Genomic Action Reveals Calcium-Regulating and Calcium-Independent Effects in Mouse Intestine and Human Enteroids. Mol. Cell. Biol. 2020, 41, e00372-20. [Google Scholar] [CrossRef]
- Brandi, M.L. Calcifediol and bone health. Nutrients 2012. this special issue. [Google Scholar]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The health effects of vitamin D supplementation: Evidence from human studies. Nat. Rev. Endocrinol. 2021, 18, 96–110. [Google Scholar] [CrossRef]
- Gorter, E.A.; Hamdy, N.A.; Appelman-Dijkstra, N.M.; Schipper, I.B. The role of vitamin D in human fracture healing: A systematic review of the literature. Bone 2014, 64, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Martineau, C.; Naja, R.P.; Husseini, A.; Hamade, B.; Kaufmann, M.; Akhouayri, O.; Arabian, A.; Jones, G.; St-Arnaud, R. Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2. J. Clin. Investig. 2018, 128, 3546–3557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doetsch, A.M.; Faber, J.; Lynnerup, N.; Wätjen, I.; Bliddal, H.; Danneskiold-Samsøe, B. The effect of calcium and vitamin D3 supplementation on the healing of the proximal humerus fracture: A randomized placebo-controlled study. Calcif. Tissue Int. 2004, 75, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Jun, C.; Nam, J. Effects of vitamin D supplementation on the functional outcome in patients with osteoporotic vertebral compression fracture and vitamin D deficiency. J. Orthop. Surg. Res. 2021, 16, 571. [Google Scholar] [CrossRef]
- Heyer, F.L.; de Jong, J.J.; Willems, P.C.; Arts, J.J.; Bours, S.G.; van Kuijk, S.M.; Bons, J.A.; Poeze, M.; Geusens, P.P.; van Rietbergen, B.; et al. The Effect of Bolus Vitamin D3 Supplementation on Distal Radius Fracture Healing: A Randomized Controlled Trial Using HR-pQCT. J. Bone Miner. Res. 2021, 36, 1492–1501. [Google Scholar] [CrossRef]
- Craig, T.A.; Zhang, Y.; McNulty, M.S.; Middha, S.; Ketha, H.; Singh, R.J.; Magis, A.T.; Funk, C.; Price, N.D.; Ekker, S.C.; et al. Whole transcriptome RNA sequencing detects multiple 1α 25-dihydroxyvitamin D3-sensitive metabolic pathways in developing zebrafish. Mol. Endocrinol. 2012, 26, 1630–1642. [Google Scholar] [CrossRef] [Green Version]
- White, J. Calcifediol and the immune system. Nutrients 2022. this special issue. [Google Scholar]
- Jolliffe, D.A.; Camargo, C.A., Jr.; Sluyter, J.D.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.A.; Borzutzky, A.; Damsgaard, C.T.; et al. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef]
- Ganmaa, D.; Uyanga, B.; Zhou, X.; Gantsetseg, G.; Delgerekh, B.; Enkhmaa, D.; Khulan, D.; Ariunzaya, S.; Sumiya, E.; Bolortuya, B.; et al. Vitamin D supplements for prevention of tuberculosis infection and disease. N. Engl. J. Med. 2020, 383, 359–368. [Google Scholar] [CrossRef]
- Quesada-Gomez, M. Calcifediol and covid-19. Nutrients 2022. this special issue. [Google Scholar]
- Giulietti, A.; Gysemans, C.; Stoffels, K.; Van Etten, E.; Decallonne, B.; Overbergh, L.; Bouillon, R.; Mathieu, C. Vitamin D deficiency in early life accelerates Type 1 diabetes in non-obese diabetic mice. Diabetologia 2004, 47, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Zella, J.B.; McCary, L.C.; DeLuca, H.F. Oral administration of 1, 25-dihydroxyvitamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. Arch. Biochem. Biophys. 2003, 417, 77–80. [Google Scholar] [CrossRef]
- Martens, P.J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J. Vitamin D and cardiovascular disease. Annu. Rev. Med. 2016, 67, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R. Vitamin D and cardiovascular disorders. Osteoporos. Int. 2019, 30, 2167–2181. [Google Scholar] [CrossRef]
- Chen, S.; Law, C.S.; Grigsby, C.L.; Olsen, K.; Hong, T.-T.; Zhang, Y.; Yeghiazarians, Y.; Gardner, D.G. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 2011, 124, 1838–1847. [Google Scholar] [CrossRef] [Green Version]
- Andrukhova, O.; Slavic, S.; Zeitz, U.; Riesen, S.C.; Heppelmann, M.S.; Ambrisko, T.D.; Markovic, M.; Kuebler, W.M.; Erben, R.G. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol. Endocrinol. 2014, 28, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Aihara, K.; Azuma, H.; Akaike, M.; Ikeda, Y.; Yamashita, M.; Sudo, T.; Hayashi, H.; Yamada, Y.; Endoh, F.; Fujimura, M.; et al. Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice. J. Biol. Chem. 2004, 279, 35798–35802. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Riek, A.E.; Darwech, I.; Funai, K.; Shao, J.; Chin, K.; Sierra, O.L.; Carmeliet, G.; Ostlund, R.E., Jr.; Bernal-Mizrachi, C. Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep. 2015, 10, 1872–1886. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Pencina, M.J.; Booth, S.L.J.; Jacques, P.F.; Ingelsson, E.; Lanier, K.; Benjamin, E.; D’Agostino, R.B.; Wolf, M.; Vasan, R.S. Vitamin D deficiency and risk of cardiovascular disease. Circulation 2008, 117, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Fiscella, K.; Franks, P. Vitamin D, race, and cardiovascular mortality: Findings from a national US sample. Ann. Fam. Med. 2010, 8, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melamed, M.L.; Muntner, P.; Michos, E.D.; Uribarri, J.; Weber, C.; Sharma, J.; Raggi, P. Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: Results from NHANES 2001 to 2004. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1179–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannucci, E.; Liu, Y.; Hollis, B.W.; Rimm, E.B. 25-hydroxyvitamin D and risk of myocardial infarction in men: A prospective study. Arch. Intern. Med. 2008, 168, 1174–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofianopoulou, E.; Kaptoge, S.K.; Afzal, S.; Jiang, T.; Gill, D.; Gundersen, T.E.; Bolton, T.R.; Allara, E.; Arnold, M.G.; Mason, A.M.; et al. Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: Observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol. 2021, 9, 837–846. [Google Scholar] [CrossRef]
- Hsia, J.; Heiss, G.; Ren, H.; Allison, M.; Dolan, N.C.; Greenland, P.; Heckbert, S.R.; Johnson, K.C.; Manson, J.E.; Sidney, S.; et al. Calcium/vitamin D supplementation and cardiovascular events. Circulation 2007, 115, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, D.P.; Doll, R.; Khaw, K.T. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: Randomised double blind controlled trial. BMJ 2003, 326, 469. [Google Scholar] [CrossRef] [Green Version]
- Ford, J.A.; MacLennan, G.S.; Avenell, A.; Bolland, M.; Grey, A.; Witham, M.; Group, R.T. Cardiovascular disease and vitamin D supplementation: Trial analysis, systematic review, and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 746–755. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Scragg, R.K.R. Overview of results from the Vitamin D Assessment (ViDA) study. J. Endocrinol. Investig. 2019, 42, 1391–1399. [Google Scholar] [CrossRef]
- Pittas, A.G.; Dawson-Hughes, B.; Sheehan, P.; Ware, J.H.; Knowler, W.C.; Aroda, V.R.; Brodsky, I.; Ceglia, L.; Chadha, C.; Chatterjee, R.; et al. Vitamin D supplementation and prevention of type 2 diabetes. N. Engl. J. Med. 2019, 381, 520–530. [Google Scholar] [CrossRef] [Green Version]
- Sluyter, J.D.; Camargo, C.A., Jr.; Stewart, A.W.; Waayer, D.; Lawes, C.M.; Toop, L.; Khaw, K.T.; Thom, S.A.M.; Hametner, B.; Wassertheurer, S.; et al. Effect of Monthly, High-Dose, Long-Term Vitamin D Supplementation on Central Blood Pressure Parameters: A Randomized Controlled Trial Substudy. J. Am. Heart Assoc. 2017, 6, e006802. [Google Scholar] [CrossRef]
- Bolland, M.J.; Grey, A.; Avenell, A.; Gamble, G.D.; Reid, I.R. Calcium supplements with or without vitamin D and risk of cardiovascular events: Reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ 2011, 342, d2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colston, K.; Colston, M.J.; Feldman, D. 1,25-dihydroxyvitamin D3 and malignant melanoma: The presence of receptors and inhibition of cell growth in culture. Endocrinology 1981, 108, 1083–1086. [Google Scholar] [CrossRef]
- Abe, E.; Miyaura, C.; Sakagami, H.; Takeda, M.; Konno, K.; Yamazaki, T.; Yoshiki, S.; Suda, T. Differentiation of mouse myeloid leukemia cells induced by 1 alpha, 25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA 1981, 78, 4990–4994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhevel, J.; Verlinden, L.; Doms, S.; Wildiers, H.; Verstuyf, A. The role of vitamin D in breast cancer risk and progression. Endocr. Relat. Cancer. 2022, 29, R33–R55. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Eelen, G.; Verlinden, L.; Mathieu, C.; Carmeliet, G.; Verstuyf, A. Vitamin D and cancer. J. Steroid Biochem. Mol. Biol. 2006, 102, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, R.; Qiao, W.; Yuan, X.; Wang, S.; Goltzman, D.; Miao, D. 1,25-Dihydroxy vitamin D prevents tumorigenesis by inhibiting oxidative stress and inducing tumor cellular senescence in mice. Int. J. Cancer 2018, 143, 368–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 2014, 14, 342–357. [Google Scholar] [CrossRef]
- Akutsu, T.; Kitamura, H.; Himeiwa, S.; Kitada, S.; Akasu, T.; Urashima, M. Vitamin D and cancer survival: Does vitamin D supplementation improve the survival of patients with cancer? Curr. Oncol. Rep. 2020, 22, 62. [Google Scholar] [CrossRef]
- Gnagnarella, P.; Muzio, V.; Caini, S.; Raimondi, S.; Martinoli, C.; Chiocca, S.; Miccolo, C.; Bossi, P.; Cortinovis, D.; Chiaradonna, F.; et al. Vitamin D supplementation and cancer mortality: Narrative review of observational studies and clinical trials. Nutrients 2021, 13, 3285. [Google Scholar] [CrossRef]
- Chatterjee, R.; Fuss, P.; Vickery, E.M.; LeBlanc, E.S.; Sheehan, P.R.; Lewis, M.R.; Dolor, R.J.; Johnson, K.C.; Kashyap, S.R.; Nelson, J.; et al. Vitamin D supplementation for prevention of cancer: The D2d cancer outcomes (D2dCA) ancillary study. J. Clin. Endocrinol. Metab. 2021, 106, 2767–2778. [Google Scholar] [CrossRef] [PubMed]
- Sluyter, J.D.; Manson, J.E.; Scragg, R. Vitamin D and Clinical Cancer Outcomes: A Review of Meta-Analyses. JBMR Plus 2020, 5, e10420. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, K.; Zhao, F.; Huang, D.; Zhang, H.; Fu, Z.; Xu, J.; Wu, Y.; Lin, H.; Zhou, Y.; et al. Association between vitamin D/calcium intake and 25-hydroxyvitamin D and risk of ovarian cancer: A dose-response relationship meta-analysis. Eur. J. Clin. Nutr. 2021, 75, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, B.; Sheng, L.; Turner, A. The effect of vitamin D supplementation on the risk of breast cancer: A trial sequential meta-analysis. Breast Cancer Res. Treat. 2020, 182, 1–8. [Google Scholar] [CrossRef]
- Goulão, B.; Stewart, F.; Ford, J.A.; MacLennan, G.; Avenell, A. Cancer and vitamin D supplementation: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 652–663. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Gluud, L.L.; Nikolova, D.; Whitfield, K.; Krstic, G.; Wetterslev, J.; Gluud, C. Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst. Rev. 2014, 6, CD007469. [Google Scholar] [CrossRef]
- Zanatta, L.; Bouraïma-Lelong, H.; Delalande, C.; Silva, F.R.; Carreau, S. Regulation of aromatase expression by 1α,25(OH)2 vitamin D3 in rat testicular cells. Reprod. Fertil. Dev. 2011, 23, 725–735. [Google Scholar] [CrossRef]
- Lundqvist, J.; Hansen, S.K.; Lykkesfeldt, A.E. Vitamin D analog EB1089 inhibits aromatase expression by dissociation of comodulator WSTF from the CYP19A1 promoter—A new regulatory pathway for aromatase. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2013, 1833, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Boisen, I.M.; Hansen, L.B.; Mortensen, L.J.; Lanske, B.; Juul, A.; Jensen, M.B. Possible influence of vitamin D on male reproduction. J. Steroid Biochem. Mol. Biol. 2017, 173, 215–222. [Google Scholar] [CrossRef]
- Voulgaris, N.; Papanastasiou, L.; Piaditis, G.; Angelousi, A.; Kaltsas, G.; Mastorakos, G.; Kassi, E. Vitamin D and aspects of female fertility. Hormones 2017, 16, 5–21. [Google Scholar]
- Manios, Y.; Moschonis, G.; Lambrinou, C.-P.; Tsoutsoulopoulou, K.; Binou, P.; Karachaliou, A.; Breidenassel, C.; Gonzalez-Gross, M.; Kiely, M.; Cashman, K.D. A systematic review of vitamin D status in southern European countries. Eur. J. Nutr. 2018, 57, 2001–2036. [Google Scholar] [CrossRef] [PubMed]
- Bromage, S.; Enkhmaa, D.; Baatar, T.; Garmaa, G.; Bradwin, G.; Yondonsambuu, B.; Sengee, T.; Jamts, E.; Suldsuren, N.; McElrath, T.F.; et al. Comparison of seasonal serum 25-hydroxyvitamin D concentrations among pregnant women in Mongolia and Boston. J. Steroid Biochem. Mol. Biol. 2019, 193, 105427. [Google Scholar] [CrossRef] [PubMed]
- Tous, M.; Villalobos, M.; Iglesias, L.; Fernández-Barrés, S.; Arija, V. Vitamin D status during pregnancy and offspring outcomes: A systematic review and meta-analysis of observational studies. Eur. J. Clin. Nutr. 2020, 74, 36–53. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C.; Kostiuk, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 7, CD008873. [Google Scholar] [CrossRef]
- Bi, W.G.; Nuyt, A.M.; Weiler, H.; Leduc, L.; Santamaria, C.; Wei, S.Q. Association between vitamin D supplementation during pregnancy and offspring growth, morbidity, and mortality: A systematic review and meta-analysis. JAMA Pediatr. 2018, 172, 635–645. [Google Scholar] [CrossRef] [Green Version]
- Roth, D.E.; Morris, S.K.; Zlotkin, S.; Gernand, A.D.; Ahmed, T.; Shanta, S.S.; Papp, E.; Korsiak, J.; Shi, J.; Islam, M.M.; et al. Vitamin D supplementation in pregnancy and lactation and infant growth. N. Engl. J. Med. 2018, 379, 535–546. [Google Scholar] [CrossRef]
- Wagner, C.L.; McNeil, R.B.; Johnson, D.D.; Hulsey, T.C.; Ebeling, M.; Robinson, C.; Hamilton, S.A.; Hollis, B.W. Health characteristics and outcomes of two randomized vitamin D supplementation trials during pregnancy: A combined analysis. J. Steroid Biochem. Mol. Biol. 2013, 136, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Hollis, B.W.; Johnson, D.; Hulsey, T.C.; Ebeling, M.; Wagner, C.L. Vitamin D supplementation during pregnancy: Double-blind, randomized clinical trial of safety and effectiveness. J. Bone Miner. Res. 2011, 26, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- Sablok, A.; Batra, A.; Thariani, K.; Batra, A.; Bharti, R.; Aggarwal, A.R.; Kabi, B.; Chellani, H. Supplementation of vitamin D in pregnancy and its correlation with feto-maternal outcome. Clin. Endocrinol. 2015, 83, 536–541. [Google Scholar] [CrossRef]
- Almeras, L.; Eyles, D.; Benech, P.; Lafitte, D.; Villard, C.; Patatian, A.; Boucraut, J.; Mackay-Sim, A.; McGrath, J.; Féron, F. Developmental vitamin D deficiency alters brain protein expression in the adult rat: Implications for neuropsychiatric disorders. Proteomics 2007, 7, 769–780. [Google Scholar] [CrossRef]
- Naveilhan, P.; Neveu, I.; Wion, D.; Brachet, P. 1, 25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. NeuroReport 1996, 7, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Grecksch, G.; Rüthrich, H.; Höllt, V.; Becker, A. Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats. Psychoneuroendocrinology 2009, 34, S258–S264. [Google Scholar] [CrossRef] [PubMed]
- Eyles, D.; Brown, J.; Mackay-Sim, A.; McGrath, J.; Feron, F. Vitamin D3 and brain development. Neuroscience 2003, 118, 641–653. [Google Scholar] [CrossRef]
- Groves, N.J.; McGrath, J.J.; Burne, T.H. Vitamin D as a neurosteroid affecting the developing and adult brain. Annu. Rev. Nutr. 2014, 34, 117–141. [Google Scholar] [CrossRef]
- Pertile, R.A.; Cui, X.; Eyles, D.W. Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience 2016, 333, 193–203. [Google Scholar] [CrossRef]
- Mpandzou, G.; Haddou, E.A.B.; Regragui, W.; Benomar, A.; Yahyaoui, M. Vitamin D deficiency and its role in neurological conditions: A review. Rev. Neurol. 2016, 172, 109–122. [Google Scholar] [CrossRef]
- Bivona, G.; Gambino, C.M.; Iacolino, G.; Ciaccio, M. Vitamin D and the nervous system. Neurol. Res. 2019, 41, 827–835. [Google Scholar] [CrossRef]
- Dejaeger, M.; Antonio, L.; Bouillon, R.; Moors, H.; Wu, F.C.W.; O’Neill, T.W.; Huhtaniemi, I.T.; Rastrelli, G.; Forti, G.; Maggi, M.; et al. Aging Men with Insufficient Vitamin D Have a Higher Mortality Risk: No Added Value of its Free Fractions or Active Form. J. Clin. Endocrinol. Metab. 2022, 107, e1212–e1220. [Google Scholar] [CrossRef]
- Fan, X.; Wang, J.; Song, M.; Giovannucci, E.L.; Ma, H.; Jin, G.; Hu, Z.; Shen, H.; Hang, D. Vitamin D status and risk of all-cause and cause-specific mortality in a large cohort: Results from the UK Biobank. J. Clin. Endocrinol. Metab. 2020, 105, e3606–e3619. [Google Scholar] [CrossRef]
- Neale, R.E.; Baxter, C.; Romero, B.D.; McLeod, D.S.; English, D.R.; Armstrong, B.K.; Ebeling, P.R.; Hartel, G.; Kimlin, M.G.; O’Connell, R.; et al. The D-Health Trial: A randomised controlled trial of the effect of vitamin D on mortality. Lancet Diabetes Endocrinol. 2022, 10, 120–128. [Google Scholar] [CrossRef]
- Keum, N.; Lee, D.; Greenwood, D.; Manson, J.; Giovannucci, E. Vitamin D supplementation and total cancer incidence and mortality: A meta-analysis of randomized controlled trials. Ann. Oncol. 2019, 30, 733–743. [Google Scholar] [CrossRef] [PubMed]
Early Signs |
---|
Delayed fontanel closure (normally closed by age 2 years) |
Craniotabes (softening of skull bones, best detected by palpation of cranial sutures in first 3 months) |
Bone pain |
Restlessness and irritability |
Swelling of wrists and ankles |
Frontal bossing |
Rachitic rosary (enlarged costochondral joints) |
Late signs |
Delayed tooth eruption (no incisors by age 10 months, no molars by age 18 months) |
Leg deformity (genu varum, genu valgum) |
Osseous/Radiographic features |
Splaying, fraying, cupping, and coarse trabecular pattern of metaphyses |
Widening of the growth plates |
Osteopenia |
Pelvic deformities including outlet narrowing (risk of obstructed labour and death) |
Long-term or permanent deformities of childhood abnormalities of bone |
Minimal trauma fracture |
Non-osseous features |
Hypocalcemic seizure and tetany |
Hypocalcemic dilated cardiomyopathy (heart failure, arrhythmia, cardiac arrest, death) |
Failure to thrive and poor linear growth |
Delayed gross motor development with muscle weakness |
Raised intracranial pressure |
Calcium Related |
---|
Calcium deficiency with normal or low-normal vitamin D status |
Very low dietary calcium intake |
Calcium malabsorption (similar causes as vitamin D malabsorption, see below) |
Vitamin D-related |
Severe vitamin D deficiency |
Low sunshine exposure and low dietary intake |
Malabsorption (e.g., after bariatric surgery, bowel resection, celiac disease, cholestatic liver disease, exocrine pancreatic insufficiency, inflammatory bowel disease) |
Increased renal loss of vitamin D and 25OHD (nephrotic syndrome) |
Increased catabolism: especially drug-induced or genetic mutations of CYP3A4 |
Impaired hepatic 25-hydroxylation: mostly due to genetic mutations of CYP2R1 (OMIM #600081) |
Impaired renal 1α-hydroxylation: chronic kidney disease (renal osteomalacia), or genetic (=1α-hydroxylase (CYP27B1) deficiency (OMIM #264700) |
Vitamin D resistant rickets |
Hereditary vitamin D-resistant rickets (VDR mutations) (OMIM #277440) |
Vitamin D-dependent rickets with normal VDR (hnRNP overexpression) (OMIM #600785) |
Phosphate related rickets/osteomalacia or Hypophosphatemic rickets/osteomalacia |
Gastrointestinal causes |
Poor nutritional intake (e.g., breastfed very low birth weight infants), |
Chronic diarrhea |
Excessive phosphate binders |
Renal phosphate wasting |
|
Rickets and osteomalacia related to inhibition of mineralization |
Metabolic acidosis (genetic or acquired) |
Metal related: aluminum toxicity (e.g., from antacids, dialysis fluid), fluorosis, iron, cadmium, strontium, etc. |
Hypophosphatasia (inorganic pyrophosphate accumulation) (OMIM #146300) |
Matrix abnormalities Type VI osteogenesis imperfecta (SERPINF1 mutations) (OMIM #613982) |
Fibrogenesis imperfecta ossium |
Axial osteomalacia |
See REF. | Study, Number of Subjects | Follow-Up | Treatment | Outcome |
---|---|---|---|---|
Hsia [48] | original WHI trial n = 36,282 | 7 years | 400 IU | HR for—MI or coronary heart disease death: 1.04—Stroke: 0.95 |
Bolland [55] | WHI reanalysis n = 16,718 women not taking calcium supplements at baseline | 7 years | 400 IU D3 + 1 g calcium | HR (all NS) for: —MI: 1.2 —coronary revascularization: 1.15 —Stroke: 1.17 —All CV events: 1.13 |
Ford [50] | Record trial n = 5292 | 9 years | 800 IU D3 + 1 g calcium | HR for —cardiac failure: 0.75 * —MI: 0.97 —Stroke: 1.06 |
Scragg [52] | VIDA trial (New Zealand) n = 5108 | 3.3 years | 100,000 IU D3 per month (baseline mean 25OHD: 24 ng/mL) | HR for -all CV diseases: 1.02 |
Manson [51] | VITAL Trial n = 25,871 | 5.3 years | 2000 IU D3/d | HR for MACE 0.97 (0.85–1.11) All cause of mortality: 0.99 (0.87–1.11) Cardiovascular Death 1.10 (0.88–1.39) |
REF. | Number of Subjects | Number of Trials | Outcome | RR |
---|---|---|---|---|
Xu [66] | n: 980,008 | 21 | Ovarian cancer risk | 1.02; CI, 0.89–1.16, p = 0.81 |
Zhou [67] | n: 72,275 | 10 | Risk of breast cancer | 1.04; CI 0.85–1.29, p = 0.68) And: 0.99; CI 0.91–1.07, p = 0.73) for coadministration of vitamin D and calcium |
Goulão [68] | n: 18,808 | 30 | Cancer Incidence | 1.03; 95% CI: 0.91, 1.15) and cancer-related deaths RR: 0.88; 95% CI: 0.70, 1.09. |
Bjelakovic [69] | n: 50,623 | 18 | Cancer occurrence | RR 1.00; CI 0.94 to 1.06 p = 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouillon, R.; Antonio, L.; Olarte, O.R. Calcifediol (25OH Vitamin D3) Deficiency: A Risk Factor from Early to Old Age. Nutrients 2022, 14, 1168. https://doi.org/10.3390/nu14061168
Bouillon R, Antonio L, Olarte OR. Calcifediol (25OH Vitamin D3) Deficiency: A Risk Factor from Early to Old Age. Nutrients. 2022; 14(6):1168. https://doi.org/10.3390/nu14061168
Chicago/Turabian StyleBouillon, Roger, Leen Antonio, and Oscar Rosero Olarte. 2022. "Calcifediol (25OH Vitamin D3) Deficiency: A Risk Factor from Early to Old Age" Nutrients 14, no. 6: 1168. https://doi.org/10.3390/nu14061168
APA StyleBouillon, R., Antonio, L., & Olarte, O. R. (2022). Calcifediol (25OH Vitamin D3) Deficiency: A Risk Factor from Early to Old Age. Nutrients, 14(6), 1168. https://doi.org/10.3390/nu14061168