Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health
Abstract
:1. Introduction
2. Chemical Characteristics and Properties of Se and Hg
3. Sources of Se and Hg in the Environment
4. Se Status and Hg Exposure
5. Blood Se and Hg Levels
6. Se and Hg Interactions and Health Implications
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Seixas, T.G.; Moreira, I.; Kehrig, H.A. Mercury and selenium in seston, marine plankton and fish (Sardinella brasiliensis) as a tool for understanding a tropical food web. Mar. Pollut. Bull. 2015, 101, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D. Fish, mercury, selenium and cardiovascular risk: Current evidence and unanswered questions. Int. J. Environ. Res. Public Health 2009, 6, 1894–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.; Mozaffarian, D. Omega-3 fatty acids, mercury, and selenium in fish and the risk of cardiovascular diseases. Curr. Atheroscler. Rep. 2010, 12, 414–422. [Google Scholar] [CrossRef]
- Tinggi, U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008, 13, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Myers, G.J.; Davidson, P.W.; Strain, J.J. Nutrient and methyl mercury exposure from consuming fish. J. Nutr. 2007, 137, 2805–2808. [Google Scholar] [CrossRef] [Green Version]
- Tinggi, U. Determination of selenium in meat products by hydride generation atomic absorption spectrophotometry. J. AOAC Int. 1999, 82, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Bakir, F.; Damluji, S.F.; Amin-Zaki, L.; Murtadha, M.; Khalidi, A.; al-Rawi, N.Y.; Tikriti, S.; Dahahir, H.I.; Clarkson, T.W.; Smith, J.C.; et al. Methylmercury poisoning in Iraq. Science 1973, 181, 230–241. [Google Scholar] [CrossRef]
- Ekino, S.; Susa, M.; Ninomiya, T.; Imamura, K.; Kitamura, T. Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. J. Neurol. Sci. 2007, 262, 131–144. [Google Scholar] [CrossRef]
- Sakamoto, M.; Chan, H.M.; Domingo, J.L.; Koriyama, C.; Murata, K. Placental transfer and levels of mercury, selenium, vitamin E, and docosahexaenoic acid in maternal and umbilical cord blood. Environ. Int. 2018, 111, 309–315. [Google Scholar] [CrossRef]
- UNEP. Minamata Convention on Mercury—Text and Annexes 2019. Available online: https://www.mercuryconvention.org/en/resources/minamata-convention-mercury-text-and-annexes (accessed on 26 September 2022).
- Balshaw, S.; Edwards, J.; Daughtry, B.; Ross, K. Mercury in seafood: Mechanisms of accumulation and consequences for consumer health. Rev. Environ. Health 2007, 22, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Dang, F.; Wang, W.X. Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. Environ. Sci. Technol. 2011, 45, 3116–3122. [Google Scholar] [CrossRef] [PubMed]
- Cabanero, A.I.; Madrid, Y.; Camara, C. Selenium long-term administration and its effect on mercury toxicity. J. Agric. Food Chem. 2006, 54, 4461–4468. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yu, H.; Zhao, J.; Li, B.; Qu, L.; Liu, S.; Zhang, P.; Chai, Z. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ. Health Perspect. 2006, 114, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Wang, M.; Yin, S.T.; Wang, H.L.; Chen, L.; Sun, L.G.; Ruan, D.Y. The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicol. Environ. Saf. 2008, 70, 483–489. [Google Scholar] [CrossRef]
- Cabanero, A.I.; Madrid, Y.; Camara, C. Mercury-selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method. Biol. Trace Elem. Res. 2007, 119, 195–211. [Google Scholar] [CrossRef]
- Khan, M.A.; Wang, F. Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury-selenium antagonism. Environ. Toxicol. Chem. 2009, 28, 1567–1577. [Google Scholar] [CrossRef]
- Ralston, N.V.; Blackwell, J.L., 3rd; Raymond, L.J. Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biol. Trace Elem. Res. 2007, 119, 255–268. [Google Scholar] [CrossRef]
- Ralston, N.V.; Raymond, L.J. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 2010, 278, 112–123. [Google Scholar] [CrossRef]
- Jagtap, R.; Maher, W.; Krikowa, F.; Ellwood, M.J.; Foster, S. Measurement of selenomethionine and selenocysteine in fish tissues using HPLC-ICP-MS. Microchem. J. 2016, 128, 248–257. [Google Scholar] [CrossRef]
- Sogame, Y.; Tsukagoshi, A. Development of a liquid chromatography-inductively coupled plasma mass spectrometry method for the simultaneous determination of methylmercury and inorganic mercury in human blood. J. Chromatogr. B Anal. Technol. Biomed Life Sci. 2020, 1136, 121855. [Google Scholar] [CrossRef] [PubMed]
- Kuras, R.; Kozlowska, L.; Reszka, E.; Wieczorek, E.; Jablonska, E.; Gromadzinska, J.; Stanislawska, M.; Janasik, B.; Wasowicz, W. Environmental mercury exposure and selenium-associated biomarkers of antioxidant status at molecular and biochemical level. A short-term intervention study. Food Chem. Toxicol. 2019, 130, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Lun, L.; Rashid, A.; Zada, N.; Chen, B.; Shahab, A.; Li, P.; Ali, M.U.; Lin, S.; Wong, M.H. A critical analysis of sources, pollution, and remediation of selenium, an emerging contaminant. Environ. Geochem. Health 2022, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Saji, V.S.; Lee, C. Selenium electrochemistry. RSC Adv. 2013, 3, 10058–10077. [Google Scholar] [CrossRef]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Ajsuvakova, O.P.; Skalnaya, M.G.; Popova, E.V.; Sinitskii, A.I.; Nemereshina, O.N.; Gatiatulina, E.R.; Nikonorov, A.A.; Skalny, A.V. Mercury and metabolic syndrome: A review of experimental and clinical observations. Biometals 2015, 28, 231–254. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Jahan, S.A. A review on the distribution of Hg in the environment and its human health impacts. J. Hazard. Mater. 2016, 306, 376–385. [Google Scholar] [CrossRef]
- Johnson, C.C.; Fordyce, F.M.; Rayman, M.P. Factors controlling the distribution of selenium in the environment and their impact on health and nutrition. In Proceedings of the Over- and Undernutrition: Challenges and Approaches, Guildford, UK, 30 June–2 July 2009; pp. 119–132. [Google Scholar]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Stein, D.E.; Cohen, Y.; Winer, A.M. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 1996, 26, 1–43. [Google Scholar] [CrossRef]
- Tang, W.L.; Liu, Y.R.; Guan, W.Y.; Zhong, H.; Qu, X.M.; Zhang, T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Sci. Total Environ. 2020, 714, 136827. [Google Scholar] [CrossRef]
- Nogara, P.A.; Oliveira, C.S.; Schmitz, G.L.; Piquini, P.C.; Farina, M.; Aschner, M.; Rocha, J.B.T. Methylmercury’s chemistry: From the environment to the mammalian brain. Biochim. Et Biophys. Acta (BBA)—Gen. Subj. 2019, 1863, 129284. [Google Scholar] [CrossRef] [PubMed]
- Okpala, C.O.R.; Sardo, G.; Vitale, S.; Bono, G.; Arukwe, A. Hazardous properties and toxicological update of mercury: From fish food to human health safety perspective. Crit. Rev. Food Sci. Nutr. 2018, 58, 1986–2001. [Google Scholar] [CrossRef] [PubMed]
- Pappa, E.C.; Pappas, A.C.; Surai, P.F. Selenium content in selected foods from the Greek market and estimation of the daily intake. Sci. Total Environ. 2006, 372, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Jenny-Burri, J.; Haldimann, M.; Dudler, V. Estimation of selenium intake in Switzerland in relation to selected food groups. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 1516–1531. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, J.; Lee, H.; Kim, C.; Hwang, I.K.; Park, H.K.; OH, C. Selenium content in representative Korean foods. J. Food Compos. Anal. 2009, 22, 117–122. [Google Scholar] [CrossRef]
- McNaughton, S.A.; Marks, G.C. Selenium Content of Australian Foods: A Review of Literature Values. J. Food Compos. Anal. 2002, 15, 169–182. [Google Scholar] [CrossRef]
- Thomson, C.D. Selenium and iodine intakes and status in New Zealand and Australia. Br. J. Nutr. 2004, 91, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Alfthan, G.; Eurola, M.; Ekholm, P.; Venalainen, E.R.; Root, T.; Korkalainen, K.; Hartikainen, H.; Salminen, P.; Hietaniemi, V.; Aspila, P.; et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol. 2015, 31, 142–147. [Google Scholar] [CrossRef]
- Radomska, D.; Czarnomysy, R.; Radomski, D.; Bielawska, A.; Bielawski, K. Selenium as a Bioactive Micronutrient in the Human Diet and Its Cancer Chemopreventive Activity. Nutrients 2021, 13, 1649. [Google Scholar] [CrossRef]
- Chen, J. An original discovery: Selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac. J. Clin. Nutr. 2012, 21, 320–326. [Google Scholar]
- Yang, H.; Wang, Q.; Gao, J.; Lin, Z.; Banuelos, G.S.; Yuan, L.; Yin, X. Daily dietary selenium intake in a high selenium area of Enshi, China. Nutrients 2013, 5, 700–710. [Google Scholar] [CrossRef]
- Olson, O.E.; Palmer, I.S. Selenium in foods purchased or produced in South Dakota. J. Food Sci. 1984, 49, 446–452. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). L-selenomethionine as a source of selenium added for nutritional purposes to food supplements. EFSA J. 2009, 1082, 1–39. [Google Scholar]
- IM (Institute of Medicine). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; Otten, J.J., Pitzi Hellwig, J., Meyers, L.D., Eds.; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Waschulewski, I.H.; Sunde, R.A. Effect of dietary methionine on utilization of tissue selenium from dietary selenomethionine for glutathione peroxidase in the rat. J. Nutr. 1988, 118, 367–374. [Google Scholar] [CrossRef]
- Yin, S.A.; Sato, I.; Hosokawa, Y.; Niizeki, S.; Tojo, H.; Yamaguchi, K. Effects of dietary zinc and cadmium on tissue selenium concentration and glutathione peroxidase activity in rats fed DL-selenomethionine or sodium selenite. J. Nutr. Sci. Vitaminol. 1991, 37, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010, 91, 1484S–1491S. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef]
- FSANZ. The 22nd Australian Total Diet Study; FSANZ (Food Standards Australia New Zealand): Canberra, Australia, 2008. [Google Scholar]
- Waegeneers, N.; Thiry, C.; De Temmerman, L.; Ruttens, A. Predicted dietary intake of selenium by the general adult population in Belgium. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 278–285. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.; Huang, Y.; Lin, Z.; Banuelos, G.S.; Lam, M.H.; Yin, Y. Daily selenium intake in a moderate selenium deficiency area of Suzhou, China. Food Chem. 2011, 126, 1088–1093. [Google Scholar] [CrossRef]
- Emmanuelle, B.; Virginie, M.; Fabienne, S.; Isabelle, I.; Martine, P.G.; Bernard, L.; Sylvie, R. Selenium exposure in subjects living in areas with high selenium concentrated drinking water: Results of a French integrated exposure assessment survey. Environ. Int. 2012, 40, 155–161. [Google Scholar] [CrossRef]
- Hirai, K.; Noda, K.; Danbara, H. Selenium intake based on representative diets in Japan, 1957 to 1989. Nutr. Res. 1996, 16, 1471–1477. [Google Scholar] [CrossRef]
- Duffield, A.J.; Thomson, C.D. A comparison of methods of assessment of dietary selenium intakes in Otago, New Zealand. Br. J. Nutr. 1999, 82, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Sunde, R.A.; Paterson, E.; Evenson, J.K.; Barnes, K.M.; Lovegrove, J.A.; Gordon, M.H. Longitudinal selenium status in healthy British adults: Assessment using biochemical and molecular biomarkers. Br. J. Nutr. 2008, 99 (Suppl. 3), S37–S47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, Y.; Wu, M.; Yang, S.; Wang, Y.; Li, H. Association of dietary selenium intake with telomere length in middle-aged and older adults. Clin. Nutr. 2020, 39, 3086–3091. [Google Scholar] [CrossRef]
- Ullah, H.; Liu, G.; Yousaf, B.; Ali, M.U.; Abbas, Q.; Munir, M.A.M.; Mian, M.M. Developmental selenium exposure and health risk in daily foodstuffs: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2018, 149, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DHA; NHMRC. Nutrient Reference Values for Australia and New Zealand; Commonwealth of Australia: Canberra, Australia, 2006. [Google Scholar]
- Dabeka, R.W.; McKenzie, A.D.; Bradley, P. Survey of total mercury in total diet food composites and an estimation of the dietary intake of mercury by adults and children from two Canadian cities, 1998–2000. Food Addit. Contam. 2003, 20, 629–638. [Google Scholar] [CrossRef]
- Rubio, C.; Gutierrez, A.; Burgos, A.; Hardisson, A. Total dietary intake of mercury in the Canary Islands, Spain. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 946–952. [Google Scholar] [CrossRef]
- Perello, G.; Llobet, J.M.; Gomez-Catalan, J.; Castell, V.; Centrich, F.; Nadal, M.; Domingo, J.L. Human health risks derived from dietary exposure to toxic metals in Catalonia, Spain: Temporal trend. Biol. Trace Elem. Res. 2014, 162, 26–37. [Google Scholar] [CrossRef]
- Li, P.; Feng, X.; Chan, H.M.; Zhang, X.; Du, B. Human Body Burden and Dietary Methylmercury Intake: The Relationship in a Rice-Consuming Population. Environ. Sci. Technol. 2015, 49, 9682–9689. [Google Scholar] [CrossRef]
- Pang, J.; Han, J.; Fan, X.; LI, C.; Dong, X.; Liang, L.; Chen, Z. Mercury speciation, bioavailability and risk assessment on soil–rice systems from a watershed impacted by abandoned Hg mine-waste tailings. Acta Geochim. 2019, 38, 391–403. [Google Scholar] [CrossRef]
- Dabeka, R.W.; McKenzie, A.D.; Forsyth, D.S. Levels of total mercury in predatory fish sold in Canada in 2005. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Gribble, M.O.; Karimi, R.; Feingold, B.J.; Nyland, J.F.; O’Hara, T.M.; Gladyshev, M.I.; Chen, C.Y. Mercury, selenium and fish oils in marine food webs and implications for human health. J. Mar. Biol. Assoc. UK 2016, 96, 43–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA (European Food Safety Authority). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar] [CrossRef]
- FSANZ. 25th Australian Total Diet Study; FSANZ (Food Standards Australia New Zealand): Canberra, Australia, 2019. [Google Scholar]
- Munoz, O.; Bastias, J.M.; Araya, M.; Morales, A.; Orellana, C.; Rebolledo, R.; Velez, D. Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem. Toxicol. 2005, 43, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, C.; Song, X.; Wu, Y.; Yuan, B.; Liu, P. Dietary intake of mercury by children and adults in Jinhu area of China. Int. J. Hyg. Environ. Health 2011, 214, 246–250. [Google Scholar] [CrossRef]
- Leblanc, J.C.; Guerin, T.; Noel, L.; Calamassi-Tran, G.; Volatier, J.L.; Verger, P. Dietary exposure estimates of 18 elements from the 1st French Total Diet Study. Food Addit. Contam. 2005, 22, 624–641. [Google Scholar] [CrossRef]
- Pandit, G.G.; Jha, S.K.; Tripathi, R.M.; Krishnamoorthy, T.M. Intake of methyl mercury by the population of Mumbai, India. Sci. Total Environ. 1997, 205, 267–270. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Sakamoto, M.; Nakai, K.; Oka, T.; Dakeishi, M.; Iwata, T.; Satoh, H.; Murata, K. Estimation of daily mercury intake from seafood in Japanese women: Akita cross-sectional study. Tohoku J. Exp. Med. 2003, 200, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.A.; Kwon, Y.; Kim, S.; Joung, H. Assessment of Dietary Mercury Intake and Blood Mercury Levels in the Korean Population: Results from the Korean National Environmental Health Survey 2012–2014. Int. J. Environ. Re.s Public Health 2016, 13, 877. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Cho, Y.; Park, S.; Kye, S.; Kim, B.; Hahm, T.; Kim, M.; Lee, J.O.; Kim, C. Dietary exposure of the Korean population to arsenic, cadmium, lead and mercury. J. Food Compos. Anal. 2006, 19, S31–S37. [Google Scholar] [CrossRef]
- Marzec, Z.; Schlegel-Zawadzka, M. Exposure to cadmium, lead and mercury in the adult population from Eastern Poland, 1990–2002. Food Addit. Contam. 2004, 21, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Rodellar, S.; Fontcuberta, M.; Arques, J.F.; Calderon, J.; Ribas Barba, L.; Serra-Majem, L.L. Mercury and methylmercury intake estimation due to seafood products for the Catalonian population (Spain). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 29–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- COT. Committee on Toxicity (COT) Statement on the 2006 UK Total Diet Study of Metals and Other Elements; Food Standards Agency: London, UK, 2006. [Google Scholar]
- Egan, S.K.; Tao, S.S.; Pennington, J.A.; Bolger, P.M. US Food and Drug Administration’s Total Diet Study: Intake of nutritional and toxic elements, 1991–1996. Food Addit. Contam. 2002, 19, 103–125. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.T. Metabolomics of selenium: Se metabolites based on speciation studies. J. Health Sci. 2005, 51, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Burk, R.F.; Hill, K.E. Regulation of Selenium Metabolism and Transport. Annu. Rev. Nutr. 2015, 35, 109–134. [Google Scholar] [CrossRef]
- Komarova, T.; McKeating, D.; Perkins, A.V.; Tinggi, U. Trace Element Analysis in Whole Blood and Plasma for Reference Levels in a Selected Queensland Population, Australia. Int. J. Environ. Res. Public Health 2021, 18, 2652. [Google Scholar] [CrossRef]
- Yedomon, B.; Menudier, A.; Etangs, F.L.D.; Anani, L.; Fayomi, B.; Druet-Cabanac, M.; Moesch, C. Biomonitoring of 29 trace elements in whole blood from inhabitants of Cotonou (Benin) by ICP-MS. J. Trace Elem. Med. Biol. 2017, 43, 38–45. [Google Scholar] [CrossRef]
- Nisse, C.; Tagne-Fotso, R.; Howsam, M.; Members of Health Examination Centres of the Nord—Pas-de-Calais Region Network; Richeval, C.; Labat, L.; Leroyer, A. Blood and urinary levels of metals and metalloids in the general adult population of Northern France: The IMEPOGE study, 2008–2010. Int. J. Hyg. Environ. Health 2017, 220, 341–363. [Google Scholar] [CrossRef]
- Abass, K.; Koiranen, M.; Mazej, D.; Tratnik, J.S.; Horvat, M.; Hakkola, J.; Jarvelin, M.R.; Rautio, A. Arsenic, cadmium, lead and mercury levels in blood of Finnish adults and their relation to diet, lifestyle habits and sociodemographic variables. Environ. Sci. Pollut. Res. Int. 2017, 24, 1347–1362. [Google Scholar] [CrossRef] [Green Version]
- Heitland, P.; Koster, H.D. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J. Trace Elem. Med. Biol. 2021, 64, 126706. [Google Scholar] [CrossRef]
- Raghunath, R.; Tripathi, R.M.; Mahapatra, S.; Sadasivan, S. Selenium levels in biological matrices in adult population of Mumbai, India. Sci. Total Environ. 2002, 285, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lim, H.S.; Lee, K.R.; Choi, M.H.; Kang, N.M.; Lee, C.H.; Oh, E.J.; Park, H.K. Determination of Trace Metal Levels in the General Population of Korea. Int. J. Environ. Res. Public Health 2017, 14, 702. [Google Scholar] [CrossRef] [PubMed]
- Karunasinghe, N.; Han, D.Y.; Zhu, S.; Duan, H.; Ko, Y.J.; Yu, J.F.; Triggs, C.M.; Ferguson, L.R. Effects of supplementation with selenium, as selenized yeast, in a healthy male population from New Zealand. Nutr. Cancer 2013, 65, 355–366. [Google Scholar] [CrossRef]
- Stojsavljevic, A.; Jagodic, J.; Vujotic, L.; Borkovic-Mitic, S.; Rasic-Milutinovic, Z.; Jovanovic, D.; Gavrovic-Jankulovic, M.; Manojlovic, D. Reference values for trace essential elements in the whole blood and serum samples of the adult Serbian population: Significance of selenium deficiency. Environ. Sci. Pollut. Res. Int. 2020, 27, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Tranik, J.S.; Falnoga, I.; Mazej, D.; Kocman, D.; Fajon, V.; Jagodic, J.; Stajnko, A.; Trdin, A.; Slejkovec, Z.; Jeran, Z.; et al. Results of the first national human biomonitoring in Slovenia: Trace elements in men and lactating women, predictors of exposure and reference values. Int. J. Hyg. Environ. Health 2019, 222, 563–582. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.B.; Choi, Y.S. Normal reference ranges for and variability in the levels of blood manganese and selenium by gender, age, and race/ethnicity for general U.S. population. J. Trace Elem. Med. Biol. 2015, 30, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Combs, G.F., Jr. Biomarkers of selenium status. Nutrients 2015, 7, 2209–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, R.; Collings, R.; Harvey, L.J.; King, M.; Hooper, L.; Bouwman, J.; Gurinovic, M.; Fairweather-Tait, S.J. EURRECA-Estimating selenium requirements for deriving dietary reference values. Crit. Rev. Food Sci. Nutr. 2013, 53, 1077–1096. [Google Scholar] [CrossRef]
- Xia, Y.; Hill, K.E.; Li, P.; Xu, J.; Zhou, D.; Motley, A.K.; Wang, L.; Byrne, D.W.; Burk, R.F. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: A placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am. J. Clin. Nutr. 2010, 92, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Schomburg, L. Selenoprotein P—Selenium transport protein, enzyme and biomarker of selenium status. Free Radic. Biol. Med. 2022, 191, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Branco, V.; Caito, S.; Farina, M.; Teixeira da Rocha, J.; Aschner, M.; Carvalho, C. Biomarkers of mercury toxicity: Past, present, and future trends. J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 119–154. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.M.; Sanka, O.; Kalina, J.; Scheringer, M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. Environ. Int. 2019, 125, 300–319. [Google Scholar] [CrossRef] [PubMed]
- Hinwood, A.L.; Callan, A.C.; Ramalingam, M.; Boyce, M.; Heyworth, J.; McCafferty, P.; Odland, J.O. Cadmium, lead and mercury exposure in non smoking pregnant women. Environ. Res. 2013, 126, 118–124. [Google Scholar] [CrossRef]
- Carneiro, M.F.; Grotto, D.; Barbosa, F., Jr. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption. J. Toxicol. Environ. Health A 2014, 77, 69–79. [Google Scholar] [CrossRef]
- Kuno, R.; Roquetti, M.H.; Becker, K.; Seiwert, M.; Gouveia, N. Reference values for lead, cadmium and mercury in the blood of adults from the metropolitan area of Sao Paulo, Brazil. Int. J. Hyg. Environ. Health 2013, 216, 243–249. [Google Scholar] [CrossRef]
- Jeppesen, C.; Jorgensen, M.E.; Bjerregaard, P. Assessment of consumption of marine food in Greenland by a food frequency questionnaire and biomarkers. Int. J. Circumpolar Health 2012, 71, 18361. [Google Scholar] [CrossRef]
- Ilmiawati, C.; Yoshida, T.; Itoh, T.; Nakagi, Y.; Saijo, Y.; Sugioka, Y.; Sakamoto, M.; Ikegami, A.; Ogawa, M.; Kayama, F. Biomonitoring of mercury, cadmium, and lead exposure in Japanese children: A cross-sectional study. Environ. Health Prev. Med. 2015, 20, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, S.F.; Iwai-Shimada, M.; Oguri, T.; Isobe, T.; Takeuchi, A.; Kobayashi, Y.; Michikawa, T.; Yamazaki, S.; Nitta, H.; Kawamoto, T.; et al. Blood mercury, lead, cadmium, manganese and selenium levels in pregnant women and their determinants: The Japan Environment and Children’s Study (JECS). J. Expo. Sci. Environ. Epidemiol. 2019, 29, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Eom, S.Y.; Choi, S.H.; Ahn, S.J.; Kim, D.K.; Kim, D.W.; Lim, J.A.; Choi, B.S.; Shin, H.J.; Yun, S.W.; Yoon, H.J.; et al. Reference levels of blood mercury and association with metabolic syndrome in Korean adults. Int. Arch. Occup. Environ. Health 2014, 87, 501–513. [Google Scholar] [CrossRef]
- Son, J.Y.; Lee, J.; Paek, D.; Lee, J.T. Blood levels of lead, cadmium, and mercury in the Korean population: Results from the Second Korean National Human Exposure and Bio-monitoring Examination. Environ. Res. 2009, 109, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Bjermo, H.; Sand, S.; Nalsen, C.; Lundh, T.; Enghardt Barbieri, H.; Pearson, M.; Lindroos, A.K.; Jonsson, B.A.; Barregard, L.; Darnerud, P.O. Lead, mercury, and cadmium in blood and their relation to diet among Swedish adults. Food Chem. Toxicol. 2013, 57, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Almerud, P.; Zamaratskaia, G.; Lindroos, A.K.; Bjermo, H.; Andersson, E.M.; Lundh, T.; Ankarberg, E.H.; Lignell, S. Cadmium, total mercury, and lead in blood and associations with diet, sociodemographic factors, and smoking in Swedish adolescents. Environ. Res. 2021, 197, 110991. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lewin, M.; Ruiz, P.; Nigra, A.E.; Henderson, N.B.; Jarrett, J.M.; Ward, C.; Zhu, J.; Umans, J.G.; O’Leary, M.; et al. Blood cadmium, lead, manganese, mercury, and selenium levels in American Indian populations: The Strong Heart Study. Environ. Res. 2022, 71, 114101. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, Y.; Feng, X. Mercury and selenium interactions in human blood in the Wanshan mercury mining area, China. Sci. Total Environ. 2016, 573, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Saalidong, B.M.; Aram, S.A. Mercury Exposure in Artisanal Mining: Assessing the Effect of Occupational Activities on Blood Mercury Levels Among Artisanal and Small-Scale Goldminers in Ghana. Biol. Trace Elem. Res. 2022, 200, 4256–4266. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.L.; Li, H.; Lu, J.; Guan, Q.; Cheng, L. Assessment of 12 Metals and Metalloids in Blood of General Populations Living in Wuhan of China by ICP-MS. Biol. Trace Elem. Res. 2019, 189, 344–353. [Google Scholar] [CrossRef]
- Achouba, A.; Dumas, P.; Ouellet, N.; Lemire, M.; Ayotte, P. Plasma levels of selenium-containing proteins in Inuit adults from Nunavik. Environ. Int. 2016, 96, 8–15. [Google Scholar] [CrossRef]
- Hong, Y.S.; Kim, D.S.; Yu, S.D.; Kim, S.H.; Kim, J.K.; Kim, Y.M.; Yu, J.H.; Jung, J.H.; Kim, B.G. Four cases of abnormal neuropsychological findings in children with high blood methylmercury concentrations. Ann. Occup. Environ. Med. 2013, 25, 18. [Google Scholar] [CrossRef] [Green Version]
- Ser, P.H.; Omi, S.; Shimizu-Furusawa, H.; Yasutake, A.; Sakamoto, M.; Hachiya, N.; Konishi, S.; Nakamura, M.; Watanabe, C. Differences in the responses of three plasma selenium-containing proteins in relation to methylmercury-exposure through consumption of fish/whales. Toxicol. Lett. 2017, 267, 53–58. [Google Scholar] [CrossRef]
- Fernandez-Bautista, T.; Gomez-Gomez, B.; Palacin-Garcia, R.; Gracia-Lor, E.; Perez-Corona, T.; Madrid, Y. Analysis of Se and Hg biomolecules distribution and Se speciation in poorly studied protein fractions of muscle tissues of highly consumed fishes by SEC-UV-ICP-MS and HPLC-ESI-MS/MS. Talanta 2022, 237, 122922. [Google Scholar] [CrossRef] [PubMed]
- Caetano, T.; Branco, V.; Cavaco, A.; Carvalho, C. Risk assessment of methylmercury in pregnant women and newborns in the island of Madeira (Portugal) using exposure biomarkers and food-frequency questionnaires. J. Toxicol. Environ. Health A 2019, 82, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Gilman, C.L.; Soon, R.; Sauvage, L.; Ralston, N.V.; Berry, M.J. Umbilical cord blood and placental mercury, selenium and selenoprotein expression in relation to maternal fish consumption. J. Trace Elem. Med. Biol. 2015, 30, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosik-Bogacka, D.; Lanocha-Arendarczyk, N.; Kot, K.; Malinowski, W.; Szymanski, S.; Sipak-Szmigiel, O.; Pilarczyk, B.; Tomza-Marciniak, A.; Podlasinska, J.; Tomska, N.; et al. Concentrations of mercury (Hg) and selenium (Se) in afterbirth and their relations with various factors. Environ. Geochem. Health 2018, 40, 1683–1695. [Google Scholar] [CrossRef] [PubMed]
- Fok, T.F.; Lam, H.S.; Ng, P.C.; Yip, A.S.; Sin, N.C.; Chan, I.H.; Gu, G.J.; So, H.K.; Wong, E.M.; Lam, C.W. Fetal methylmercury exposure as measured by cord blood mercury concentrations in a mother-infant cohort in Hong Kong. Environ. Int. 2007, 33, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Lee, C.K.; Kim, K.H.; Lee, J.T.; Suh, C.; Kim, S.Y.; Kim, J.H.; Son, B.C.; Kim, D.H.; Lee, S. Factors associated with total mercury concentrations in maternal blood, cord blood, and breast milk among pregnant women in Busan, Korea. Asia Pac. J. Clin. Nutr. 2016, 25, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Aaseth, J.; Wallace, D.R.; Vejrup, K.; Alexander, J. Methylmercury and developmental neurotoxicity: A global concern. Curr. Opin. Toxicol. 2020, 19, 80–87. [Google Scholar] [CrossRef]
- Ulloa, A.C.; Gliga, A.; Love, T.M.; Pineda, D.; Mruzek, D.W.; Watson, G.E.; Davidson, P.W.; Shamlaye, C.F.; Strain, J.J.; Myers, G.J.; et al. Prenatal methylmercury exposure and DNA methylation in seven-year-old children in the Seychelles Child Development Study. Environ. Int. 2021, 147, 106321. [Google Scholar] [CrossRef]
- Basu, N.; Horvat, M.; Evers, D.C.; Zastenskaya, I.; Weihe, P.; Tempowski, J. A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environ. Health Perspect. 2018, 126, 106001. [Google Scholar] [CrossRef] [Green Version]
- Ganther, H.E.; Goudie, C.; Sunde, M.L.; Kopecky, M.J.; Wagner, P. Selenium: Relation to decreased toxicity of methylmercury added to diets containing tuna. Science 1972, 175, 1122–1124. [Google Scholar] [CrossRef] [Green Version]
- Gochfeld, M.; Burger, J. Mercury interactions with selenium and sulfur and the relevance of the Se:Hg molar ratio to fish consumption advice. Environ. Sci. Pollut. Res. Int. 2021, 28, 18407–18420. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, P.; Christensen, A. Selenium reduces the retention of methyl mercury in the brown shrimp Crangon crangon. Environ. Sci. Technol. 2012, 46, 6324–6329. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.C. Interaction of selenium and mercury in the rat. Chem. Biol. Interact. 1977, 17, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Magos, L.; Clarkson, T.W.; Sparrow, S.; Hudson, A.R. Comparison of the protection given by selenite, selenomethionine and biological selenium against the renotoxicity of mercury. Arch. Toxicol. 1987, 60, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, F.P.; Raman, A.V.; Reeves, M.A.; Berry, M.J. Regulation and function of selenoproteins in human disease. Biochem. J. 2009, 422, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjorklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem. Rev. 2017, 332, 30–37. [Google Scholar] [CrossRef]
- Li, X.; Yin, D.; Yin, J.; Chen, Q.; Wang, R. Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure. Food Chem. Toxicol. 2014, 72, 169–177. [Google Scholar] [CrossRef]
- Skalny, A.V.; Aschner, M.; Sekacheva, M.I.; Santamaria, A.; Barbosa, F.; Ferrer, B.; Aaseth, J.; Paoliello, M.M.B.; Rocha, J.B.T.; Tinkov, A.A. Mercury and cancer: Where are we now after two decades of research? Food Chem. Toxicol. 2022, 164, 113001. [Google Scholar] [CrossRef]
- Branco, V.; Godinho-Santos, A.; Goncalves, J.; Lu, J.; Holmgren, A.; Carvalho, C. Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radic. Biol. Med. 2014, 73, 95–105. [Google Scholar] [CrossRef]
- Yang, D.Y.; Chen, Y.W.; Gunn, J.M.; Belzile, N. Selenium and mercury in organisms: Interactions and mechanisms. Environ. Rev. 2008, 16, 71–92. [Google Scholar] [CrossRef]
- Zhang, G.; Nitteranon, V.; Guo, S.; Qiu, P.; Wu, X.; Li, F.; Xiao, H.; Hu, Q.; Parkin, K.L. Organoselenium compounds modulate extracellular redox by induction of extracellular cysteine and cell surface thioredoxin reductase. Chem. Res. Toxicol. 2013, 26, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Palomar, A.; Gonzalez-Martin, R.; Perez-Deben, S.; Medina-Laver, Y.; Quinonero, A.; Dominguez, F. Mercury impairs human primary endometrial stromal cell functiondagger. Biol. Reprod. 2022, 106, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Branco, V.; Coppo, L.; Sola, S.; Lu, J.; Rodrigues, C.M.P.; Holmgren, A.; Carvalho, C. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biol. 2017, 13, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Meinerz, D.F.; Branco, V.; Aschner, M.; Carvalho, C.; Rocha, J.B.T. Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: A comparison with ebselen. J. Appl. Toxicol. 2017, 37, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Branco, V.; Carvalho, C. The thioredoxin system as a target for mercury compounds. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 129255. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.M.; Chew, E.H.; Hashemy, S.I.; Lu, J.; Holmgren, A. Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity. J. Biol. Chem. 2008, 283, 11913–11923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajsuvakova, O.P.; Tinkov, A.A.; Aschner, M.; Rocha, J.B.T.; Michalke, B.; Skalnaya, M.G.; Skalny, A.V.; Butnariu, M.; Dadar, M.; Sarac, I.; et al. Sulfhydryl groups as targets of mercury toxicity. Coord Chem. Rev. 2020, 417, 213343. [Google Scholar] [CrossRef]
- Ralston, N.V.C.; Raymond, L.J. Mercury’s neurotoxicity is characterized by its disruption of selenium biochemistry. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2405–2416. [Google Scholar] [CrossRef]
- Bjorklund, G. Selenium as an antidote in the treatment of mercury intoxication. Biometals 2015, 28, 605–614. [Google Scholar] [CrossRef]
- Kuhbacher, M.; Bartel, J.; Hoppe, B.; Alber, D.; Bukalis, G.; Brauer, A.U.; Behne, D.; Kyriakopoulos, A. The brain selenoproteome: Priorities in the hierarchy and different levels of selenium homeostasis in the brain of selenium-deficient rats. J. Neurochem. 2009, 110, 133–142. [Google Scholar] [CrossRef]
- Bridges, C.C.; Zalups, R.K. Mechanisms involved in the transport of mercuric ions in target tissues. Arch. Toxicol. 2017, 91, 63–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.S.; Joshee, L.; Zalups, R.K.; Pereira, M.E.; Bridges, C.C. Disposition of inorganic mercury in pregnant rats and their offspring. Toxicology 2015, 335, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Haraguchi, K.; Tatsuta, N.; Nakai, K.; Nakamura, M.; Murata, K. Plasma and red blood cells distribution of total mercury, inorganic mercury, and selenium in maternal and cord blood from a group of Japanese women. Environ. Res. 2021, 196, 110896. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, W.X. Selenium induces the demethylation of mercury in marine fish. Environ. Pollut. 2017, 231, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, F.; Wang, W.X. In Vivo Mercury Demethylation in a Marine Fish (Acanthopagrus schlegeli). Environ. Sci. Technol. 2017, 51, 6441–6451. [Google Scholar] [CrossRef]
- Ralston, N.V.; Ralston, C.R.; Blackwell, J.L., 3rd; Raymond, L.J. Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 2008, 29, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Cui, J.; Wei, X.; Li, W.; Liu, C.; Li, X.; Chen, M.; Fan, Y.; Wang, J. Investigation on selenium and mercury interactions and the distribution patterns in mice organs with LA-ICP-MS imaging. Anal. Chim. Acta 2021, 1182, 338941. [Google Scholar] [CrossRef]
- Golzadeh, N.; Barst, B.D.; Basu, N.; Baker, J.M.; Auger, J.C.; McKinney, M.A. Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium:mercury molar ratios in traditional foods of the Bigstone Cree in Alberta, Canada. Chemosphere 2020, 250, 126285. [Google Scholar] [CrossRef]
- Azad, A.M.; Frantzen, S.; Bank, M.S.; Nilsen, B.M.; Duinker, A.; Madsen, L.; Maage, A. Effects of geography and species variation on selenium and mercury molar ratios in Northeast Atlantic marine fish communities. Sci. Total Environ. 2019, 652, 1482–1496. [Google Scholar] [CrossRef]
- Reyes-Avila, A.D.; Laws, E.A.; Herrmann, A.D.; DeLaune, R.D.; Blanchard, T.P. Mercury and selenium levels, and Se:Hg molar ratios in freshwater fish from South Louisiana. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2019, 54, 238–245. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.M.; Emmett, P.M.; Emond, A.M.; Golding, J. A review of guidance on fish consumption in pregnancy: Is it fit for purpose? Public Health Nutr. 2018, 21, 2149–2159. [Google Scholar] [CrossRef] [PubMed]
- FSANZ. Mercury in Fish—Advice on Fish Consumption. FSANZ (Food Standards Australia New Zealand). Available online: www.foodstandards.gov.au (accessed on 7 September 2022).
- Groth, E. Scientific foundations of fish-consumption advice for pregnant women: Epidemiological evidence, benefit-risk modeling, and an integrated approach. Environ. Res. 2017, 152, 386–406. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, C.; Wen, F.; Feng, L.; Wang, H.; Wang, W.; Li, P. Effects of Low-dose Mercury Exposure in Newborns on mRNA Expression Profiles. Bull. Environ. Contam. Toxicol. 2021, 107, 975–981. [Google Scholar] [CrossRef]
- Prpic, I.; Milardovic, A.; Vlasic-Cicvaric, I.; Spiric, Z.; Radic Nisevic, J.; Vukelic, P.; Snoj Tratnik, J.; Mazej, D.; Horvat, M. Prenatal exposure to low-level methylmercury alters the child’s fine motor skills at the age of 18 months. Environ. Res. 2017, 152, 369–374. [Google Scholar] [CrossRef]
Food | Selenium Level (µg/kg) | Country | Reference |
---|---|---|---|
Milk and dairy products | |||
Milk | 10.7–16.2 | Greece | [35] |
Milk | 10.0–14.0 | Switzerland | [36] |
Milk | 60.0 | Korea | [37] |
Milk | 22.5–25.9 | Australia | [38] |
Cheese | 24.1–95.4 | Greece | [35] |
Cheese | 70.0–78.9 | Australia | [38] |
Meat and eggs | |||
Beef | 33.5–6.31 | Greece | [35] |
Beef | 67 ± 23 | Switzerland | [36] |
Beef | 324 | Korea | [37] |
Lamb | 80 | Switzerland | [36] |
Chicken | 76.3–82.4 | Greece | [35] |
Chicken | 114 ± 17 | Switzerland | [36] |
Pork | 90.0–98.2 | Greece | [35] |
Pork | 115 ± 75 | Switzerland | [36] |
Pork | 174–199 | Korea | [37] |
Eggs | 56.4–181.1 | Greece | [35] |
Eggs | 190–414 | Australia | [38] |
Cereals | |||
Bread | 37.9–150.2 | Greece | [35] |
Bread | 23–48 | Switzerland | [36] |
Bread | 216 | Korea | [37] |
Bread | 92.6–125 | Australia | [38] |
Rice | 17.7–20.5 | Greece | [35] |
Rice | 50 | Korea | [37] |
Rice | 25 | Australia | [38] |
Fruit and vegetables | |||
Apple | 1.1–1.9 | Greece | [35] |
Banana | 4.3–5.7 | Greece | [35] |
Pear | 4.7–7.9 | Greece | [35] |
Broccoli | 6.1–11.8 | Greece | [35] |
Broccoli | 6 | Korea | [37] |
Carrot | 3.6–8.5 | Greece | [35] |
Potato | 3.1–6.0 | Greece | [35] |
Fish and seafood | |||
Sardine | 261.5–332.8 | Greece | [35] |
Trout | 28.7–96.9 | Greece | [35] |
White fish | 210 ± 58 | Switzerland | [36] |
Perch | 303 ± 46 | Switzerland | [36] |
Tuna | 659 | Korea | [37] |
Shrimp | 251 | Korea | [37] |
Fish | 120–632 | Australia | [38] |
Se Intake (µg/day) | Age Group | Population Group | Country | Reference |
---|---|---|---|---|
67–90 | Adults | Men | Australia | [51] |
52–57 | Adults | Women | Australia | [51] |
59.6 | Adults | all | Belgium | [52] |
44 | Adults | all | China | [53] |
60 | Adults | Men | Finland | [40] |
50 | Adults | Women | Finland | [40] |
52 ± 14 | Adults | all | France | [54] |
39.3 | Adults | all | Greece | [35] |
98 | Adults | all | Japan | [55] |
57.5 | Adults | all | Korea | [37] |
51 ± 26 | Adults | all | New Zealand | [56] |
60 ± 25 | Adults | Men | New Zealand | [56] |
46 ± 26 | Adults | Women | New Zealand | [56] |
50.4 | Adults | all | Switzerland | [36] |
48 ± 14 | Adults | all | UK | [57] |
54 ± 15 | Adults | Men | UK | [57] |
43 ± 11 | Adults | Women | UK | [57] |
92.1 ± 42.6 | Adults | all | USA | [58] |
Food | Mercury Level (µg/kg) | Country | Reference |
---|---|---|---|
Milk and dairy products | |||
Cheese | <0.27–1.8 | Canada | [62] |
Cheese | 0.37 ± 0.15 | Spain | [63] |
Milk | 0.25 ± 0.06 | Spain | [63] |
Milk | <0.13–0.25 | Canada | [62] |
Meat and eggs | |||
Eggs | 0.45 ± 0.16 | Spain | [63] |
Eggs | 0.39–1.5 | Canada | [62] |
Beef | 0.42–1.8 | Canada | [62] |
Lamb | 0.29–2.3 | Canada | [62] |
Pork | 0.68–1.9 | Canada | [62] |
Red meat | 0.54 ± 0.19 | Spain | [63] |
Fish and seafood | |||
Cuttlefish | 34 | Spain | [64] |
Fish (freshwater) | 69–83 | Canada | [62] |
Fish canned | 63–148 | Canada | [62] |
Prawn | 91 | Spain | [64] |
Sardine (fresh) | 80 | Spain | [64] |
Squid | 52 | Spain | [64] |
Swordfish | 1500 | Spain | [64] |
Tuna (fresh) | 680 | Spain | [64] |
Cereals and grains | |||
Wheat and bran | <0.45–1.4 | Canada | [62] |
Bread | 0.14–0.37 | Canada | [62] |
Rice | 0.57–1.8 | Canada | [62] |
Vegetable and fruit | |||
Bean | <0.12–0.22 | Canada | [62] |
Broccoli | 0.40–0.67 | Canada | [62] |
Corn | <0.11–0.21 | Canada | [62] |
Potatoes | <0.08–0.16 | Canada | [62] |
Intake (µg/day) | Age Group | Population Group | Country | Reference |
---|---|---|---|---|
4.6–12.9 | Adults | all | Australia | [70] |
0.77–2.17 * | Adults | all | Canada | [62] |
5 | Adults | all | Chile | [71] |
5.74 (2.87–12.9) * | Adults | Men | China | [72] |
5.27 (2.34–10.55) ** | Adults | Women | China | [72] |
9.65 | Adults | all | France | [73] |
0.5 | Adults | all | India | [74] |
15.3 (2.65–48.4) *** | Adults | Women | Japan | [75] |
3.8 ± 5.26 | Adults | all | Korea | [76] |
1.61 | Adults | all | Korea | [77] |
6.65 ± 2.01 (3.2–10.7) | Adults | Men | Poland | [78] |
5.21 ± 1.56 (2.9–9.5) | Adults | Women | Poland | [78] |
5.57 | Adults | all | Spain | [63] |
7.45 * | Adults | Men | Spain | [79] |
7.0 * | Adults | Women | Spain | [79] |
1.0–3.0 | Adults | all | UK | [80] |
1.25–2.59 | Adults | Men | USA | [81] |
0.97–1.95 | Adults | Women | USA | [81] |
Blood Se Levels (µg/L) | Blood Matrix | Population Group | Country | Reference |
---|---|---|---|---|
141 (118–224) | Whole blood | all | Australia | [84] |
142 (118–224) | Whole blood | Men | Australia | [84] |
140 (122–203) | Whole blood | Women | Australia | [84] |
130 (82–180) | Plasma | all | Australia | [84] |
130 (101–161) | Plasma | Men | Australia | [84] |
124 (82–179) | Plasma | Women | Australia | [84] |
163.0 * (123–205) | Whole blood | all | Benin | [85] |
89.3 (68–245) | Whole blood | all | Brazil | [86] |
109.1 (949.5–195.2) | Whole blood | Men | Finland | [87] |
97.9 (30.0–244.8) | Whole blood | Women | Finland | [87] |
107 (75–146) | Whole blood | all | Germany | [88] |
32–178 | Whole blood | all | India | [89] |
35.8–185.6 | Serum | all | India | [89] |
111.4 ** (79.1–166.5) | Serum | all | Korea | [90] |
55.3–207.4 | Serum | Men | Korea | [90] |
70.4–171.7 | Serum | Women | Korea | [90] |
111.5 | Serum | Men | New Zealand | [91] |
66.3 (63.0–71.2) | Serum | Men | Serbia | [92] |
63.8 (61.9–70.2) | Serum | Women | Serbia | [92] |
115 * (60.3–226) | Whole blood | Men | Slovenia | [93] |
94.6 * (53.9–176) | Whole blood | Women | Slovenia | [93] |
89.2 ± 12.6 | Plasma | all | UK | [57] |
91.6 ± 12.6 | Plasma | Men | UK | [57] |
87.6 ± 13.4 | Plasma | Women | UK | [57] |
146.8-247.3 *** | Whole blood | all | USA | [94] |
149.4–250.4 *** | Whole blood | Men | USA | [94] |
144.2–244.6 *** | Whole blood | Women | USA | [94] |
Blood Hg Levels (µg/L) | Blood Matrix | Population Group | Country | Reference |
---|---|---|---|---|
0.83 (<0.2–5.80) | Whole blood | Pregnant women | Australia | [101] |
2.0 (<0.8–9.3) | Whole blood | All | Australia | [84] |
2.1 (<0.8–7.7) | Whole blood | Men | Australia | [84] |
1.8 (<0.8–9.3) | Whole blood | Women | Australia | [84] |
3.12 (1.11–7.64) * | Whole blood | All | Benin | [85] |
8.4–83.2 | Whole blood | All | Brazil | [102] |
9.6 (2.4–27.3) | Plasma | All | Brazil | [102] |
1.4 (0.10–12.40) | Whole blood | All | Brazil | [103] |
21.1 ± 24.7 | Whole blood | All | Denmark | [104] |
0.65 (0.03–3.5) | Whole blood | All | Germany | [88] |
0.2 (<0.02–1.1) | Serum | All | Germany | [88] |
5.11 ± 2.19 (1.16–15.79) | Whole blood | Children (M and F) | Japan | [105] |
4.41 (0.35–30.6) | Whole blood | All | Japan | [106] |
3.12–5.66 * | Whole blood | Men | Korea | [107] |
2.45–3.85 * | Whole blood | Women | Korea | [107] |
3.12 (2.96–3.28) | Whole blood | All | Korea | [76] |
4.94 (4.66–3.53) ** | Whole blood | Men | Korea | [108] |
3.27 (3.13–3.42) | Whole blood | Women | Korea | [108] |
1.3 (0.39–4.4) | Whole blood | Men | Sweden | [109] |
0.97 (0.17–2.9) | Whole blood | Women | Sweden | [109] |
0.77 (0.71–0.83) | Whole blood | Adolescents (M) | Sweden | [110] |
0.60 (0.56–0.64) | Whole blood | Adolescents (W) | Sweden | [110] |
0.359 * | Whole blood | All | USA | [111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinggi, U.; Perkins, A.V. Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients 2022, 14, 5308. https://doi.org/10.3390/nu14245308
Tinggi U, Perkins AV. Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients. 2022; 14(24):5308. https://doi.org/10.3390/nu14245308
Chicago/Turabian StyleTinggi, Ujang, and Anthony V. Perkins. 2022. "Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health" Nutrients 14, no. 24: 5308. https://doi.org/10.3390/nu14245308
APA StyleTinggi, U., & Perkins, A. V. (2022). Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients, 14(24), 5308. https://doi.org/10.3390/nu14245308