Association between Dietary Calcium and Potassium and Diabetic Retinopathy: A Cross-Sectional Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Recruitment
2.2. Diagnosis of Diabetic Retinopathy
2.3. Assessment of Dietary Trace Elements
2.4. Relevant Variables
2.5. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Association between Dietary Trace Elements and Diabetic Retinopathy
3.3. Association between Quartile of Dietary Calcium, Potassium, and Diabetic Retinopathy
3.4. Association between Dietary Calcium and the Risk of Diabetic Retinopathy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tucker, K.L. Nutrient intake, nutritional status, and cognitive function with aging. Ann. N. Y. Acad. Sci. 2016, 1367, 38–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Blasco, B.; Navarro-León, E.; Ruiz, J.M. Chapter 10—Oxidative Stress in Relation with Micronutrient Deficiency or Toxicity. In Plant Micronutrient Use Efficiency; Hossain, M.A., Kamiya, T., Burritt, D.J., Phan Tran, L.-S., Fujiwara, T., Eds.; Academic Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Mehri, A. Trace Elements in Human Nutrition (II)—An Update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Mikulewicz, M.; Chojnacka, K.; Kawala, B.; Gredes, T. Trace Elements in Living Systems: From Beneficial to Toxic Effects. BioMed Res. Int. 2017, 2017, 8297814. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Uribarri, J. Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am. J. Clin. Nutr. 2013, 98, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, O.M. The Connection between Dietary Phosphorus, Cardiovascular Disease, and Mortality: Where We Stand and What We Need to Know. Adv. Nutr. 2013, 4, 723–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, F.H. Dietary Magnesium and Chronic Disease. Adv. Chronic Kidney Dis. 2018, 25, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Fang, X.; Su, D.; Huang, L.; He, M.; Zhao, D.; Zou, Y.; Zhang, R. Dietary Calcium Intake and the Risk of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 19046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet. Glob. Health 2013, 1, e339–e349. [Google Scholar] [CrossRef] [Green Version]
- Nentwich, M.M.; Ulbig, M.W. Diabetic retinopathy—Ocular complications of diabetes mellitus. World J. Diabetes 2015, 6, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Heintz, E.; Wiréhn, A.B.; Peebo, B.B.; Rosenqvist, U.; Levin, L.A. Prevalence and healthcare costs of diabetic retinopathy: A population-based register study in Sweden. Diabetologia 2010, 53, 2147–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, M.; Wang, C.; Liu, D. Glycated hemoglobin A1C and vitamin D and their association with diabetic retinopathy severity. Nutr. Diabetes 2017, 7, e281. [Google Scholar] [CrossRef]
- Moriya, T.; Tanaka, S.; Sone, H.; Ishibashi, S.; Matsunaga, S.; Ohashi, Y.; Akanuma, Y.; Haneda, M.; Katayama, S. Patients with type 2 diabetes having higher glomerular filtration rate showed rapid renal function decline followed by impaired glomerular filtration rate: Japan Diabetes Complications Study. J. Diabetes Complicat. 2017, 31, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Huo, L.; Yu, X.; Zhang, X. Association of Bone Metabolism Indices and Bone Mineral Density with Diabetic Retinopathy in Elderly Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Inpatient Study in China. J. Diabetes Res. 2021, 2021, 8853622. [Google Scholar] [CrossRef]
- Xu, X.H.; Sun, B.; Zhong, S.; Wei, D.D.; Hong, Z.; Dong, A.Q. Diabetic retinopathy predicts cardiovascular mortality in diabetes: A meta-analysis. BMC Cardiovasc. Disord. 2020, 20, 478. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, J.; Tao, L.; Lv, H.; Jiang, X.; Zhang, M.; Li, X. Risk factors of diabetic retinopathy and sight-threatening diabetic retinopathy: A cross-sectional study of 13,473 patients with type 2 diabetes mellitus in mainland China. BMJ Open 2017, 7, e016280. [Google Scholar] [CrossRef]
- Shah, I.U.; Sameen, A.; Manzoor, M.F.; Ahmed, Z.; Gao, J.; Farooq, U.; Siddiqi, S.M.; Siddique, R.; Habib, A.; Sun, C.; et al. Association of dietary calcium, magnesium, and vitamin D with type 2 diabetes among US adults: National health and nutrition examination survey 2007–2014—A cross-sectional study. Food Sci. Nutr. 2021, 9, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy: ETDRS report number 9. Ophthalmology 1991, 98, 766–785. [Google Scholar]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Tako, E. Dietary Trace Minerals. Nutrients 2019, 11, 2823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jhuang, Y.H.; Kao, T.W.; Peng, T.C.; Chen, W.L.; Chang, P.K.; Wu, L.W. Serum Phosphorus as a Risk Factor of Metabolic Syndrome in the Elderly in Taiwan: A Large-Population Cohort Study. Nutrients 2019, 11, 2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooney, M.R.; Pankow, J.S.; Sibley, S.D.; Selvin, E.; Reis, J.P.; Michos, E.D.; Lutsey, P.L. Serum calcium and incident type 2 diabetes: The Atherosclerosis Risk in Communities (ARIC) study. Am. J. Clin. Nutr. 2016, 104, 1023–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Xun, P.; Bae, J.C.; Kim, J.H.; Kim, D.J.; Yang, K.; He, K. Circulating calcium levels and the risk of type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2019, 122, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Tomás, N.; Estruch, R.; Bulló, M.; Casas, R.; Díaz-López, A.; Basora, J.; Fitó, M.; Serra-Majem, L.; Salas-Salvadó, J. Increased Serum Calcium Levels and Risk of Type 2 Diabetes in Individuals at High Cardiovascular Risk. Diabetes Care 2014, 37, 3084–3091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zhou, C.; Shi, Y.; She, X.; Zhao, S.; Gu, C.; Xu, X.; Chen, H.; Ma, M.; Zheng, Z. A Higher Serum Calcium Level is an Independent Risk Factor for Vision-Threatening Diabetic Retinopathy in Patients with Type 2 Diabetes: Cross-Sectional and Longitudinal Analyses. Endocr. Pract. 2021, 27, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Pittas, A.G.; Lau, J.; Hu, F.B.; Dawson-Hughes, B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007, 92, 2017–2029. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Oh, S.Y.; Hong, Y.C. Associations of serum calcium levels and dietary calcium intake with incident type 2 diabetes over 10 years: The Korean Genome and Epidemiology Study (KoGES). Diabetol. Metab. Syndr. 2018, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Mitri, J.; Dawson-Hughes, B.; Hu, F.B.; Pittas, A.G. Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: The Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am. J. Clin. Nutr. 2011, 94, 486–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, J.M.; Costa, J.A.; Alfenas, R.C. Could the beneficial effects of dietary calcium on obesity and diabetes control be mediated by changes in intestinal microbiota and integrity? Br. J. Nutr. 2015, 114, 1756–1765. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.J.; Kruszka, B.; Delaney, J.A.; He, K.; Burke, G.L.; Alonso, A.; Bild, D.E.; Budoff, M.; Michos, E.D. Calcium Intake From Diet and Supplements and the Risk of Coronary Artery Calcification and its Progression Among Older Adults: 10-Year Follow-up of the Multi-Ethnic Study of Atherosclerosis (MESA). J. Am. Heart Assoc. 2016, 5, e003815. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Mason, B.; Horne, A.; Ames, R.; Clearwater, J.; Bava, U.; Orr-Walker, B.; Wu, F.; Evans, M.C.; Gamble, G.D. Effects of calcium supplementation on serum lipid concentrations in normal older women: A randomized controlled trial. Am. J. Med. 2002, 112, 343–347. [Google Scholar] [CrossRef]
- van Mierlo, L.A.; Arends, L.R.; Streppel, M.T.; Zeegers, M.P.; Kok, F.J.; Grobbee, D.E.; Geleijnse, J.M. Blood pressure response to calcium supplementation: A meta-analysis of randomized controlled trials. J. Hum. Hypertens. 2006, 20, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Pana, T.A.; Dehghani, M.; Baradaran, H.R.; Neal, S.R.; Wood, A.D.; Kwok, C.S.; Loke, Y.K.; Luben, R.N.; Mamas, M.A.; Khaw, K.-T.; et al. Calcium intake, calcium supplementation and cardiovascular disease and mortality in the British population: EPIC-norfolk prospective cohort study and meta-analysis. Eur. J. Epidemiol. 2021, 36, 669–683. [Google Scholar] [CrossRef]
- Tanaka, S.; Yoshimura, Y.; Kawasaki, R.; Kamada, C.; Tanaka, S.; Horikawa, C.; Ohashi, Y.; Araki, A.; Ito, H.; Akanuma, Y.; et al. Fruit intake and incident diabetic retinopathy with type 2 diabetes. Epidemiology 2013, 24, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Engelen, L.; Soedamah-Muthu, S.S.; Geleijnse, J.M.; Toeller, M.; Chaturvedi, N.; Fuller, J.H.; Schalkwijk, C.G.; Stehouwer, C.D. Higher dietary salt intake is associated with microalbuminuria, but not with retinopathy in individuals with type 1 diabetes: The EURODIAB Prospective Complications Study. Diabetologia 2014, 57, 2315–2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, R.; Colangelo, L.A.; Yeh, H.C.; Anderson, C.A.; Daviglus, M.L.; Liu, K.; Brancati, F.L. Potassium intake and risk of incident type 2 diabetes mellitus: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Diabetologia 2012, 55, 1295–1303. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, R.; Zelnick, L.; Mukamal, K.J.; Nettleton, J.A.; Kestenbaum, B.R.; Siscovick, D.S.; Ix, J.H.; Tracy, R.; Hoofnagle, A.N.; Svetkey, L.P.; et al. Potassium Measures and Their Associations with Glucose and Diabetes Risk: The Multi-Ethnic Study of Atherosclerosis (MESA). PLoS ONE 2016, 11, e0157252. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Yeh, H.-C.; Edelman, D.; Brancati, F. Potassium and risk of Type 2 diabetes. Expert Rev. Endocrinol. Metab. 2011, 6, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Khalili, H.; Malik, S.; Ananthakrishnan, A.N.; Garber, J.J.; Higuchi, L.M.; Joshi, A.; Peloquin, J.; Richter, J.M.; Stewart, K.O.; Curhan, G.C.; et al. Identification and Characterization of a Novel Association between Dietary Potassium and Risk of Crohn’s Disease and Ulcerative Colitis. Front. Immunol. 2016, 7, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kido, M.; Ando, K.; Onozato, M.L.; Tojo, A.; Yoshikawa, M.; Ogita, T.; Fujita, T. Protective Effect of Dietary Potassium Against Vascular Injury in Salt-Sensitive Hypertension. Hypertension 2008, 51, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Smiljanec, K.; Mbakwe, A.; Ramos Gonzalez, M.; Farquhar, W.B.; Lennon, S.L. Dietary Potassium Attenuates the Effects of Dietary Sodium on Vascular Function in Salt-Resistant Adults. Nutrients 2020, 12, 1206. [Google Scholar] [CrossRef] [PubMed]
Variables | Diabetic Retinopathy (n = 696) | No Diabetic Retinopathy (n = 4515) | p-Value |
---|---|---|---|
Continuous variables, mean (SD) | |||
Age (years) | 62.430 (11.790) | 58.961 (12.421) | <0.001 |
Serum glucose (mg/dL) | 135.830 (71.782) | 102.671 (31.910) | <0.001 |
Alanine aminotransferase (U/L) | 26.191 (34.730) | 25.530 (16.942) | 0.428 |
Hemoglobin (g/dL) | 14.071 (1.682) | 14.290 (1.522) | <0.001 |
Dietary calcium (g) | 0.796 (0.482) | 0.866 (0.531) | <0.001 |
Dietary phosphorus (g) | 1.164 (0.548) | 1.259 (0.623) | <0.001 |
Dietary magnesium (g) | 0.266 (0.139) | 0.287 (0.142) | <0.001 |
Dietary zinc (g) | 0.011 (0.006) | 0.012 (0.011) | 0.027 |
Dietary copper (g) | 0.001 (0.001) | 0.001 (0.001) | 0.030 |
Dietary sodium (g) | 3.003 (1.552) | 3.197 (1.711) | 0.005 |
Dietary potassium (g) | 2.437 (1.135) | 2.628 (1.224) | <0.001 |
Dietary selenium (mg) | 0.098 (0.051) | 0.103 (0.058) | 0.038 |
Dietary energy (kcal) | 1848.71 (839.15) | 2010.08 (922.90) | <0.001 |
Dietary carbohydrate (gm) | 221.47 (111.48) | 242.64 (113.72) | <0.001 |
Dietary sugar (gm) | 96.63 (74.96) | 110.60 (70.55) | <0.001 |
Category variables, (%) | |||
Gender (male) | 389 (55.9) | 2257 (50.0) | 0.004 |
Non-Hispanic white | 298 (42.8) | 2560 (56.7) | 0.400 |
Cigarette smoking status | 120 (17.2) | 817 (18.1) | 0.603 |
Model 1 OR (95% CI) | p Value | Model 2 OR (95% CI) | p Value | Model 3 OR (95% CI) | p Value | ||
---|---|---|---|---|---|---|---|
Retinopathy | |||||||
Calcium | Q1 vs. Q4 | 0.802 (0.594–1.084) | 0.152 | 0.790 (0.584–1.070) | 0.128 | 0.814 (0.592–1.120) | 0.206 |
Q2 vs. Q4 | 0.618 (0.450–0.850) | 0.003 | 0.606 (0.440–0.835) | 0.002 | 0.622 (0.444–0.871) | 0.006 | |
Q3 vs. Q4 | 0.631 (0.459–0.869) | 0.005 | 0.628 (0.454–0.870) | 0.005 | 0.664 (0.472–0.933) | 0.018 | |
Potassium | Q1 vs. Q4 | 0.899 (0.657–1.229) | 0.504 | 0.846 (0.616–1.161) | 0.300 | 0.842 (0.604–1.173) | 0.309 |
Q2 vs. Q4 | 0.816 (0.593–1.123) | 0.212 | 0.766 (0.553–1.059) | 0.107 | 0.778 (0.555–1.092) | 0.147 | |
Q3 vs. Q4 | 0.714 (0.518–0.983) | 0.039 | 0.663 (0.476–0.924) | 0.015 | 0.700 (0.495–0.989) | 0.043 |
Cutoff Points | Model 1 OR (95% CI) | p Value | Model 2 OR (95% CI) | p Value | Model 3 OR (95% CI) | p Value |
---|---|---|---|---|---|---|
Retinopathy | ||||||
Calcium 550.501 | 0.683 (0.540–0.864) | <0.001 | 0.677 (0.534–0.858) | <0.001 | 0.701 (0.546–0.900) | 0.005 |
Potassium 2262.50 | 0.754 (0.601–0.946) | 0.015 | 0.724 (0.574–0.914) | 0.007 | 0.761 (0.596–0.972) | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-Y.; Chen, Y.-J. Association between Dietary Calcium and Potassium and Diabetic Retinopathy: A Cross-Sectional Retrospective Study. Nutrients 2022, 14, 1086. https://doi.org/10.3390/nu14051086
Chen Y-Y, Chen Y-J. Association between Dietary Calcium and Potassium and Diabetic Retinopathy: A Cross-Sectional Retrospective Study. Nutrients. 2022; 14(5):1086. https://doi.org/10.3390/nu14051086
Chicago/Turabian StyleChen, Yuan-Yuei, and Ying-Jen Chen. 2022. "Association between Dietary Calcium and Potassium and Diabetic Retinopathy: A Cross-Sectional Retrospective Study" Nutrients 14, no. 5: 1086. https://doi.org/10.3390/nu14051086
APA StyleChen, Y. -Y., & Chen, Y. -J. (2022). Association between Dietary Calcium and Potassium and Diabetic Retinopathy: A Cross-Sectional Retrospective Study. Nutrients, 14(5), 1086. https://doi.org/10.3390/nu14051086