Effect of a Four-Week Vegan Diet on Performance, Training Efficiency and Blood Biochemical Indices in CrossFit-Trained Participants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.2.1. Study Protocol and Visits
2.2.2. Dietary Intervention
2.2.3. A Four-Week High-Intensity Functional Training Protocol
2.3. Exercise Tests
2.3.1. One Repetition-Maximum (1RM)
2.3.2. Endurance Strength Evaluation
2.3.3. Monitoring of a Specific HIFT Performance
2.4. Blood Samples’ Analysis
2.5. Statistical Analysis
3. Results
3.1. Assessment of Strength Endurance and Discipline-Specific Performance
3.2. The Influence of Diets on the Results of the Implemented Four-Week HIFT Intervention
3.3. Evaluation of Haematological and Biochemical Indices
3.3.1. Blood Haematological Markers
3.3.2. Lipid Profile Markers
3.3.3. Other Selected Biochemical Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, W.J.; Mangels, A.R. American Dietetic Association Position of the American Dietetic Association: Vegetarian Diets. J. Am. Diet Assoc. 2009, 109, 1266–1282. [Google Scholar] [PubMed]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Rogerson, D. Vegan Diets: Practical Advice for Athletes and Exercisers. J. Int. Soc. Sports Nutr. 2017, 14, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirnitzer, K.C. Vegan Diet in Sports and Exercise–Health Benefits and Advantages to Athletes and Physically Active People: A Narrative Review. Int. J. Sports Exerc. Med. 2020, 6, 165. [Google Scholar]
- Barnard, N.D.; Goldman, D.M.; Loomis, J.F.; Kahleova, H.; Levin, S.M.; Neabore, S.; Batts, T.C. Plant-Based Diets for Cardiovascular Safety and Performance in Endurance Sports. Nutrients 2019, 11, 130. [Google Scholar] [CrossRef] [Green Version]
- Mondal, H.; Mishra, S.P. Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal Oxygen Consumption in Healthy Young Adults. J. Clin. Diagn. Res. 2017, 11, CC17–CC20. [Google Scholar] [CrossRef]
- Schabort, E.J.; Killian, S.C.; St Clair Gibson, A.; Hawley, J.A.; Noakes, T.D. Prediction of Triathlon Race Time from Labor-atory Testing in National Triathletes. Med. Sci. Sports Exerc. 2000, 32, 844–849. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Podgórski, T.; Sokołowski, M.; Jeszka, J. Relationship between Body Composition Indicators and Physical Capacity of the Combat Sports Athletes. Arch. Budo 2016, 12, 247–256. [Google Scholar]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Podgórski, T.; Kusy, K.; Osiński, W.; Jeszka, J. Relationship between Body Composition and the Level of Aerobic and Anaerobic Capacity in Highly Trained Male Rowers. J. Sports Med. Phys. Fitness 2019, 59, 1526–1535. [Google Scholar] [CrossRef]
- Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports (Basel) 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit Training Changes Brain-Derived Neurotrophic Factor and Irisin Levels at Rest, after Wingate and Progressive Tests, and Improves Aerobic Capacity and Body Composition of Young Physically Active Men and Women. J. Physiol. Pharmacol. 2015, 66, 811–821. [Google Scholar] [PubMed]
- Heinrich, K.M.; Patel, P.M.; O’Neal, J.L.; Heinrich, B.S. High-Intensity Compared to Moderate-Intensity Training for Exer-cise Initiation, Enjoyment, Adherence, and Intentions: An Intervention Study. BMC Public Health 2014, 14, 789. [Google Scholar] [CrossRef] [Green Version]
- Buckley, S.; Knapp, K.; Lackie, A.; Lewry, C.; Horvey, K.; Benko, C.; Trinh, J.; Butcher, S. Multimodal High-Intensity In-terval Training Increases Muscle Function and Metabolic Performance in Females. Appl. Physiol. Nutr. Metab. 2015, 40, 1157–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, K.M.; Spencer, V.; Fehl, N.; Poston, W.S.C. Mission Essential Fitness: Comparison of Functional Circuit Training to Traditional Army Physical Training for Active Duty Military. Mil. Med. 2012, 177, 1125–1130. [Google Scholar] [CrossRef] [Green Version]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in Body Composition, Bone Metabolism, Strength, and Skill-Specific Performance Resulting from 16-Weeks of HIFT. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Główka, N.; Ziobrowska, A.; Podgórski, T. Is a Four-Week Ketogenic Diet an Effective Nutritional Strategy in CrossFit-Trained Female and Male Athletes? Nutrients 2021, 13, 864. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Siedzik, K. Effect of a Four-Week Ketogenic Diet on Exercise Metabolism in CrossFit-Trained Athletes. J. Int. Soc. Sports Nutr. 2019, 16, 16. [Google Scholar] [CrossRef] [Green Version]
- Durkalec-Michalski, K.; Zawieja, E.E.; Zawieja, B.E.; Jurkowska, D.; Buchowski, M.S.; Jeszka, J. Effects of Low Versus Moderate Glycemic Index Diets on Aerobic Capacity in Endurance Runners: Three-Week Randomized Controlled Crossover Trial. Nutrients 2018, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar]
- Teixeira, V.; Voci, S.M.; Mendes-Netto, R.S.; da Silva, D.G. The Relative Validity of a Food Record Using the Smartphone Application MyFitnessPal. Nutr. Diet 2018, 75, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.-I.; Kim, E.; Fahs, C.A.; Rossow, L.; Young, K.; Ferguson, S.L.; Thiebaud, R.; Sherk, V.D.; Loenneke, J.P.; Kim, D.; et al. Reliability of the One-Repetition Maximum Test Based on Muscle Group and Gender. J. Sports Sci. Med. 2012, 11, 221–225. [Google Scholar] [PubMed]
- Durkalec-Michalski, K.; Zawieja, E.E.; Podgórski, T.; Łoniewski, I.; Zawieja, B.E.; Warzybok, M.; Jeszka, J. The Effect of Chronic Progressive-Dose Sodium Bicarbonate Ingestion on CrossFit-like Performance: A Double-Blind, Randomized Cross-over Trial. PLoS ONE 2018, 13, e0197480. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Zawieja, E.E.; Zawieja, B.E.; Podgórski, T. Evaluation of the Repeatability and Reliability of the Cross-Training Specific Fight Gone Bad Workout and Its Relation to Aerobic Fitness. Sci. Rep. 2021, 11, 7263. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, T.; Bartkowiak, U.; Pawlak, M. Comparison of Hematological Parameters of Venous and Capillary Blood in Athletes. Trends Sport Sci. 2014, 21, 31–45. [Google Scholar]
- Wirnitzer, K.; Motevalli, M.; Tanous, D.R.; Gregori, M.; Wirnitzer, G.; Leitzmann, C.; Hill, L.; Rosemann, T.; Knechtle, B. Supplement Intake in Recreational Vegan, Vegetarian, and Omnivorous Endurance Runners-Results from the NURMI Study (Step 2). Nutrients 2021, 13, 2741. [Google Scholar] [CrossRef]
- Banaszek, A.; Townsend, J.R.; Bender, D.; Vantrease, W.C.; Marshall, A.C.; Johnson, K.D. The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports (Basel) 2019, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Hartman, J.W.; Tang, J.E.; Wilkinson, S.B.; Tarnopolsky, M.A.; Lawrence, R.L.; Fullerton, A.V.; Phillips, S.M. Consumption of Fat-Free Fluid Milk after Resistance Exercise Promotes Greater Lean Mass Accretion than Does Consumption of Soy or Car-bohydrate in Young, Novice, Male Weightlifters. Am. J. Clin. Nutr. 2007, 86, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Joy, J.M.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; De Souza, E.O.; Wilson, S.M.; Kalman, D.S.; Dudeck, J.E.; Jäger, R. The Effects of 8 Weeks of Whey or Rice Protein Supplementation on Body Composition and Exercise Performance. Nutr. J. 2013, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Babault, N.; Païzis, C.; Deley, G.; Guérin-Deremaux, L.; Saniez, M.-H.; Lefranc-Millot, C.; Allaert, F.A. Pea Proteins Oral Supplementation Promotes Muscle Thickness Gains during Resistance Training: A Double-Blind, Randomized, Place-bo-Controlled Clinical Trial vs. Whey Protein. J. Int. Soc. Sports Nutr. 2015, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Mangine, G.T.; Cebulla, B.; Feito, Y. Normative Values for Self-Reported Benchmark Workout Scores in CrossFit® Practitioners. Sports Med. Open 2018, 4, 39. [Google Scholar] [CrossRef]
- Outlaw, J.J.; Wilborn, C.D.; Smith-Ryan, A.E.; Hayward, S.E.; Urbina, S.L.; Taylor, L.W.; Foster, C.A. Effects of a Pre-and Post-Workout Protein-Carbohydrate Supplement in Trained Crossfit Individuals. SpringerPlus 2014, 3, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kephart, W.C.; Pledge, C.D.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Mobley, C.B.; Martin, J.S.; Young, K.C.; Lowery, R.P.; Wilson, J.M.; et al. The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study. Sports (Basel) 2018, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craddock, J.C.; Probst, Y.C.; Peoples, G.E. Vegetarian and Omnivorous Nutrition–Comparing Physical Performance. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Lederer, A.-K.; Maul-Pavicic, A.; Hannibal, L.; Hettich, M.; Steinborn, C.; Gründemann, C.; Zimmermann-Klemd, A.M.; Müller, A.; Sehnert, B.; Salzer, U.; et al. Vegan Diet Reduces Neutrophils, Monocytes and Platelets Related to Branched-Chain Amino Acids—A Randomized, Controlled Trial. Clin. Nutr. 2020, 39, 3241–3250. [Google Scholar] [CrossRef] [PubMed]
- Venderley, A.M.; Campbell, W.W. Vegetarian Diets: Nutritional Considerations for Athletes. Sports Med. 2006, 36, 293–305. [Google Scholar] [CrossRef]
- Fuhrman, J.; Ferreri, D.M. Fueling the Vegetarian (Vegan) Athlete. Curr. Sports Med. Rep. 2010, 9, 233–241. [Google Scholar] [CrossRef]
- Ostojic, S.M.; Ahmetovic, Z. Weekly Training Volume and Hematological Status in Female Top-Level Athletes of Different Sports. J. Sports Med. Phys. Fitness 2008, 48, 398–403. [Google Scholar]
- Shaw, N.S.; Chin, C.J.; Pan, W.H. A Vegetarian Diet Rich in Soybean Products Compromises Iron Status in Young Students. J. Nutr. 1995, 125, 212–219. [Google Scholar]
- Snyder, A.C.; Dvorak, L.L.; Roepke, J.B. Influence of Dietary Iron Source on Measures of Iron Status among Female Runners. Med. Sci. Sports Exerc. 1989, 21, 7–10. [Google Scholar] [CrossRef]
- Nebl, J.; Schuchardt, J.P.; Ströhle, A.; Wasserfurth, P.; Haufe, S.; Eigendorf, J.; Tegtbur, U.; Hahn, A. Micronutrient Status of Recreational Runners with Vegetarian or Non-Vegetarian Dietary Patterns. Nutrients 2019, 11, 1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beard, J.L.; Burton, J.W.; Theil, E.C. Purified ferritin and soybean meal can be sources of iron for treating iron deficiency in rats. J. Nutr. 1996, 126, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.J.; Jo, M.Y.; Hwang, E.H.; Park, C.U.; Kim, K.S. Recovery from iron deficiency in rats by the intake of recombinant yeast producing human H-ferritin. Nutrition 2005, 21, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Trapp, D.; Knez, W.; Sinclair, W. Could a Vegetarian Diet Reduce Exercise-Induced Oxidative Stress? A Review of the Literature. J. Sports Sci. 2010, 28, 1261–1268. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Levin, S.M.; Barnard, N.D. Association between Plant-Based Diets and Plasma Lipids: A Systematic Review and Meta-Analysis. Nutr. Rev. 2017, 75, 683–698. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, J.; Yang, B.; Jiang, J.; Fu, Y.; Li, D. Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2015, 4, e002408. [Google Scholar] [CrossRef] [Green Version]
- Fontana, L.; Meyer, T.E.; Klein, S.; Holloszy, J.O. Long-Term Low-Calorie Low-Protein Vegan Diet and Endurance Exercise Are Associated with Low Cardiometabolic Risk. Rejuvenation Res. 2007, 10, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Kengne, A.P. Higher Adherence to Plant-Based Diets Are Associated with Lower Likelihood of Fatty Liver. Clin. Nutr. 2019, 38, 1672–1677. [Google Scholar] [CrossRef]
- Chiarioni, G.; Popa, S.L.; Dalbeni, A.; Senore, C.; Leucuta, D.C.; Baroni, L.; Fantin, A. Vegan Diet Advice Might Benefit Liver Enzymes in Nonalcoholic Fatty Liver Disease: An Open Observational Pilot Study. J. Gastrointestin. Liver Dis. 2021, 30, 81–87. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Barnard, N.D.; Levin, S.M.; Watanabe, M. Vegetarian Diets and Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis. Cardiovasc. Diagn. Ther. 2014, 4, 373–382. [Google Scholar]
- Nebl, J.; Drabert, K.; Haufe, S.; Wasserfurth, P.; Eigendorf, J.; Tegtbur, U.; Hahn, A.; Tsikas, D. Exercise-Induced Oxidative Stress, Nitric Oxide and Plasma Amino Acid Profile in Recreational Runners with Vegetarian and Non-Vegetarian Dietary Pat-terns. Nutrients 2019, 11, 1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Indicator | Vegan Diet (VegD) (n = 10: 6 F, 4 M) | Customary Mixed Diet (MixD) (n = 10: 6 F, 4 M) | p-Value |
---|---|---|---|
Age (years) | 31.0 ± 3.6 | 30.5 ± 3.0 | 0.521 |
Body mass (kg) | 71.6 ± 14.5 | 72.0 ± 16.1 | 0.961 |
Body height (cm) | 177 ± 9 | 173 ± 9 | 0.304 |
Fat mass (%) | 21.8 ± 4.8 | 22.5 ± 7.7 | 0.809 |
Fat-free mass (kg) | 55.8 ± 12.0 | 55.2 ± 11.7 | 0.917 |
Total body water content (%) | 53.2 ± 3.4 | 52.2 ± 5.1 | 0.600 |
Squat—1RM (kg) | 78.0 ± 24.2 | 79.5 ± 22.0 | 0.791 |
Deadlift—1RM (kg) | 87.0 ± 32.7 | 91.3 ± 27.9 | 0.758 |
HITF experience (months) | 12.1 ± 5.4 | 12.1 ± 5.1 | 1.000 |
Variable | Group | Investigation Period | p-Value | |
---|---|---|---|---|
Before Nutritional Intervention (T1) | After Nutritional Intervention (T2) | |||
(95% CI) | (95% CI) | |||
Energy (kcal·day−1) | VegD | 2346 ± 574 | 2460 ± 438 | 0.203 |
(1935–2757) | (2147–2773) | |||
MixD | 2419 ± 361 | 2420 ± 416 | 0.991 | |
(2161–2677) | (2123–2717) | |||
p-value | 0.738 | 0.762 | - | |
Protein (g·day−1) | VegD | 110.0 ± 21.9 | 113.7 ± 23.4 | 0.508 |
(94.3–125.6) | (97.0–130.5) | |||
MixD | 129.1 ± 14.9 | 130.1 ± 23.7 | 0.870 | |
(118.5–139.7) | (113.1–147.0) | |||
p-value | 0.034 | 0.070 | - | |
Fat (g·day−1) | VegD | 59.4 ± 9.7 | 62.3 ± 21.2 | 0.646 |
(52.5–66.3) | (47.1–77.4) | |||
MixD | 98.9 ± 8.5 | 98.9 ± 12.7 | 0.973 | |
(92.9–105.0) | (89.8–108.0) | |||
p-value | <0.001 | 0.002 | - | |
Carbohydrates (g·day−1) | VegD | 375.2 ± 120.4 | 395.3 ± 63.1 | 0.508 |
(289.1–461.3) | (350.1–440.4) | |||
MixD | 299.7 ± 48.1 | 297.7 ± 53.9 | 0.868 | |
(265.3–334.1) | (259.1–336.2) | |||
p-value | 0.082 | 0.010 | - | |
Dietary fiber (g·day−1) | VegD | 44.9 ± 9.5 | 59.7 ± 8.7 | 0.007 |
(38.1–51.7) | (53.5–65.9) | |||
MixD | 39.7 ± 6.3 | 39.3 ± 5.8 | 0.575 | |
(35.2–44.2) | (35.2–43.4) | |||
p-value | 0.104 | <0.001 | - | |
Water/drinks (ml·day−1) | VegD | 2704 ± 555 | 3000 ± 0 | 0.126 |
(2307–3101) | - | |||
MixD | 2198 ± 525 | 3000 ± 0 | <0.001 | |
(1823–2574) | - | |||
p-value | 0.051 | - | - |
Variable | Group | Investigation Period | p-Value | |
---|---|---|---|---|
Before Nutritional Intervention (T1) | After Nutritional Intervention (T2) | |||
(95% CI) | (95% CI) | |||
Modified FGB Test | ||||
Wall Ball (reps) | VegD | 21.4 ± 6.6 | 25.8 ± 7.9 | 0.041 |
(16.7–26.1) | (20.2–31.4) | |||
MixD | 22.4 ± 6.8 | 26.6 ± 3.9 | 0.015 | |
(17.5–27.3) | (23.8–29.4) | |||
p-value | 0.743 | 0.776 | - | |
Sumo Deadlift High Pull (reps) | VegD | 16.0 ± 8.3 | 15.9 ± 6.1 | 0.726 |
(10.1–21.9) | (11.5–20.3) | |||
MixD | 17.2 ± 7.8 | 15.5 ± 7.1 | 0.080 | |
(11.6–22.8) | (10.5–20.5) | |||
p-value | 0.406 | 0.821 | - | |
Box Jump (reps) | VegD | 22.3 ± 7.8 | 23.0 ± 5.9 | 0.650 |
(16.7–27.9) | (18.8–27.2) | |||
MixD | 22.4 ± 5.7 | 23.5 ± 5.5 | 0.154 | |
(18.3–26.5) | (19.5–27.5) | |||
p-value | 0.406 | 0.847 | - | |
Push Press (reps) | VegD | 16.7 ± 7.3 | 14.4 ± 5.9 | 0.084 |
(11.5–21.9) | (10.1–18.7) | |||
MixD | 16.6 ± 4.8 | 15.9 ± 5.7 | 0.550 | |
(13.2–20.0) | (11.8–20.0) | |||
p-value | 0.971 | 0.571 | - | |
Rowing (kcal) | VegD | 15.5 ± 5.4 | 16.6 ± 5.9 | 0.124 |
(11.7–19.3) | (12.4–20.8) | |||
MixD | 14.9 ± 3.3 | 16.4 ± 3.6 | 0.050 | |
(12.5–17.3) | (13.8–19.0) | |||
p-value | 0.734 | 1.000 | - | |
Total FGBMod completion time (s) | VegD | 394.9 ± 14.6 | 387.8 ± 27.8 | 0.878 |
(384.5–405.3) | (367.9–407.7) | |||
MixD | 394.3 ± 10.4 | 393.0 ± 20.2 | 0.837 | |
(386.9–401.7) | (378.5–407.5) | |||
p-value | 0.917 | 0.850 | - |
Variable | Group | Investigation Period | p-Value | |
---|---|---|---|---|
Before Nutritional Intervention (T1) | After Nutritional Intervention (T2) | |||
(95% CI) | (95% CI) | |||
White blood cells (109·L−1) | VegD | 8.4 ± 2.3 | 8.2 ± 2.0 | 0.721 |
(6.7–10.0) | (6.8–9.7) | |||
MixD | 9.5 ± 2.0 | 8.7 ± 2.3 | 0.309 | |
(8.0–10.9) | (7.1–10.4) | |||
p-value | 0.162 | 0.626 | - | |
Lymphocytes (109·L−1) | VegD | 3.2 ± 0.8 | 3.5 ± 0.9 | 0.188 |
(2.7–3.8) | (2.9–4.1) | |||
MixD | 3.3 ± 1.1 | 3.1 ± 0.7 | 0.726 | |
(2.5–4.1) | (2.6–3.7) | |||
p-value | 0.887 | 0.324 | - | |
Monocytes (109·L−1) | VegD | 1.8 ± 3.2 | 1.8 ± 3.5 | 0.878 |
(−0.5–4.0) | (−0.7–4.3) | |||
MixD | 0.8 ± 0.2 | 0.7 ± 0.2 | 0.392 | |
(0.6–0.9) | (0.6–0.9) | |||
p-value | 0.970 | 0.791 | - | |
Granulocytes (109·L−1) | VegD | 4.4 ± 1.7 | 4.0 ± 1.3 | 0.169 |
(3.2–5.6) | (3.1–5.0) | |||
MixD | 5.4 ± 1.1 | 4.9 ± 1.8 | 0.236 | |
(4.6–6.2) | (3.6–6.1) | |||
p-value | 0.104 | 0.252 | - | |
Red blood cells (1012·L−1) | VegD | 5.75 ± 0.17 | 5.74 ± 0.14 | 0.761 |
(5.63–5.86) | (5.64–5.85) | |||
MixD | 5.60 ± 0.21 | 5.58 ± 0.20 | 0.558 | |
(5.45–5.75) | (5.43–5.72) | |||
p-value | 0.092 | 0.047 | - | |
Haemoglobin (mmol·L−1) | VegD | 9.88 ± 0.16 | 9.86 ± 0.24 | 0.875 |
(9.77–9.99) | (9.69–10.03) | |||
MixD | 9.91 ± 0.18 | 10.00 ± 0.41 | 0.556 | |
(9.79–10.04) | (9.70–10.29) | |||
p-value | 0.675 | 0.390 | - | |
Platelets (109·L−1) | VegD | 223 ± 61 | 194 ± 58 | 0.240 |
(180–266) | (153–235) | |||
MixD | 227 ± 72 | 193 ± 100 | 0.119 | |
(175–278) | (122–265) | |||
p-value | 0.901 | 0.982 | - |
Variable | Group | Investigation Period | p-Value | |
---|---|---|---|---|
Before Nutritional Interventional (T1) | After Nutritional Interventional (T2) | |||
(95% CI) | (95% CI) | |||
Total cholesterol (mg·dL−1) | VegD | 220.5 ± 34.6 | 217.1 ± 47.1 | 0.714 |
(195.7–245.2) | (183.5–250.8) | |||
MixD | 214.5 ± 34.1 | 214.9 ± 34.8 | 0.942 | |
(190.1–238.9) | (190.0–239.8) | |||
p-value | 0.701 | 0.906 | - | |
High-density lipoprotein cholesterol (mg·dL−1) | VegD | 72.6 ± 18.0 | 68.9 ± 21.2 | 0.172 |
(59.7–85.5) | (53.7–84.0) | |||
MixD | 73.7 ± 24.8 | 71.5 ± 23.5 | 0.443 | |
(56.0–91.4) | (54.7–88.4) | |||
p-value | 0.909 | 0.793 | - | |
Low-density lipoprotein cholesterol (mg·dL−1) | VegD | 131.2 ± 34.6 | 125.1 ± 31.4 | 0.337 |
(106.5–156.0) | (102.6–147.6) | |||
MixD | 121.5 ± 31.3 | 113.1 ± 28.3 | 0.213 | |
(99.1–143.8) | (92.8–133.3) | |||
p-value | 0.516 | 0.381 | - | |
Triglycerides (mg·dL−1) | VegD | 124.8 ± 37.2 | 143.9 ± 54.9 | 0.284 |
(98.2–151.4) | (104.7–183.2) | |||
MixD | 110.9 ± 71.6 | 180.9 ± 113.6 | 0.005 | |
(59.6–162.1) | (99.6–262.1) | |||
p-value | 0.592 | 0.791 | - |
Variable | Group | Investigation Period | p-Value | |
---|---|---|---|---|
Before Nutritional Interventional (T1) | After Nutritional Interventional (T2) | |||
(95% CI) | (95% CI) | |||
Iron (µg·dL−1) | VegD | 104.6 ± 81.6 | 108.4 ± 48.1 | 0.900 |
(46.2–162.9) | (74.0–142.9) | |||
MixD | 115.7 ± 55.5 | 125.6 ± 62.1 | 0.672 | |
(76.1–155.4) | (81.2–170.0) | |||
p-value | 0.724 | 0.498 | - | |
Transferrin (g·L−1) | VegD | 3.06 ± 0.64 | 3.17 ± 0.62 | 0.213 |
(2.60–3.52) | (2.73–3.61) | |||
MixD | 3.02 ± 0.54 | 2.86 ± 0.40 | 0.139 | |
(2.63–3.40) | (2.58–3.15) | |||
p-value | 0.850 | 0.273 | - | |
Ferritin (ng·mL−1) | VegD | 60.4 ± 46.1 | 56.2 ± 36.7 | 0.799 |
(27.4–93.4) | (30.0–82.5) | |||
MixD | 84.6 ± 85.2 | 81.3 ± 74.6 | 0.959 | |
(23.7–145.6) | (27.9–134.7) | |||
p-value | 0.970 | 0.354 | - | |
Protein (g·dL−1) | VegD | 8.3 ± 0.6 | 8.7 ± 0.6 | 0.126 |
(7.9–8.8) | (8.3–9.1) | |||
MixD | 8.7 ± 0.9 | 9.1 ± 0.6 | 0.386 | |
(8.1–9.4) | (8.6–9.5) | |||
p-value | 0.121 | 0.155 | - | |
Albumin (g·dL−1) | VegD | 5.4 ± 0.3 | 5.4 ± 0.2 | 0.448 |
(5.2–5.6) | (5.3–5.6) | |||
MixD | 5.6 ± 0.6 | 5.6 ± 0.4 | 0.778 | |
(5.2–6.0) | (5.3–5.9) | |||
p-value | 0.264 | 0.333 | - | |
Alanine aminotransferase (U·L−1) | VegD | 28.3 ± 9.8 | 31.0 ± 12.5 | 0.277 |
(21.3–35.3) | (22.1–39.9) | |||
MixD | 46.7 ± 36.6 | 50.3 ± 35.5 | 0.575 | |
(20.5–72.9) | (24.9–75.7) | |||
p-value | 0.385 | 0.385 | - | |
Aspartate aminotransferase (U·L−1) | VegD | 41.7 ± 23.0 | 43.8 ± 24.0 | 0.646 |
(25.3–58.2) | (26.6–61.0) | |||
MixD | 49.2 ± 20.0 | 76.0 ± 91.2 | 0.721 | |
(35.0–63.5) | (10.8–141.2) | |||
p-value | 0.307 | 0.385 | - | |
Glucose (mg·dL−1) | VegD | 119.9 ± 33.4 | 103.4 ± 29.4 | 0.241 |
(95.9–143.8) | (82.4–124.5) | |||
MixD | 106.7 ± 20.7 | 118.3 ± 26.6 | 0.254 | |
(91.9–121.5) | (99.3–137.3) | |||
p-value | 0.303 | 0.140 | - | |
Urea (mmol·L−1) | VegD | 7.1 ± 2.3 | 6.8 ± 2.3 | 0.627 |
(5.5–8.8) | (5.2–8.5) | |||
MixD | 6.4 ± 1.5 | 6.7 ± 2.1 | 0.657 | |
(5.3–7.5) | (5.1–8.2) | |||
p-value | 0.426 | 0.866 | - | |
Creatinine (µmol·L−1) | VegD | 75.1 ± 15.2 | 78.7 ± 13.5 | 0.365 |
(64.2–86.0) | (69.1–88.3) | |||
MixD | 80.5 ± 18.6 | 75.2 ± 26.6 | 0.386 | |
(67.2–93.8) | (56.1–94.2) | |||
p-value | 0.521 | 0.714 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durkalec-Michalski, K.; Domagalski, A.; Główka, N.; Kamińska, J.; Szymczak, D.; Podgórski, T. Effect of a Four-Week Vegan Diet on Performance, Training Efficiency and Blood Biochemical Indices in CrossFit-Trained Participants. Nutrients 2022, 14, 894. https://doi.org/10.3390/nu14040894
Durkalec-Michalski K, Domagalski A, Główka N, Kamińska J, Szymczak D, Podgórski T. Effect of a Four-Week Vegan Diet on Performance, Training Efficiency and Blood Biochemical Indices in CrossFit-Trained Participants. Nutrients. 2022; 14(4):894. https://doi.org/10.3390/nu14040894
Chicago/Turabian StyleDurkalec-Michalski, Krzysztof, Adrian Domagalski, Natalia Główka, Joanna Kamińska, Damian Szymczak, and Tomasz Podgórski. 2022. "Effect of a Four-Week Vegan Diet on Performance, Training Efficiency and Blood Biochemical Indices in CrossFit-Trained Participants" Nutrients 14, no. 4: 894. https://doi.org/10.3390/nu14040894
APA StyleDurkalec-Michalski, K., Domagalski, A., Główka, N., Kamińska, J., Szymczak, D., & Podgórski, T. (2022). Effect of a Four-Week Vegan Diet on Performance, Training Efficiency and Blood Biochemical Indices in CrossFit-Trained Participants. Nutrients, 14(4), 894. https://doi.org/10.3390/nu14040894