Validating Accuracy of a Mobile Application against Food Frequency Questionnaire on Key Nutrients with Modern Diets for mHealth Era
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Modern Human Diets
2.2. Dietary Measures and Nutrient Intakes
2.3. Data Analysis
3. Results
3.1. Agreement and Difference: The Bland and Altman Method
3.2. Predictive Modeling for the Difference of Mobile App against FFQ: Generalized Regression Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bruins, M.J.; Van Dael, P.; Eggersdorfer, M. The role of nutrients in reducing the risk for noncommunicable diseases during aging. Nutrients 2019, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Bin, P.; Wang, T.; Ren, W.; Zhong, J.; Liang, J.; Hu, C.-A.A.; Zeng, Z.; Yin, Y. DNA methylation and the potential role of methyl-containing nutrients in cardiovascular diseases. Oxid. Med. Cell. Longev. 2017, 2017, 1670815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.M.; Ali, M.M. Methyl donor micronutrients that modify DNA methylation and cancer outcome. Nutrients 2019, 11, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiao, S.P.K.; Grayson, J.; Lie, A. Personalized nutrition—Genes, diet, and related interactive parameters as predictors of cancer in multiethnic colorectal cancer families. Nutrients 2018, 10, 795. [Google Scholar] [CrossRef] [Green Version]
- Cappuccilli, M.; Bergamini, C.; Giacomelli, F.A.; Cianciolo, G.; Donati, G.; Conte, D.; Natali, T.; La Manna, G.; Capelli, I. Vitamin B Supplementation and Nutritional Intake of Methyl Donors in Patients with Chronic Kidney Disease: A Critical Review of the Impact on Epigenetic Machinery. Nutrients 2020, 12, 1234. [Google Scholar] [CrossRef]
- Zeng, J.; Gu, Y.; Fu, H.; Liu, C.; Zou, Y.; Chang, H. Association between one-carbon metabolism-related vitamins and risk of breast cancer: A systematic review and meta-analysis of prospective studies. Clin. Breast Cancer 2020, 20, e469–e480. [Google Scholar] [CrossRef]
- Mertens, E.; Kuijsten, A.; Dofková, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Favret, S.; Havard, S.; Trolle, E. Geographic and socioeconomic diversity of food and nutrient intakes: A comparison of four European countries. Eur. J. Nutr. 2019, 58, 1475–1493. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Micha, R.; Li, Y.; Mozaffarian, D. Trends in food sources and diet quality among US children and adults, 2003–2018. JAMA Netw. Open 2021, 4, e215262. [Google Scholar] [CrossRef]
- Van Horn, L.; Cornelis, M.C. US Dietary Guidance-Is it working? JAMA 2019, 322, 1150–1151. [Google Scholar] [CrossRef]
- Mullins, V.A.; Bresette, W.; Johnstone, L.; Hallmark, B.; Chilton, F.H. Genomics in personalized nutrition: Can you “eat for your genes”? Nutrients 2020, 12, 3118. [Google Scholar] [CrossRef]
- Ferguson, L.R.; De Caterina, R.; Görman, U.; Allayee, H.; Kohlmeier, M.; Prasad, C.; Choi, M.S.; Curi, R.; De Luis, D.A.; Gil, Á. Guide and position of the international society of nutrigenetics/nutrigenomics on personalised nutrition: Part 1-fields of precision nutrition. Lifestyle Genom. 2016, 9, 12–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiao, S.P.K.; Grayson, J.; Lie, A. Predictors of healthy eating index and glycemic index in multiethnic colorectal cancer families. Nutrients 2018, 10, 674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Health (NIH). Nutrient Recommendations: Dietary Reference Intakes (DRI). Available online: https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx (accessed on 1 April 2018).
- Myte, R.; Gylling, B.; Schneede, J. Components of one-carbon metabolism other than folate and colorectal cancer risk. Epidemiology 2016, 27, 787–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niculescu, M.D.; Zeisel, S.H. Diet, methyl donors and DNA methylation: Interactions between dietary folate, methionine and choline. J. Nutr. 2002, 132, 2333S–2335S. [Google Scholar] [CrossRef]
- Amenyah, S.D.; Hughes, C.F.; Ward, M.; Rosborough, S.; Deane, J.; Thursby, S.-J.; Walsh, C.P.; Kok, D.E.; Strain, J.; McNulty, H. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults-a systematic review and meta-analysis. Nutr. Rev. 2020, 78, 647–666. [Google Scholar] [CrossRef]
- Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 2012, 23, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Bouchard-Mercier, A.; Paradis, A.-M.; Rudkowska, I.; Lemieux, S.; Couture, P.; Vohl, M.-C. Associations between dietary patterns and gene expression profiles of healthy men and women: A cross-sectional study. Nutr. J. 2013, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Palacios, C.; Trak, M.A.; Betancourt, J.; Joshipura, K.; Tucker, K.L. Validation and reproducibility of a semi-quantitative FFQ as a measure of dietary intake in adults from Puerto Rico. Public Health Nutr. 2015, 18, 2550–2558. [Google Scholar] [CrossRef]
- Kowalkowska, J.; Slowinska, M.A.; Slowinski, D.; Dlugosz, A.; Niedzwiedzka, E.; Wadolowska, L. Comparison of a full food-frequency questionnaire with the three-day unweighted food records in young Polish adult women: Implications for dietary assessment. Nutrients 2013, 5, 2747–2776. [Google Scholar] [CrossRef] [Green Version]
- Pakseresht, M.; Sharma, S. Validation of a quantitative food frequency questionnaire for Inuit population in Nunavut, Canada. J. Hum. Nutr. Diet 2010, 23, 67–74. [Google Scholar] [CrossRef]
- Ye, Q.; Hong, X.; Wang, Z.; Yang, H.; Chen, X.; Zhou, H.; Wang, C.; Lai, Y.; Sun, L.; Xu, F. Reproducibility and validity of an FFQ developed for adults in Nanjing, China. Br. J. Nutr. 2016, 115, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Zack, R.M.; Irema, K.; Kazonda, P.; Leyna, G.H.; Liu, E.; Gilbert, S.; Lukmanji, Z.; Spiegelman, D.; Fawzi, W.; Njelekela, M. Validity of an FFQ to measure nutrient and food intakes in Tanzania. Public Health Nutr. 2018, 21, 2211–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athanasiadou, E.; Kyrkou, C.; Fotiou, M.; Tsakoumaki, F.; Dimitropoulou, A.; Polychroniadou, E.; Menexes, G.; Athanasiadis, A.P.; Biliaderis, C.G.; Michaelidou, A.-M. Development and validation of a Mediterranean oriented culture-specific semi-quantitative food frequency questionnaire. Nutrients 2016, 8, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, C.E.; Burrows, T.L.; Rollo, M.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Hutchesson, M.J. The comparative validity and reproducibility of a diet quality index for adults: The Australian Recommended Food Score. Nutrients 2015, 7, 785–798. [Google Scholar] [CrossRef] [Green Version]
- Fallaize, R.; Forster, H.; Macready, A.L.; Walsh, M.C.; Mathers, J.C.; Brennan, L.; Gibney, E.R.; Gibney, M.J.; Lovegrove, J.A. Online dietary intake estimation: Reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J. Med. Internet Res. 2014, 16, e3355. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, P.P.; Woodrow, J.; Zhu, Y.; Roebothan, B.; Mclaughlin, J.R.; Parfrey, P.S. Dietary patterns and colorectal cancer: Results from a Canadian population-based study. Nutr. J. 2015, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Beck, K.L.; Houston, Z.L.; McNaughton, S.A.; Kruger, R. Development and evaluation of a food frequency questionnaire to assess nutrient intakes of adult women in New Zealand. Nutr. Diet. 2020, 77, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.I.; Bromage, S.; Mostofa, M.; Allen, J.; Oken, E.; Kile, M.L.; Christiani, D.C. Validation of a dish-based semiquantitative food questionnaire in rural Bangladesh. Nutrients 2017, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.J.; Sampson, L.; Cho, E.; Hughes, M.D.; Hu, F.B.; Willett, W.C. Comparison of methods to account for implausible reporting of energy intake in epidemiologic studies. Am. J. Epidemiol. 2015, 181, 225–233. [Google Scholar] [CrossRef]
- Medicine LibreTexts. Diets around the World. Available online: https://med.libretexts.org/@go/page/21470 (accessed on 1 April 2020).
- Waldfogel, J. Dining out as cultural trade. J. Cult. Econ. 2019, 44, 1–30. [Google Scholar] [CrossRef]
- Kupka, R.; Siekmans, K.; Beal, T. The diets of children: Overview of available data for children and adolescents. Glob. Food Sec. 2020, 27, 100442. [Google Scholar] [CrossRef]
- Li, L.; Sun, N.; Zhang, L.; Xu, G.; Liu, J.; Hu, J.; Zhang, Z.; Lou, J.; Deng, H.; Shen, Z. Fast food consumption among young adolescents aged 12–15 years in 54 low-and middle-income countries. Glob. Health Action 2020, 13, 1795438. [Google Scholar] [CrossRef] [PubMed]
- Abikusno, N. Importance of nutrition and lifestyle for elderly during the COVID-19 pandemic. J. Biomedika Kesehat. 2020, 3, 109–111. [Google Scholar] [CrossRef]
- Batchelor-Murphy, M.K.; Steinberg, F.M.; Young, H.M. Dietary and feeding modifications for older adults. Am. J. Nurs. 2019, 119, 49–57. [Google Scholar] [CrossRef]
- Salomonsen, S.J.C.; Berland, A.; Bentsen, S.B. High-energy smoothies for patients in nursing homes. Nor. J. Clin. Nurs. Sykepl. Forsk. 2017, 12, e-62986. [Google Scholar] [CrossRef]
- Stoker, D.; Durward, C. Smoothies-Helpful or Harmful? Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2856&context=extension_curall (accessed on 1 April 2021).
- Gellrich, N.C.; Handschel, J.; Holtmann, H.; Krüskemper, G. Oral cancer malnutrition impacts weight and quality of life. Nutrients 2015, 7, 2145–2160. [Google Scholar] [CrossRef]
- Malinowska, A.M.; Mlodzik-Czyzewska, M.A.; Chmurzynska, A. Dietary patterns associated with obesity and overweight: When should misreporters be included in analysis? Nutrition 2000, 70, 110605. [Google Scholar] [CrossRef]
- Zhang, C.M.; Zhao, W.Y.; Gao, A.X.; Su, T.T.; Wang, Y.K.; Zhang, Y.Q.; Zhou, X.B.; He, X.H. How could agronomic biofortification of rice be an alternative strategy with higher cost-effectiveness for human iron and zinc deficiency in China? Food Nutr. Bull. 2018, 39, 246–259. [Google Scholar] [CrossRef] [Green Version]
- GB Health Watch. Available online: https://www.gbhealthwatch.com/ (accessed on 1 June 2021).
- Saravia, L.; Miguel-Berges, M.L.; Iglesia, I.; Nascimento-Ferreira, M.V.; Perdomo, G.; Bove, I.; Slater, B.; Moreno, L.A. Relative validity of FFQ to assess food items, energy, macronutrient and micronutrient intake in children and adolescents: A systematic review with meta-analysis. Br. J. Nutr. 2020, 18, 1–27. [Google Scholar] [CrossRef]
- Sierra-Ruelas, É.; Bernal-Orozco, M.F.; Macedo-Ojeda, G.; Márquez-Sandoval, Y.F.; Altamirano-Martínez, M.B.; Vizmanos, B. Validation of semiquantitative FFQ administered to adults: A systematic review. Public Health Nutr. 2020, 24, 1–20. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding bland altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twomey, P.J. How to use difference plots in quantitative method comparison studies. Ann. Clin. Biochem. 2006, 43, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Harmouche-Karaki, M.; Mahfouz, M.; Obeyd, J.; Salameh, P.; Mahfouz, Y.; Helou, K. Development and validation of a quantitative food frequency questionnaire to assess dietary intake among Lebanese adults. Nutr. J. 2020, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. Fitting Linear Models, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Cheng, H.; Garrick, D.J.; Fernando, R.L. Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction. J. Anim. Sci. Biotechnol. 2017, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiners, F.; Sturm, J.; Bouw, L.J.; Wouters, E.J. Sociodemographic factors influencing the use of eHealth in people with chronic diseases. Int. J. Environ. Res. Public Health 2019, 16, 645. [Google Scholar] [CrossRef] [Green Version]
- Rollo, M.E.; Haslam, R.L.; Collins, C.E. Impact on dietary intake of two levels of technology-assisted personalized nutrition: A randomized trial. Nutrients 2020, 12, 3334. [Google Scholar] [CrossRef]
- Mandracchia, F.; Llauradó, E.; Tarro, L.; Del Bas, J.M.; Valls, R.M.; Pedret, A.; Radeva, P.; Arola, L.; Solà, R.; Boqué, N. Potential use of mobile phone applications for self-monitoring and increasing daily fruit and vegetable consumption: A systematized review. Nutrients 2019, 11, 686. [Google Scholar] [CrossRef] [Green Version]
- El Khoury, C.F.; Karavetian, M.; Halfens, R.J.; Crutzen, R.; Khoja, L.; Schols, J.M. The effects of dietary mobile apps on nutritional outcomes in adults with chronic diseases: A systematic review and meta-analysis. J. Acad. Nutr. Diet. 2019, 119, 626–651. [Google Scholar] [CrossRef]
- Zmora, N.; Elinav, E. Harnessing smartphones to personalize nutrition in a time of global pandemic. Nutrients 2021, 13, 422. [Google Scholar] [CrossRef]
- Mayordomo-Martínez, D.; Carrillo-de-Gea, J.M.; García-Mateos, G.; García-Berná, J.A.; Fernández-Alemán, J.L.; Rosero-López, S.; Parada-Sarabia, S.; García-Hernández, M. Sustainable accessibility: A mobile app for helping people with disabilities to search accessible shops. Int. J. Environ. Res. Public Health 2019, 16, 620. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). eHealth at WHO. Available online: https://www.who.int/ehealth/about/en/ (accessed on 1 April 2021).
- Svensson, Å.; Larsson, C. A mobile phone app for dietary intake assessment in adolescents: An evaluation study. JMIR Mhealth Uhealth 2015, 3, e4804. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-E.; Song, S.; Ahn, J.S.; Kim, Y.; Lee, J.E. Use of a mobile application for self-monitoring dietary intake: Feasibility test and an intervention study. Nutrients 2017, 9, 748. [Google Scholar] [CrossRef] [PubMed]
- Badawy, S.M.; Kuhns, L.M. Texting and mobile phone app interventions for improving adherence to preventive behavior in adolescents: A systematic review. JMIR Mhealth Uhealth 2017, 5, e50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bzikowska-Jura, A.; Sobieraj, P.; Raciborski, F. Low Comparability of Nutrition-Related Mobile Apps against the Polish Reference Method—A Validity Study. Nutrients 2021, 13, 2868. [Google Scholar] [CrossRef] [PubMed]
- Mistura, L.; Comendador Azcarraga, F.J.; D’Addezio, L.; Martone, D.; Turrini, A. An Italian case study for assessing nutrient intake through nutrition-related mobile apps. Nutrients 2021, 13, 3073. [Google Scholar] [CrossRef] [PubMed]
- Lemacks, J.L.; Adams, K.; Lovetere, A. Dietary intake reporting accuracy of the bridge2u mobile application food log compared to control meal and dietary recall methods. Nutrients 2019, 11, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiao, S.P.K.; Grayson, J.; Yu, C.H. Gene environment interactions and predictors of colorectal cancer in family-based, multi-ethic groups. J. Pers. Med. 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. Overview of the Generalized Regression Personality. Available online: https://www.jmp.com/support/help/en/16.0/index.shtml#page/jmp/overview-of-the-generalized-regression-personality.shtml (accessed on 27 June 2021).
- Alemao, C.A.; Budden, K.F.; Gomez, H.M.; Rehman, S.F.; Marshall, J.E.; Shukla, S.D.; Donovan, C.; Forster, S.C.; Yang, I.A.; Keely, S. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy 2021, 76, 714–734. [Google Scholar] [CrossRef]
- Alexander, M.; Turnbaugh, P.J. Deconstructing mechanisms of diet-microbiome-immune interactions. Immunity 2020, 53, 264–276. [Google Scholar] [CrossRef]
- Patterson, R.E.; Kristal, A.R.; Tinker, L.F.; Carter, R.A.; Bolton, M.P.; Agurs-Collins, T. Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann. Epidemiol. 1999, 9, 178–187. [Google Scholar] [CrossRef]
- Beaton, E.; Wright, J.; Devenish, G.; Do, L.; Scott, J. Relative validity of a 24-h recall in assessing intake of key nutrients in a cohort of Australian toddlers. Nutrients 2018, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutrition Coordinating Center. Nutrition Data System for Research; University of Minnesota: Minneapolis, MN, USA, 2014; Available online: http://www.ncc.umn.edu/food-and-nutrient-database/ (accessed on 1 April 2020).
- Krebs, P.; Duncan, D.T. Health app use among US mobile phone owners: A national survey. JMIR Mhealth Uhealth 2015, 3, e4924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grayson, J.; Gardner, S.; Stephens, M. Building Better Models with JMP®Pro; SAS Press: Cary, NC, USA, 2015. [Google Scholar]
- Klimberg, R.; McCullough, B.D. Fundamentals of Predictive Analytics with JMP, 2nd ed.; SAS Press: Cary, NC, USA, 2016. [Google Scholar]
- National Coalition for Health Professional Education in Genetics. Family History Educational Aids; National Coalition for Health Professional Education in Genetics: Washington, DC, USA, 2010; Available online: http://www.nchpeg.org/index.php?option=com_content&view=article&id=145&Itemid=64 (accessed on 1 October 2018).
- Wu, Y. Elastic net for Cox’s proportional hazards model with a solution path algorithm. Stat. Sin. 2012, 22, 27–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkkilä, A.T.; Järvinen, R.; Karvonen, H.; Keronen, L.; Tuppurainen, M.T. Validation of a semi-quantitative FFQ using food records as a reference in older women in the Kuopio Fracture Prevention Study (OSTPRE-FPS). Public Health Nutr. 2012, 15, 635–639. [Google Scholar] [CrossRef]
Parameters | % Difference M ± SD | FFQ M ± SD | Mobile M ± SD | SE | ± 2 SD% | r ** |
---|---|---|---|---|---|---|
Calories (kcal) | −5.34 ** ± 16.42 | 1332 ± 904.4 | 1201 ± 8464 | 1.41 | 94.81 | 0.86 |
<1000 (N = 54) | −0.88 ± 16.87 | 748.3 ± 170.4 | 730.3 ± 182.1 | 2.30 | 94.44 | 0.54 |
1000–2000 (N = 63) | −7.08 ** ± 11.46 | 1297 ± 290.4 | 1180 ± 365.4 | 1.44 | 94.33 | 0.78 |
>2000 (N = 18) | −12.63 * ± 25.09 | 3206 ± 1114 | 2685 ± 1421 | 5.91 | 88.89 | 0.64 |
Carbohydrate (g) | 4.55 ** ± 19.58 | 169.4 ± 132.0 | 176.8 ± 134.7 | 1.68 | 91.85 | 0.85 |
Protein (g) | −9.80 ** ± 12.27 | 54.84 ± 36.21 | 46.71 ± 32.88 | 1.06 | 94.81 | 0.87 |
Fat (g) | −17.55 ** ± 15.08 | 50.80 ± 34.29 | 37.20 ± 29.35 | 1.30 | 94.07 | 0.87 |
Sat Fat (g) | −17.69 ** ± 15.99 | 15.32 ± 10.72 | 11.37 ± 9.28 | 1.38 | 95.56 | 0.88 |
Cholesterol (mg) | −10.26 ** ± 13.37 | 197.8 ± 131.2 | 172.4 ± 121.6 | 1.15 | 95.56 | 0.91 |
Fiber (g) | 11.39 ** ± 24.03 | 15.97 ± 16.65 | 18.19 ± 18.73 | 2.07 | 93.33 | 0.85 |
Thiamin (mg) | 2.46 ± 15.59 | 1.08 ± 0.70 | 1.11 ± 0.72 | 1.34 | 94.81 | 0.86 |
Riboflavin (mg) | −1.75 ± 15.11 | 1.27 ± 0.83 | 1.23 ± 0.80 | 1.30 | 93.33 | 0.86 |
Niacin (mg) | −0.91 ± 16.35 | 14.63 ± 9.93 | 14.16 ± 10.30 | 1.41 | 91.85 | 0.87 |
Pyridoxine (mg) | 3.29 * ± 19.29 | 1.52 ± 1.29 | 1.58 ± 1.40 | 1.66 | 93.33 | 0.84 |
Folate (mcg) | 3.24 * ± 18.78 | 290.7 ± 209.4 | 298.9 ± 214.2 | 1.62 | 93.33 | 0.85 |
Cobalamin (mcg) | −18.86 ** ± 14.92 | 3.71 ± 2.10 | 2.69 ± 1.54 | 1.28 | 94.07 | 0.83 |
Methionine (g) | −11.90 ** ± 12.93 | 1.23 ± 0.81 | 1.01 ± 0.74 | 1.11 | 92.59 | 0.88 |
Choline (mg) | −6.23 ** ± 15.42 | 266.4 ± 176.4 | 237.7 ± 160.4 | 1.33 | 94.07 | 0.86 |
Glycine (g) | −12.13 ** ± 14.55 | 2.31 ± 1.58 | 1.89 ± 1.44 | 1.25 | 92.59 | 0.87 |
Vitamin A (IU) | 35.19 ** ± 29.40 | 11,037 ± 14,343 | 16,238 ± 16,359 | 2.53 | 97.04 | 0.87 |
Vitamin C (mcg) | 18.27 ** ± 30.07 | 123.4 ± 137.5 | 148.2 ± 165.8 | 2.59 | 92.59 | 0.86 |
Vitamin D (mcg) | −6.18 ** ± 12.81 | 4.38 ± 2.42 | 3.95 ± 2.19 | 1.10 | 93.33 | 0.90 |
Vitamin E (mcg) | −32.85 ** ± 18.95 | 10.87 ± 7.42 | 6.09 ± 4.84 | 1.63 | 91.85 | 0.83 |
Zinc (mg) | −10.44 ** ± 15.38 | 7.39 ± 4.62 | 6.15 ± 3.87 | 1.32 | 93.33 | 0.86 |
Calcium (mg) | −2.66 ± 31.33 | 594.4 ± 382.8 | 569.3 ± 383.8 | 2.70 | 93.33 | 0.53 |
Magnesium (mg) | 3.72 * ± 17.26 | 201.1 ± 150.3 | 208.8 ± 157.6 | 1.49 | 93.33 | 0.85 |
Iron (mg) | 1.46 ± 17.42 | 9.00 ± 5.81 | 8.91 ± 5.60 | 1.50 | 93.33 | 0.88 |
Sodium (mg) | −12.60 ** ± 24.94 | 2551 ± 1700 | 1969 ± 1263 | 2.15 | 97.04 | 0.83 |
Parameters (N) | Calories, kcal | Carbohydrate, g | Protein, g | Fat, g | Folate, mcg | Cobalamin, mcg |
---|---|---|---|---|---|---|
%diff M ± SD | %diff M ± SD | %diff M ± SD | %diff M ± SD | %diff M ± SD | %diff M ± SD | |
Caloric ranges | ||||||
<1000 (54) | −0.88 ± 16.87 | 7.40 ** ± 19.79 | −10.77 ** ± 10.43 | −11.75 ** ± 13.66 | 2.06 ± 20.12 | −21.02 ** ± 16.02 |
1000–2000 (63) | −7.08 ** ± 11.46 | 5.91 ** ± 14.34 | −6.93 ** ± 9.31 | −22.60 ** ± 11.58 | 7.04 ** ± 12.56 | −14.87 ** ± 12.47 |
>2000 (18) | −12.63 * ± 25.09 | −8.78 ± 28.79 | −16.93 ** ± 21.09 | −17.28 ** ± 22.83 | −6.53 ± 27.99 | −26.31 ** ± 15.94 |
Diet Types | ||||||
Pure liquid (10) | 16.28 ± 26.70 | 23.27 * ± 29.82 | −9.14 ± 12.82 | −3.23 ± 18.02 | 20.44 ± 35.87 | −20.13 * ± 25.65 |
Convenient Diet (30) | −12.39 ** ± 9.61 | −0.34 ± 10.15 | −9.63 ** ± 11.74 | −26.68 ** ± 10.20 | 0.76 ± 13.84 | −9.82 ** ± 10.84 |
Canned Food (10) | −12.98 ** ± 5.62 | −3.99 * ± 5.39 | −12.68 ** ± 7.27 | −27.05 ** ± 5.42 | −3.11 ± 14.39 | −9.95 ** ± 1.72 |
High School (10) | −8.33 ** ± 2.99 | 2.24 ± 3.46 | −8.40 ** ± 4.78 | −18.58 ** ± 5.20 | 4.51 ± 8.19 | −15.43 ** ± 6.48 |
Fast Food (10) | −15.86 ** ± 15.01 | 0.72 ± 16.35 | −7.80 ± 18.79 | −34.40 ** ± 11.82 | 0.87 ± 17.63 | −4.07 ± 16.18 |
Ethnic Food (73) | −5.00 ** ± 9.94 | 6.21 ** ± 15.43 | −9.27 ** ± 8.46 | −17.50 ** ± 9.68 | 4.11 ** ± 12.80 | −19.96 ** ± 11.24 |
Western Diet (40) | −4.49 ** ± 9.77 | 5.20 ± 16.46 | −8.47 ** ± 8.00 | −14.25 ** ± 8.38 | 3.64 ± 13.74 | −16.46 ** ± 11.64 |
American (10) | −4.16 ± 14.42 | 3.87 ± 22.58 | −5.14 ± 7.60 | −15.16 ** ± 6.97 | 5.43 ± 17.35 | −9.73 ** ± 6.53 |
Mexican (10) | −4.90 ± 10.69 | 10.81 ± 20.60 | −6.99 ** ± 4.79 | −22.07 ** ± 3.96 | 11.42 * ± 13.22 | −12.92 ** ± 4.78 |
Italian (10) | −3.43 ** ± 3.18 | 6.61 ** ± 4.69 | −6.10 * ± 6.86 | −14.07 ** ± 3.27 | 7.29 ** ± 1.77 | −15.71 ** ± 9.93 |
Mediterranean (10) | −5.45 ± 8.88 | −0.48 ± 11.92 | −15.66 ** ± 8.43 | −5.69 ± 8.87 | −9.60 ** ± 7.61 | −27.48 ** ± 14.94 |
Eastern Diet (33) | −5.63 ** ± 10.26 | 7.44 ** ± 14.24 | −10.24 ** ± 9.01 | −21.45 ** ± 9.80 | 4.68 * ± 11.74 | −24.20 ** ± 9.24 |
Japanese (10) | −3.02 ** ± 1.29 | 5.05 ** ± 2.17 | −5.08 ** ± 0.77 | −12.29 ** ± 1.19 | −2.25 ** ± 1.14 | −16.76 ** ± 0.43 |
Chinese (10) | −9.74 ** ± 5.33 | 12.34 ** ± 7.03 | −9.44 ** ± 1.85 | −32.50 ** ± 3.75 | 15.64 ** ± 2.62 | −20.75 ** ± 0.84 |
Korean (13) | −4.47 ± 15.39 | 5.52 ± 21.72 | −14.82 ** ± 12.96 | −20.00 ** ± 8.39 | 1.57 ± 14.52 | −32.58 ** ± 9.74 |
Smoothie-added (22) | −6.67 ± 25.56 | −2.83 ± 28.95 | −12.09 * ± 21.17 | −14.70 ** ± 22.68 | −4.09 ± 25.77 | −26.94 ** ± 18.78 |
Parameters | Logistic Regression Original Model | Generalized Regression Elastic Net Model Validation | ||
---|---|---|---|---|
Estimate | p (χ2) | Estimate | p (χ2) | |
(Intercept) | 1.66 | 0.0160 | 1.66 | 0.0035 |
1000–2000 caloric range | −2.79 | 0.0003 | −2.79 | <0.0001 |
Carbohydrate % Difference | 3.24 | <0.0001 | 3.24 | <0.0001 |
Protein % Difference | −3.05 | <0.0001 | −3.05 | <0.0001 |
MR | 0.0455 | 0.0455 | ||
AICc | 18.18 | 18.19 | ||
AUC | 0.9957 | 0.9957 |
Parameters | Logistic Regression Original Model | Generalized Regression Elastic Net Model Validation | ||
---|---|---|---|---|
Estimate | p (χ2) | Estimate | p (χ2) | |
(Intercept) | −5.59 | 0.9386 | −3.83 | <0.0001 |
1000–2000 caloric range | −1.81 | 0.0053 | −1.81 | 0.0084 |
Carbohydrate % Difference | −2.35 | 0.0006 | −2.35 | 0.0003 |
Fiber % Difference | −2.07 | 0.0008 | −2.07 | 0.0008 |
Mediterranean | 9.11 | 0.9001 | 7.35 | <0.0001 |
MR | 0.1154 | 0.1154 | ||
AICc | 30.71 | 30.73 | ||
AUC | 0.9125 | 0.9125 |
Parameters | Logistic Regression Original Model | Generalized Regression Elastic Net Model Validation | ||
---|---|---|---|---|
Estimate | p (χ2) | Estimate | p (χ2) | |
(Intercept) | 11.63 | 0.8783 | 3.87 | <0.0001 |
1000–2000 caloric range | 2.06 | <0.0001 | 1.86 | <0.0001 |
Protein % Difference | −1.22 | 0.0094 | −1.05 | 0.0140 |
Chinese | −12.26 | 0.8718 | −4.45 | <0.0001 |
MR | 0.2727 | 0.2727 | ||
AICc | 35.84 | 35.78 | ||
AUC | 0.7906 | 0.7906 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusuma, J.D.; Yang, H.-L.; Yang, Y.-L.; Chen, Z.-F.; Shiao, S.-Y.P.K. Validating Accuracy of a Mobile Application against Food Frequency Questionnaire on Key Nutrients with Modern Diets for mHealth Era. Nutrients 2022, 14, 537. https://doi.org/10.3390/nu14030537
Kusuma JD, Yang H-L, Yang Y-L, Chen Z-F, Shiao S-YPK. Validating Accuracy of a Mobile Application against Food Frequency Questionnaire on Key Nutrients with Modern Diets for mHealth Era. Nutrients. 2022; 14(3):537. https://doi.org/10.3390/nu14030537
Chicago/Turabian StyleKusuma, Joyce D., Hsiao-Ling Yang, Ya-Ling Yang, Zhao-Feng Chen, and Shyang-Yun Pamela Koong Shiao. 2022. "Validating Accuracy of a Mobile Application against Food Frequency Questionnaire on Key Nutrients with Modern Diets for mHealth Era" Nutrients 14, no. 3: 537. https://doi.org/10.3390/nu14030537
APA StyleKusuma, J. D., Yang, H. -L., Yang, Y. -L., Chen, Z. -F., & Shiao, S. -Y. P. K. (2022). Validating Accuracy of a Mobile Application against Food Frequency Questionnaire on Key Nutrients with Modern Diets for mHealth Era. Nutrients, 14(3), 537. https://doi.org/10.3390/nu14030537