Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice
Abstract
1. Introduction
2. Fatigue and Soccer
3. Energy Assessment Methods in Soccer
3.1. Assessment of Energy Expenditure (EE)
3.2. Assessment of Energy Intake (EI)
3.3. Energy Expenditure: Training and Match Day
4. Nutritional Intake and Soccer
4.1. Nutrition for Pre-Match Day (MD-1)
4.2. Nutrition and Match-Day: Pre-Match
4.3. Nutrition and Match-Day: During Match
4.4. Match-Day: Post-Match
4.5. Day after Match Day (MD + 1)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bangsbo, J. Energy demands in competitive soccer. J. Sports Sci. 1994, 12, S5–S12. [Google Scholar] [CrossRef]
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical demands of different positions in FA Premier League soccer. J. Sport Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef]
- Malone, J.J.; Di Michele, R.; Morgans, R.; Burgess, D.; Morton, J.P.; Drust, B. Seasonal training-load quantification in elite English Premier League soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 489–497. [Google Scholar] [CrossRef]
- Anderson, L.; Orme, P.; Di Michele, R.; Close, G.L.; Milsom, J.; Morgans, R.; Drust, B.; Morton, J.P. Quantification of Seasonal-Long Physical Load in Soccer Players With Different Starting Status From the English Premier League: Implications for Maintaining Squad Physical Fitness. Int. J. Sports Physiol. Perform. 2016, 11, 1038–1046. [Google Scholar] [CrossRef]
- Stevens, T.G.A.; de Ruiter, C.J.; Twisk, J.W.R.; Savelsbergh, G.J.P.; Beek, P.J. Quantification of in-season training load relative to match load in professional Dutch Eredivisie football players. Sci. Med. Footb. 2017, 1, 117–125. [Google Scholar] [CrossRef]
- Clemente, F.; Owen, A.; Serra-Olivares, J.; Nikolaidis, P.; van der Linden, C.; Mendes, B. Characterization of the weekly external load profile of professional soccer teams from Portugal and the Netherlands. J. Hum. Kinet. 2019, 66, 155–164. [Google Scholar] [CrossRef]
- Los Arcos, A.; Mendez-Villanueva, A.; Martínez-Santos, R. In-season training periodization of professional soccer players. Biol. Sport. 2017, 34, 149–155. [Google Scholar] [CrossRef]
- Iaia, F.M.; Rampinini, E.; Bangsbo, J. High-Intensity Training in Football. Int. J. Sports Physiol. Perform. 2009, 4, 291–306. [Google Scholar] [CrossRef]
- Bangsbo, J. The physiology of soccer-with special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar]
- Krustrup, P.; Mohr, M.; Ellingsgaard, H.; Bangsbo, J. Physical demands during an elite female soccer game: Importance of training status. Med. Sci. Sports Exerc. 2005, 37, 1242–1248. [Google Scholar] [CrossRef]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demands of training and match-play in the elite football player. J. Sports Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef]
- Bangsbo, J. Physiological Demands of Football. Sport Sci Exch. 2014, 27, 1–6. [Google Scholar]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Krustrup, P.; Mohr, M.; Steensberg, A.; Bencke, J.; Klær, M.; Bangsbo, J. Muscle and blood metabolites during a soccer game: Implications for sprint performance. Med. Sci. Sports Exerc. 2006, 38, 1165–1174. [Google Scholar] [CrossRef]
- Krustrup, P.; Ortenblad, N.; Nielsen, J.; Nybo, L.; Gunnarsson, T.P.; Iaia, F.M.; Madsen, K.; Stephens, F.; Greenhaff, P.; Bangsbo, J. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur. J. Appl. Physiol. 2011, 111, 2987–2995. [Google Scholar] [CrossRef]
- Reilly, T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J. Sports Sci. 1997, 15, 257–263. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. Int. J. Sports Physiol. Perform. 2017, 12, 218–226. [Google Scholar] [CrossRef]
- Mujika, I.; Burke, L.M. Nutrition in team sports. Ann. Nutr. Metab. 2010, 57 (Suppl. 2), 26–35. [Google Scholar] [CrossRef]
- Saltin, B. Substrate metabolism of the skeletal musculature during exercise. 5. Muscle glycogen. Lakartidningen 1972, 69, 1637–1640. [Google Scholar]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Fatigue in soccer: A brief review. J. Sports Sci. 2005, 23, 593–599. [Google Scholar] [CrossRef]
- Jacobs, I.; Westlin, N.; Karlsson, J.; Rasmusson, M.; Houghton, B. Muscle glycogen and diet in elite soccer players. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 48, 297–302. [Google Scholar] [CrossRef]
- Nicholas, C.W.; Tsintzas, K.; Boobis, L.; Williams, C. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med. Sci. Sports Exerc. 1999, 31, 1280–1286. [Google Scholar] [CrossRef]
- Foskett, A.; Williams, C.; Boobis, L.; Tsintzas, K. Carbohydrate availability and muscle energy metabolism during intermittent running. Med. Sci. Sports Exerc. 2008, 40, 96–103. [Google Scholar] [CrossRef]
- Christensen, E.H.; Hansen, O. Arbeitsfahigkeit und Ern arung. Skand. Arch. Physiolgie 1939, 81, 160–171. [Google Scholar] [CrossRef]
- Currell, K.; Conway, S.; Jeukendrup, A.E. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 34–46. [Google Scholar] [CrossRef]
- Ali, A.; Williams, C.; Nicholas, C.W.; Foskett, A. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med. Sci. Sports Exerc. 2007, 39, 1969–1976. [Google Scholar] [CrossRef]
- Backhouse, S.H.; Ali, A.; Biddle, S.J.H.; Williams, C. Carbohydrate ingestion during prolonged high-intensity intermittent exercise: Impact on affect and perceived exertion. Scand. J. Med. Sci. Sports 2007, 17, 605–610. [Google Scholar] [CrossRef]
- Ekblom, B. Applied physiology of soccer. Sports Med. 1986, 3, 50–60. [Google Scholar] [CrossRef]
- Harper, L.D.; Briggs, M.A.; McNamee, G.; West, D.J.; Kilduff, L.P.; Stevenson, E.; Russell, M. Physiological and performance effects of carbohydrate gels consumed prior to the extra-time period of prolonged simulated soccer match-play. J. Sci. Med. Sport. 2016, 19, 509–514. [Google Scholar] [CrossRef]
- Hannon, M.P.; Carney, D.J.; Floyd, S.; Parker, L.J.F.; McKeown, J.; Drust, B.; Unnithan, V.B.; Close, G.L.; Morton, J.P. Cross-sectional comparison of body composition and resting metabolic rate in Premier League academy soccer players: Implications for growth and maturation. J. Sports Sci. 2020, 38, 1326–1334. [Google Scholar] [CrossRef]
- Hannon, M.P.; Parker, L.J.F.; Carney, D.J.; McKeown, J.; Speakman, J.R.; Hambly, C.; Drust, B.; Unnithan, V.B.; Close, G.L.; Morton, J.P. Energy Requirements of Male Academy Soccer Players from the English Premier League. Med. Sci. Sport Exerc. 2021, 53, 200–210. [Google Scholar] [CrossRef]
- Burrows, T.L.; Ho, Y.Y.; Rollo, M.E.; Collins, C.E. Validity of Dietary Assessment Methods When Compared to the Method of Doubly Labeled Water: A Systematic Review in Adults. Front. Endocrinol. 2019, 10, 850. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Milliron, B.J.; Woolf, K. Common prediction equations overestimate measured resting metabolic rate in young hispanic women. Top Clin. Nutr. 2013, 28, 120–135. [Google Scholar] [CrossRef]
- Schofield, K.L.; Thorpe, H.; Sims, S.T. Resting metabolic rate prediction equations and the validity to assess energy deficiency in the athlete population. Exp. Physiol. 2019, 104, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Camic, C.L.; Kisiolek, J.; Luedke, J.; Erickson, J.; Jones, M.T.; Oliver, J.M. Accuracy of Resting Metabolic Rate Prediction Equations in Athletes. J. Strength Cond. Res. 2018, 32, 1875–1881. [Google Scholar] [CrossRef]
- Anderson, L.; Orme, P.; Naughton, R.J.; Close, G.L.; Milsom, J.; Rydings, D.; O’Boyle, A.; Di Michele, R.; Louis, J.; Hambly, C.; et al. Energy Intake and Expenditure of Professional Soccer Players of the English Premier League: Evidence of Carbohydrate Periodization. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 228–238. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Castagna, C.; Belardinelli, R.; Abt, G. The VO2 and HR response to training with the ball in youth soccer players. In Science and Football; Reilly, T., Cabri, J., Araújo, D., Eds.; Routledge, Taylor & Francis Group: Oxfordshire, UK, 2005; Volume V, pp. 462–464. [Google Scholar]
- Hoff, J.; Wisløff, U.; Engen, L.C.; Kemi, O.J.; Helgerud, J. Soccer specific aerobic endurance training. Br. J. Sports Med. 2002, 36, 218–221. [Google Scholar] [CrossRef]
- Rodríguez, F.A.; Iglesias, X. The energy cost of soccer: Telemetric oxygen uptake measurements versus heart rate-VO2 estimations. J. Sports Sci. 1998, 16, 484–485. [Google Scholar]
- Stevens, T.G.; De Ruiter, C.J.; Van Maurik, D.; Van Lierop, C.J.; Savelsbergh, G.J.; Beek, P.J. Measured and estimated energy cost of constant and shuttle running in soccer players. Med. Sci. Sports Exerc. 2015, 47, 1219–1224. [Google Scholar] [CrossRef]
- Davidson, L.; McNeill, G.; Haggarty, P.; Smith, J.S.; Franklin, M.F. Free-living energy expenditure of adult men assessed by continuous heart-rate monitoring and doubly-labelled water. Br. J. Nutr. 1997, 78, 695–708. [Google Scholar] [CrossRef][Green Version]
- Spurr, G.B.; Prentice, A.M.; Murgatroyd, P.R.; Goldberg, G.R.; Reina, J.C.; Christman, N.T. Energy expenditure from minute-by-minute heart-rate recording: Comparison with indirect calorimetry. Am. J. Clin. Nutr. 1988, 48, 552–559. [Google Scholar] [CrossRef]
- Luke, A.; Maki, K.; Barkey, N.; Cooper, R.; McGee, D. Simultaneous monitoring of heart rate and motion to assess energy expenditure. Med. Sci. Sport Exerc. 1997, 29, 144–148. [Google Scholar] [CrossRef]
- Li, R.; Deurenberg, P.; Hautvast, J.G.A.J. A critical evaluation of heart rate monitoring to assess energy expenditure in individuals. Am. J. Clin. Nutr. 1993, 58, 602–607. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A. Heart rate monitoring. Sport Med. 2003, 33, 517–538. [Google Scholar] [CrossRef]
- Hendelman, D.; Miller, K.; Baggett, C.; Debold, E.; Freedson, P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med. Sci. Sport Exerc. 2000, 32, S442–S449. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Myers, A. Challenges and opportunities for measuring physical activity in sedentary adults. Sport Med. 2001, 31, 91–100. [Google Scholar] [CrossRef]
- De Vries, S.; Bakker, I.; Hopman-Rock, M.; Hirasing, R.; van Mechelen, W. Clinimetric review of motion sensors in children and adolescents. J. Clin. Epidemiol. 2006, 59, 670–680. [Google Scholar] [CrossRef]
- Gastin, P.B.; Cayzer, C.; Dwyer, D.; Robertson, S. Validity of the ActiGraph GT3X+ and BodyMedia SenseWear Armband to estimate energy expenditure during physical activity and sport. J. Sci. Med. Sport Sports Med. Aust. 2018, 21, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Batterham, A.; Bock, S.; Robson, C.; Stokes, K. Assessment of low-to-moderate intensity physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with branched-equation modeling. J. Nutr. 2006, 136, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Brage, S.; Brage, N.; Franks, P.; Ekelund, U.; Wareham, N. Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur. J. Clin. Nutr. 2005, 59, 561–570. [Google Scholar] [CrossRef]
- Crouter, S.; Churilla, J.; Bassett, D. Accuracy of the Actiheart for the assessment of energy expenditure in adults. Eur. J. Clin. Nutr. 2008, 62, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.; Prapavessis, H.; Gray, C.; McGowan, E.; Rush, E.; Maddison, R. The Actiheart in adolescents: A doubly labelled water validation. Pediatr. Exerc. Sci. 2012, 24, 589–602. [Google Scholar] [CrossRef]
- Akenhead, R.; Nassis, G.P. Training load and player monitoring in high-level football: Current practice and perceptions. Int. J. Sports Physiol. Perform. 2016, 11, 587–593. [Google Scholar] [CrossRef]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; di Prampero, P. Energy Cost and Metabolic Power in Elite Soccer: A New Match Analysis Approach. Med. Sci. Sports Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef]
- Brown, D.M.; Dwyer, D.B.; Robertson, S.J.; Gastin, P.B. Metabolic Power Method: Underestimation of Energy Expenditure in Field-Sport Movements Using a Global Positioning System Tracking System. Int. J. Sports Physiol. Perform. 2016, 11, 1067–1073. [Google Scholar] [CrossRef]
- Oxendale, C.L.; Highton, J.; Twist, C. Energy expenditure, metabolic power and high speed activity during linear and multi-directional running. J. Sci. Med. Sport Sports Med. Aust. 2017, 20, 957–961. [Google Scholar] [CrossRef]
- Buchheit, M.; Manouvrier, C.; Cassiram, J.; Morin, J. Monitoring locomotor load in soccer: Is metabolic power, powerful? Int. J. Sports Med. 2015, 36, 1149–1155. [Google Scholar] [CrossRef]
- Polglaze, T.; Hoppe, M.W. Metabolic Power: A Step in the Right Direction for Team Sports. Int. J. Sports Physiol. Perform. 2019, 14, 407–411. [Google Scholar] [CrossRef]
- Leblanc, J.C.; Le Gall, F.; Grandjean, V.; Verger, P. Nutritional intake of French soccer players at the Clairefontaine Training Center. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 268–280. [Google Scholar] [CrossRef]
- Beaton, G.; Burema, J.; Ritenbaugh, C. Errors in the interpretation of dietary assessments. Am. J. Clin. Nutr. 1997, 65, 1100S–1107S. [Google Scholar] [CrossRef] [PubMed]
- Trabulsi, J.; Schoeller, D.A. Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am. J. Physiol.—Endocrinol. Metab. 2001, 281, E891–E899. [Google Scholar] [CrossRef]
- Goris, A.; Westerterp-Plantenga, M.; Westerterp, K. Undereating and underrecording of habitual food intake in obese men: Selective underreporting of fat intake. Am. J. Clin. Nutr. 2000, 71, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Briggs, M.A.; Rumbold, P.L.S.; Cockburn, E.; Russell, M.; Stevenson, E.J. Agreement between two methods of dietary data collection in male adolescent academy-level soccer players. Nutrients 2015, 7, 5948–5960. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, V.; Voci, S.M.; Mendes-Netto, R.S.; da Silva, D.G. The relative validity of a food record using the smartphone application MyFitnessPal. Nutr. Diet. 2018, 75, 219–225. [Google Scholar] [CrossRef]
- Hutchesson, M.J.; Rollo, M.E.; Callister, R.; Collins, C.E. Self-Monitoring of Dietary Intake by Young Women: Online Food Records Completed on Computer or Smartphone Are as Accurate as Paper-Based Food Records but More Acceptable. J. Acad. Nutr. Diet. Elsevier Inc. 2015, 115, 87–94. [Google Scholar] [CrossRef]
- Stables, R.G.; Kaspers, A.M.; Sparks, S.A.; Morton, J.P.; Close, G.L. An assessment of the validity of the remote food photography method (Termed Snap-N-Send) in experience and inexperience sport nutritionists. Int. J. Sport Nutr. Exerc. Metab. 2020, 31, 125–134. [Google Scholar] [CrossRef]
- Jeong, T.; Reilly, T.; Morton, J.; Bae, S.; Drust, B. Quantification of the physiological loading of one week of “pre-season” and one week of “in-season” training in professional soccer players. J. Sports Sci. 2011, 29, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Thomas, V. Estimated daily energy expenditures of professional association footballers. Ergonomics 1979, 22, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.; Coelho, L.; Mortimer, L.; Condessa, L.; Ferreira-Junior, J.; Borba, D.; Oliveira, B.; Bouzas-Marins, J.; Soares, D.; Silami-Garcia, E. Energy expenditure estimation during official soccer matches. Braz. J. Biomotricity 2010, 4, 246–255. [Google Scholar]
- Anderson, L.; Close, G.L.; Morgans, R.; Hambly, C.; Speakman, J.R.; Drust, B.; Morton, J.P. Assessment of Energy Expenditure of a Professional Goalkeeper from the English Premier League Using the Doubly Labeled Water Method. Int. J. Sports Physiol. Perform. 2019, 14, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Brinkmans, N.Y.J.; Iedema, N.; Plasqui, G.; Wouters, L.; Saris, W.H.M.; van Loon, L.J.C.; van Dijk, J.W. Energy expenditure and dietary intake in professional football players in the Dutch Premier League: Implications for nutritional counselling. J. Sports Sci. 2019, 37, 2759–2767. [Google Scholar] [CrossRef]
- Ebine, N.; Rafamantanantsoa, H.H.; Nayuki, Y.; Yamanaka, K.; Tashima, K.; Ono, T.; Saitoh, S.; Jones, P.J. Measurement of total energy expenditure by the doubly labelled water method in professional soccer players. J. Sports Sci. 2002, 20, 391–397. [Google Scholar] [CrossRef]
- Briggs, M.A.; Cockburn, E.; Rumbold, P.L.S.; Rae, G.; Stevenson, E.J.; Russell, M. Assessment of energy intake and energy expenditure of male adolescent academy-level soccer players during a competitive week. Nutrients 2015, 7, 8392–8401. [Google Scholar] [CrossRef]
- Ersoy, N.; Kalkan, I.; Ersoy, G. Assessment of nutrition status of Turkish elite young male soccer players in the pre-competition period. Prog. Nutr. 2019, 21, 12–18. [Google Scholar]
- Iglesias-Gutiérrez, E.; García-Rovés, P.M.; Rodríguez, C.; Braga, S.; García-Zapico, P.; Patterson, Á.M. Food habits and nutritional status assessment of adolescent soccer players. A necessary and accurate approach. Can. J. Appl. Physiol. 2005, 30, 18–32. [Google Scholar] [CrossRef]
- Rico-Sanz, J.; Frontera, W.R.; Molé, P.A.; Rivera, M.A.; Rivera-Brown, A.; Meredith, C.N. Dietary and performance assessment of elite soccer players during a period of intense training. Int. J. Sport Nutr. Exerc. Metab. 1998, 8, 230–240. [Google Scholar] [CrossRef]
- Russell, M.; Pennock, A. Dietary analysis of young professional soccer players for 1 week during the competitive season. J. Strength Cond. Res. 2011, 25, 1816–1823. [Google Scholar] [CrossRef]
- Malone, J.J.; Jaspers, A.; Helsen, W.; Merks, B.; Frencken, W.G.P.; Brink, M.S. Seasonal training load and wellness monitoring in a professional soccer goalkeeper. Int. J. Sports Physiol. Perform. 2018, 13, 672–675. [Google Scholar] [CrossRef]
- Maughan, R.J. Energy and macronutrient intakes of professional football (soccer) players. Br. J. Sports Med. 1997, 31, 45–47. [Google Scholar] [CrossRef]
- Devlin, B.L.; Leveritt, M.D.; Kingsley, M.; Belski, R. Dietary intake, body composition, and nutrition knowledge of Australian football and soccer players: Implications for sports nutrition professionals in practice. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 130–138. [Google Scholar] [CrossRef]
- Bettonviel, A.; Brinkmans, N.; Russcher, K.; Wardenaar, F.; Witard, O. Nutritional Status and Daytime Pattern of Protein Intake on Match, Post-Match, Rest and Training Days in Senior Professional and Youth Elite Soccer Players. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Do Prado, W.; Botero, J.P.; Luiz, R.; Guerra, F.; Rodrigues, C.L.; Cuvello, L.C.; Dâmaso, A. Anthropometric profile and macronutrient intake in professional Brazilian soccer players according to their field positioning. Rev. Bras. Med. Do Esporte. 2006, 12, 52–55. [Google Scholar]
- Ono, M.; Kennedy, E.; Reeves, S.; Cronin, L. Nutrition and culture in professional football. A mixed method approach. Appetite 2012, 58, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Caccialanza, R.; Cameletti, B.; Cavallaro, G. Nutritional intake of young Italian high-level soccer players: Under-reporting is the essential outcome. J. Sport Sci. Med. 2007, 6, 538–542. [Google Scholar]
- Naughton, R.; Drust, B.; O’Boyle, A.; Morgans, R.; Abayomi, J.; Davies, I.; Morton, J.P.; Mahon, E. Daily distribution of carbohydrate, protein and fat intake in elite youth academy soccer players over a 7-day training period. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 473–480. [Google Scholar] [CrossRef]
- Ruiz, F.; Irazusta, A.; Gil, S.; Irazusta, J.; Casis, L.; Gil, J. Nutritional intake is soccer players of different ages. J. Sports Sci. 2005, 23, 235–242. [Google Scholar] [CrossRef]
- Bangsbo, J.; Norregaard, L.; Thorsoe, F. The effect of carbohydrate diet on intermittent exercise performance. Int. J. Sports Med. 1992, 13, 152–157. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M. Nutrition for soccer players. Curr. Sports Med. Rep. 2007, 6, 279–280. [Google Scholar]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.; Emmonds, S.; Jones, B.; Myers, T.D.; Clarke, N.D.; Lake, J.; Ellis, M.; Singleton, D.; Roe, G.; Till, K. Seasonal changes in physical qualities of elite youth soccer players according to maturity status: Comparisons with aged matched controls. Sci. Med. Footb. 2018, 2, 272–280. [Google Scholar] [CrossRef]
- Lloyd, R.; Radnor, J.; De Ste Croix, M.; Cronin, J.; Oliver, J. Change in sprint and jump performance after traditional, plyometric, and combined resistance training in male youth pre- and post-peak height velocity. J. Strength Cond. Res. 2016, 30, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Naughton, R.J.; Drust, B.; O’Boyle, A.; Abayomi, J.; Mahon, E.; Morton, J.P.; Davies, I.G. Free-sugar, total-sugar, fibre, and micronutrient intake within elite youth British soccer players: A nutritional transition from schoolboy to fulltime soccer player. Appl. Physiol. Nutr. Metab. 2017, 42, 517–522. [Google Scholar] [CrossRef]
- Steffl, M.; Kinkorova, I.; Kokstejn, J.; Petr, M. Macronutrient Intake in Soccer Players-A Meta-Analysis. Nutrients 2019, 11, 1305. [Google Scholar] [CrossRef]
- Balsom, P.D.; Wood, K.; Olsson, P.; Ekblom, B. Carbohydrate intake and multiple sprint sports: With special reference to football (soccer). Int. J. Sports Med. 1999, 20, 48–52. [Google Scholar] [CrossRef]
- Souglis, A.G.; Chryssanthopoulos, C.I.; Travlos, A.K.; Zorzou, A.E.; Gissis, I.T.; Papadopoulos, C.N.; Sotiropoulos, A.A. The effect of high vs. low carbohydrate diets on distances covered in soccer. J. Strength Cond. Res. 2013, 27, 2235–2247. [Google Scholar] [CrossRef]
- Bussau, V.A.; Fairchild, T.J.; Rao, A.; Steele, P.; Fournier, P.A. Carbohydrate loading in human muscle: An improved 1 day protocol. Eur. J. Appl Physiol. 2002, 87, 290–295. [Google Scholar] [CrossRef]
- Costill, D.L.; Pascoe, D.D.; Fink, W.J.; Robergs, R.A.; Barr, S.I.; Pearson, D. Impaired muscle glycogen resynthesis after eccentric exercise. J. Appl. Physiol. 1990, 69, 46–50. [Google Scholar] [CrossRef]
- Zehnder, M.; Muelli, M.; Buchli, R.; Kuehne, G.; Boutellier, U. Further glycogen decrease during early recovery after eccentric exercise despite a high carbohydrate intake. Eur. J. Nutr. 2004, 43, 148–159. [Google Scholar] [CrossRef]
- Burke, L.M.; Collier, G.R.; Hargreaves, M. Muscle glycogen storage after prolonged exercise: Effect of the glycemic index of carbohydrate feedings. J. Appl. Physiol. 1993, 75, 1019–1023. [Google Scholar] [CrossRef]
- Hson Nilsson, L. Liver Glycogen Content in Man in the Postabsorptive State. Scand. J. Clin. Lab. Inv. 1973, 32, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Wee, S.L.; Williams, C.; Tsintzas, K.; Boobis, L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J. Appl. Physiol. 2005, 99, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.; Mann, R.; Banister, K.; Fox, J.; Morris, P.G.; Macdonald, I.A.; Greenhaff, P.L. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. Am. J. Physiol. Endocrinol. Metab. 2000, 278, 65–75. [Google Scholar] [CrossRef]
- Malone, J.J.; Hulton, A.T.; MacLaren, D.P.M. Exogenous carbohydrate and regulation of muscle carbohydrate utilisation during exercise. Eur. J. Appl. Physiol. 2021, 121, 1255–1269. [Google Scholar] [CrossRef]
- Thomas, D.E.; Brotherhood, J.R.; Brand, J.C. Carbohydrate feeding before exercise: Effect of glycemic index. Int. J. Sports Med. 1991, 12, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.S.; Siu, P.M.; Lok, A.; Chen, Y.J.; Morris, J.; Lam, C.W. Effect of the glycaemic index of pre-exercise carbohydrate meals on running performance. Eur. J. Sport Sci. 2008, 8, 23–33. [Google Scholar] [CrossRef]
- DeMarco, H.M.; Sucher, K.P.; Cisar, C.J.; Butterfield, G.E. Pre-exercise carbohydrate meals: Application of glycemic index. Med. Sci. Sports Exerc. 1999, 31, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Chilibeck, P.D.; Ciona, D.; Vandenberg, A.; Zello, G.A. The effects of low- and high-glycemic index foods on high-intensity intermittent exercise. Int. J. Sports Physiol. Perform. 2009, 4, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Hulton, A.T.; Gregson, W.; Maclaren, D.; Doran, D.A. Effects of GI meals on intermittent exercise. Int. J. Sports Med. 2012, 33, 756–762. [Google Scholar] [CrossRef]
- Little, J.P.; Chilibeck, P.D.; Ciona, D.; Forbes, S.; Rees, H.; Vandenberg, A.; Zello, G.A. Effect of low- and high-glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Hulton, A.T.; Edwards, J.P.; Gregson, W.; Maclaren, D.; Doran, D.A. Effect of fat and CHO meals on intermittent exercise in soccer players. Int. J. Sports Med. 2013, 34, 165–169. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine; Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef]
- Phillips, S.M. A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med. 2014, 44 (Suppl. 1), 71–77. [Google Scholar] [CrossRef]
- Tipton, K.D.; Elliott, T.A.; Cree, M.G.; Aarsland, A.A.; Sanford, A.P.; Wolfe, R.R. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E71–E76. [Google Scholar] [CrossRef]
- Clarke, N.D.; Drust, B.; MacLaren, D.P.; Reilly, T. Strategies for hydration and energy provision during soccer-specific exercise. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 625–640. [Google Scholar] [CrossRef]
- Gant, N.; Ali, A.; Foskett, A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 191–197. [Google Scholar] [CrossRef]
- Duvnjak-Zaknich, D.M.; Dawson, B.T.; Wallman, K.E.; Henry, G. Effect of caffeine on reactive agility time when fresh and fatigued. Med. Sci. Sports Exerc. 2011, 43, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.; Noon, M.; Myers, T.; Clarke, N. Low Doses of Caffeine: Enhancement of Physical Performance in Elite Adolescent Male Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 569–575. [Google Scholar] [CrossRef]
- Foskett, A.; Ali, A.; Gant, N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef]
- Clarke, N.D.; Drust, B.; Maclaren, D.P.; Reilly, T. Fluid provision and metabolic responses to soccer-specific exercise. Eur. J. Appl. Physiol. 2008, 104, 1069–1077. [Google Scholar] [CrossRef]
- Burke, L.M.; Kiens, B.; Ivy, J.L. Carbohydrates and fat for training and recovery. J. Sports Sci. 2004, 22, 15–30. [Google Scholar] [CrossRef]
- Shirreffs, S.M.; Maughan, R.J. Volume repletion after exercise-induced volume depletion in humans: Replacement of water and sodium losses. Am. J. Physiol. 1998, 274, F868–F875. [Google Scholar] [CrossRef] [PubMed]
- Leiper, J.B.; Nicholas, C.W.; Ali, A.; Williams, C.; Maughan, R.J. The effect of intermittent high-intensity running on gastric emptying of fluids in man. Med. Sci. Sports Exerc. 2005, 37, 240–247. [Google Scholar] [CrossRef]
- Owen, J.A.; Kehoe, S.J.; Oliver, S.J. Influence of fluid intake on soccer performance in a temperate environment. J. Sports Sci. 2013, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, C.W.; Williams, C.; Lakomy, H.K.; Phillips, G.; Nowitz, A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J. Sports Sci. 1995, 13, 283–290. [Google Scholar] [CrossRef]
- Leatt, P.B.; Jacobs, I. Effect of glucose polymer ingestion on glycogen depletion during a soccer match. Can. J. Sport Sci. 1989, 14, 112–116. [Google Scholar]
- Baker, L.B.; Rollo, I.; Stein, K.W.; Jeukendrup, A.E. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance. Nutrients 2015, 14, 5733–5763. [Google Scholar] [CrossRef] [PubMed]
- Kirkendall, D.T.; Foster, C.; Dean, J.A.; Grogan, J.; Thompson, N.N. Effect of glucose polymer supplementation on performance of soccer players. In Science and Football: Proceedings of the First World Congress of Science and Football Liverpool; Reilly, T., Lees., A., Davids, K., Murphy, W.J., Eds.; E & FN SPON: New York, NY, USA, 1988. [Google Scholar]
- Zeederberg, C.; Leach, L.; Lambert, E.V.; Noakes, T.D.; Dennis, S.C.; Hawley, J.A. The effect of carbohydrate ingestion on the motor skill proficiency of soccer players. Int. J. Sport Nutr. 1996, 6, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.C.; Ferreira, D.; Caetano, C.; Granja, D.; Pinto, R.; Mendes, B.; Sousa, M. Nutrition and Supplementation in Soccer. Sports 2017, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Williams, C. Carbohydrate ingestion and soccer skill performance during prolonged intermittent exercise. J. Sports Sci. 2009, 27, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.D.; Stevenson, E.J.; Rollo, I.; Russell, M. The influence of a 12% carbohydrate-electrolyte beverage on self-paced soccer-specific exercise performance. J. Sci. Med. Sport. 2017, 20, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Benton, D.; Kingsley, M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J. Sci. Med. Sport. 2012, 15, 348–354. [Google Scholar] [CrossRef]
- Hulton, A.T.; Vitzel, K.; Doran, D.A.; MacLaren, D.P.M. Addition of Caffeine to a Carbohydrate Feeding Strategy Prior to Intermittent Exercise. Int. J. Sports Med. 2020, 41, 603–609. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; King, G.; Russell, M.; Lynn, A.; Russell, M. Effects of Caffeinated Gum on a Battery of Soccer-Specific Tests in Trained University-Standard Male Soccer Players. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Rollo, I.; Homewood, G.; Williams, C.; Carter, J.; Goosey-Tolfrey, V.L. The Influence of Carbohydrate Mouth Rinse on Self-Selected Intermittent Running Performance. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Katz, A.L.; Cutler, C.L.; Sherman, W.M.; Coyle, E.F. Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion. J. Appl. Physiol. 1988, 64, 1480–1485. [Google Scholar] [CrossRef]
- Wojtaszewski, J.F.; Nielsen, P.; Kiens, B.; Richter, E.A. Regulation of glycogen synthase kinase-3 in human skeletal muscle: Effects of food intake and bicycle exercise. Diabetes 2001, 50, 265–269. [Google Scholar] [CrossRef]
- Richter, E.A.; Mikines, K.J.; Galbo, H.; Kiens, B. Effect of exercise on insulin action in human skeletal muscle. J. Appl. Physiol. 1989, 66, 876–885. [Google Scholar] [CrossRef]
- Van Loon, L.J.; Kruijshoop, M.; Verhagen, H.; Saris, W.H.; Wagenmakers, A.J. Ingestion of protein hydrolysate and amino acid-carbohydrate mixtures increases postexercise plasma insulin responses in men. J. Nutr. 2000, 130, 2508–2513. [Google Scholar] [CrossRef] [PubMed]
- Witard, O.C.; Jackman, S.R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K.D. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am. J. Clin. Nutr. 2014, 99, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.W.; McGlory, C.; Phillips, S.M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front. Physiol. 2015, 6, 245. [Google Scholar] [CrossRef] [PubMed]
- Macnaughton, L.S.; Wardle, S.L.; Witard, O.C.; McGlory, C.; Hamilton, D.L.; Jeromson, S.; Lawrence, C.E.; Wallis, G.A.; Tipton, K.D. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol. Rep. 2016, 4, e12893. [Google Scholar] [CrossRef]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef]
- Halson, S.L. Nutrition, sleep and recovery. Eur. J. Sport Sci. 2008, 8, 119–126. [Google Scholar] [CrossRef]
- Roy, B.D. Milk: The new sports drink? A Review. J. Int. Soc. Sports Nutr. 2008, 2, 15. [Google Scholar] [CrossRef]
- Gunnarsson, T.P.; Bendiksen, M.; Bischoff, R.; Christensen, P.M.; Lesivig, B.; Madsen, K.; Stephens, F.; Greenhaff, P.; Krustrup, P.; Bangsbo, J. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game. Scand. J. Med. Sci. Sports. 2013, 23, 508–515. [Google Scholar] [CrossRef]
- Asp, S.; Daugaard, J.R.; Richter, E.A. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J. Physiol. 1995, 482 Pt 3, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Asp, S.; Daugaard, J.R.; Kristiansen, S.; Kiens, B.; Richter, E.A. Eccentric exercise decreases maximal insulin action in humans: Muscle and systemic effects. J. Physiol. 1996, 494 Pt 3, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.M.; Noble, E.G.; Hayden, D.B.; Taylor, A.W. Simple and complex carbohydrate-rich diets and muscle glycogen content of marathon runners. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 70–74. [Google Scholar] [CrossRef] [PubMed]
Energy Intake | Energy Expenditure | |||||||
---|---|---|---|---|---|---|---|---|
Reference | Study Population | Age/BM | Period | Method | kcal·day | kcal·kg·day | kcal·day | kcal·kg·day |
Senior Soccer Players | ||||||||
Anderson et al. [39] | EPL Professional Players (n = 6) | 27 ± 3 years 80.5 ± 8.7 kg | 7-day In-Season | In—Food Diary Ex—DLW | T = 2956 ± 374 M = 3789 ± 532 | T = 36.7 M = 47.1 | 3566 ± 585 (overall T + M) | 44.2 (overall T + M) |
Anderson et al. [75] | EPL Goalkeeper (n = 1) | 27 years 85.6 kg | 7-day In-Season | In—Food Diary Ex—DLW | 3160 ± 381 (overall T + M) | 36.9 (overall T + M) | 2894 (overall T + M) | 33.8 (overall T + M) |
Bangsbo et al. [84] | Danish Professional Players (n = 7) | 20–28 years 62.7–85.9 kg | 3-day In-Season | In—Food Diary Ex—n/a | 3749 (overall T + M) | 49.2 (overall T + M) | - | - |
Bettonviel et al. [85] | Dutch Eredivsie Professional Players (n = 29) | 20 ± 4 years 73 ± 8 kg | 4-day In-Season | In—24 h Recall Ex—n/a | 2988 ± 583 (overall T + M) | 40.9 (overall T + M) | - | - |
Brinkmans et al. [75] | Dutch Eredivsie Professional Players (n = 41) | 23 ± 4 years 77.6 ± 8.0 kg | 14-day In-Season | In—24 h Recall Ex—DLW | T = 2637 ± 823 M = 3114 ± 978 R = 2510 ± 740 | T = 33.9 ± 10.6 M = 40.1 ± 12.6 R = 32.3 ± 9.5 | 3285 ± 354 (overall T + M) | 42.4 ± 3.5 (overall T + M) |
Devlin et al. [83] | Australian Professional Players (n = 18) | 27 ± 5 years 75.6 ± 5.6 kg | 1-day Pre-Season | In—24 h Recall Ex—n/a | T = 2247 ± 550 | T = 29.7 | - | - |
do Prado et al. [86] | Brazilian Professional Players (n = 118) | 23 ± 1 years GK (n = 12) 83.9 kg CD (n = 20) 83.9 kg WD (n = 21) 69.7 kg MID (n = 41) 70.8 kg ST (n = 24) 72.1 kg | Habitual Food Inquiry | In—Interviews Ex—n/a | GK: 3903 CD: 2961 WD: 3361 MID: 2989 ST: 3641 (overall T + M) | - | - | - |
Ebine et al. [76] | Japanese Professional Players (n = 7) | 22 ± 2 years 69.8 ± 4.7 kg | 7-day In-Season | In—Food Diary Ex—DLW | 3113 ± 581 (overall T + M) | 44.6 (overall T + M) | 3532 ± 408 (overall T + M) | 50.6 (overall T + M) |
Jacobs et al. [24] | Swedish Professional Players (n = 15) | 20–30 years 68–92 kg | 3-day In-Season | In—Food Diary Ex—n/a | 4947 ± 1126 (recovery post-M) | 67.3 (recovery post-M) | - | - |
Maughan [87] | Scottish Professional Players (n = 51) | Team A = 26 ± 4 years 80.1 ± 7.8 kg Team B = 23 ± 4 years 74.6 ± 6.5 kg | 7-day In-Season | In—Food Diary Ex—n/a | Team A = 2629 ± 621 Team B = 3059 ± 526 (overall T + M) | Team A = 32.8 Team B = 41.0 (overall T + M) | - | - |
Ono et al. [88] | EPL and League One Players (n = 24) | n/a | 4-day In-Season | In—Food Diary Ex—n/a | 2648–4606 (period n/a) | - | - | - |
Adolescent Soccer Players | ||||||||
Briggs et al. [78] | EPL Academy Players (n = 10) | 15 ± 0 years 57.8 ± 7.8 kg | 7-day In-Season | In—Food Diary Ex—ACC | 2245 ± 321 (overall T + M) | 38.8 (overall T + M) | 2552 ± 245 (overall T + M) | 44.2 (overall T + M) |
Caccialanza et al. [89] | Italian Serie A Academy Players (n = 43) | 16 ± 1 years 69.8 ± 7.4 kg | 4-day In-Season | In—Food Diary Ex—n/a | T = 2560 ± 636 | T = 37.2 | - | - |
Ersoy et al. [79] | Turkish Academy Players (n = 26) | 16 ± 1 years 67.3 ± 5.9 kg | 3-day Pre-Season | In—Food Diary Ex—EQ | T = 3225 ± 692 | T = 47.9 | T = 3322 ± 240 | T = 49.4 |
Hannon et al. [34] | EPL U12/13 Academy (n = 8) | 12 ± 0 years 43.0 ± 4.8 kg | 14-day In-Season | In—Photo Ex—DLW | 2659 ± 187 (overall T + M) | 63.0 ± 8.0 (overall T + M) | 2859 ± 265 (overall T + M) | 66.5 (overall T + M) |
Hannon et al. [34] | EPL U15 Academy (n = 8) | 15 ± 0 years 56.8 ± 6.2 kg | 14-day In-Season | In—Photo Ex—DLW | 2821 ± 338 (overall T + M) | 50.0 ± 7.0 (overall T + M) | 3029 ± 262 (overall T + M) | 53.3 (overall T + M) |
Hannon et al. [34] | EPL U18 Academy (n = 8) | 18 ± 0 years 73.1 ± 8.1 | 14-day In-Season | In—Photo Ex—DLW | 3180 ± 279 (overall T + M) | 44.0 ± 7.0 (overall T + M) | 3586 ± 487 (overall T + M) | 49.1 (overall T + M) |
Iglesias-Gutiérrez et al. [80] | Spanish Academy Players (n = 33) | 14–16 years 65.1 kg | 6-day In-Season | In—Food Diary Ex—EQ | T = 3003 | T = 46.5 | T = 2983 | T = 45.8 |
Naughton et al. [90] | EPL U13/14 Academy (n = 21) | 13 ± 1 years 44.7 ± 7.2 kg | 7-day In-Season | In—Food Diary Ex—n/a | T = 1903 ± 432 | T = 43.1 ± 10.3 | - | - |
Naughton et al. [90] | EPL U15/16 Academy (n = 25) | 14 ± 1 years 60.4 ± 8.1 kg | 7-day In-Season | In—Food Diary Ex—n/a | T = 1927 ± 317 | T = 32.6 ± 7.9 | - | - |
Naughton et al. [90] | EPL U18 Academy (n = 13) | 16 ± 1 years 70.6 ± 7.6 kg | 7-day In-Season | In—Food Diary Ex—n/a | T = 1958 ± 390 | T = 28.1 ± 6.8 | - | - |
Rico-Sanz et al. [81] | Puerto Rican Olympic Team (n = 8) | 17 ± 2 years 63.4 ± 3.1 kg | 12-day In-Season | In—Food Diary Ex—EQ | T = 3952 ± 1071 | T = 62 ± 12 | T = 3833 ± 571 | T = 60.5 |
Ruiz et al. [91] | Basque Club Players (n = 81) | Team A = 14 ± 0 years 62.8 ± 2.2 kg Team B = 15 ± 0 years 66.7 ± 2.3 kg Team C = 17 ± 0 years 73.6 ± 0.8 kg Team D = 21 ± 0 years 72.9 ± 1.2 kg | 3-day In-Season | In—Food Diary Ex—n/a | Team A = T = 3456 ± 309 Team B = T = 3418 ± 182 Team C = T = 3478 ± 223 Team D = T = 3030 ± 141 | Team A = T = 54.6 ± 5.5 Team B = T = 51.5 ± 2.5 Team C = T = 48.4 ± 2.4 Team D = T = 41.1 ± 2.1 | - | - |
Russell and Pennock [82] | English Championship Academy (n = 10) | 17 ± 1 yrs 67.5 ± 1.8 kg | 7-day In-Season | In—Food Diary Ex—EQ | 2831 ± 164 (overall T + M) | 41.9 (overall T + M) | 3618 ± 61 (overall T + M) | 53.6 (overall T + M) |
Meal | Food Source | Amount | Amount of CHO |
---|---|---|---|
Breakfast Total—88.1 g (1.2 g kg CHO) | Cereal—Weetabix (with milk) | 37 g (135 mL) | 31.6 g |
Toast—2 slices (with flora light) | 60 g (14 g) | 31.0 g | |
Fruit cocktail (in juice) | 100 g | 11.7 g | |
Fresh Orange (glass) | 160 mL | 14.1 g | |
Poached eggs × 2 | 100 g | 0 g | |
Lunch Total—156.6 g (2.1 g kg CHO) | Rice | 160 g | 50.4 g |
Sweet and sour chicken | 160 g | 9.4 g | |
Broccoli | 85 g | 3 g | |
Green beans | 60 g | 2.3 g | |
Apple crumble & Custard | 150 g 100 g | 68.4 g | |
Fresh Apple juice (tall tumbler) | 300 mL | 23.1 g | |
Dinner Total—152 g (2 g kg CHO) | Mashed potato | 300 g | 41.4 g |
Salmon (white wine sauce) | 210 g (121 g) | 6.4 g | |
Carrots | 90 g | 5.2 g | |
Broccoli | 85 g | 3 g | |
Peas | 80 g | 7.4 g | |
Strawberry (1 cup) & meringue (×2) | 160 g/32 g | 39.1 g | |
Ice cream | 35 g | 7.4 g | |
CHO-electrolyte drink | 500 mL | 31.5 g | |
Drinks/Snacks Total—72.3 g (0.96 g kg CHO) | Slice of fruit cake/loaf | 77 g | 40.8 g |
CHO-electrolyte drink | 500 mL | 31.5 g | |
Total CHO Intake | 459 g (6.1 g·kg−1 CHO) |
High Glycaemic Index Meal (GI = 80) [114] | CHO (g) | Protein (g) | Fat (g) | Energy (kcal) | ||||
Akash rice (63 g) | Chicken Breast (100 g) | Tomato based sauce (300 g) | Lucozade Original (380 mL) | Water (210 mL) | 138.8 | 35.7 | 23 | 870.3 |
Low Glycaemic Index Meal (GI = 44) [114] | CHO (g) | Protein (g) | Fat (g) | Energy (kcal) | ||||
Brown basmati rice (63 g) | Chicken Breast (100 g) | Tomato based sauce (300 g) | Apple Juice (590 mL) | 133.7 | 37.9 | 23.7 | 866.3 | |
High Fat Meal [116] | CHO (g) | Protein (g) | Fat (g) | Energy (kcal) | ||||
Egg fried rice (75 g) | Chicken breast (100 g) | Korma sauce (200 g) | Milkshake (200 mL) | Double cream (50 mL) | 59.4 | 35.3 | 70.2 | 995.6 |
CHANGING ROOM | POST-MATCH MEAL | |||
---|---|---|---|---|
Player | Substitute | Player | Substitute | |
FLUIDS | 1 L CHO-electrolyte OR 1 L CHO-protein shake | 300 mL protein shake (no CHO) Water | Fresh fruit juice | Water |
MAIN MEAL | Baked wedges Pizza slices Sushi Chicken goujons & dip Prawn goujons & dip Sliced frittata | Chicken goujons + dip Prawn goujons & dip Sliced omelette Chicken Kebab | Pasta meal Curry, rice & naan Sweet & sour meal Chicken kebab & rice Paella Cottage pie Salmon/cod/tuna steak, vegetables & mashed potato Frittata & fries Jerk chicken, rice & peas | Chicken or beef salad Prawn stir fry Chicken kebab with salad Bolognaise & Courgetti Omelette & beans Roast meat & vegetables Salmon/cod/tuna steak & roasted vegetables |
DESSERT | Meringue Fresh pineapple slices | Apple slices | Sticky toffee pudding Banoffee pie Fruit crumble Eton mess | No Dessert |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulton, A.T.; Malone, J.J.; Clarke, N.D.; MacLaren, D.P.M. Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients 2022, 14, 657. https://doi.org/10.3390/nu14030657
Hulton AT, Malone JJ, Clarke ND, MacLaren DPM. Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients. 2022; 14(3):657. https://doi.org/10.3390/nu14030657
Chicago/Turabian StyleHulton, Andrew T., James J. Malone, Neil D. Clarke, and Don P. M. MacLaren. 2022. "Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice" Nutrients 14, no. 3: 657. https://doi.org/10.3390/nu14030657
APA StyleHulton, A. T., Malone, J. J., Clarke, N. D., & MacLaren, D. P. M. (2022). Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients, 14(3), 657. https://doi.org/10.3390/nu14030657