Effect of Inulin Intervention on Metabolic Control and Methylation of INS and IRS1 Genes in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Methods and Materials
2.1. Studied Population
2.2. Intervention with Agave Inulin
2.3. Body Composition
2.4. Dietary Evaluation
2.5. Biochemical Data
2.6. DNA Extraction and Methylation-Specific PCR (MSP) Conditions
2.7. Statistical Analyses
2.7.1. Recommended Body Composition Parameters
2.7.2. Recommended Biochemical Parameters
2.8. Ethical Approval and Informed Consent
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olaiz, G.; Rojas, R.; Barquera, S.; Shamah, T.; Aguilar, C.; Cravioto, P.; López, P.; Hernández, M.; Tapia, R.; Sepúlveda, J. Encuesta Nacional de Salud 2000. La Salud Los Adultos 2000, 2, 30–49. [Google Scholar]
- Olaiz-Fernández, G.; Rivera-Dommarco, J.; Shamah-Levy, T.; Rojas, R.; Villalpando-Hernández, S.; Hernández-Avila, M.; Sepúlveda-Amor, J. Encuesta Nacional de Salud y Nutrición 2006; Instituto Nacional de Salud Pública: Cuernavaca, México, 2006; Volume 2, pp. 80–105. [Google Scholar]
- Hernández-Ávila, M.; Gutiérrez, J.P.; Reynoso-Noverón, N. Diabetes mellitus en México. El estado de la epidemia. Salud Publica Mex. 2013, 55, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Basto-Abreu, A.; López-Olmedo, N.; Rojas-Martínez, R.; Aguilar-Salinas, C.A.; de la Cruz-Góngora, V.; Rivera-Dommarco, J.; Shamah-Levy, T.; Romero-Martínez, M.; Barquera, S.; Villalpando, S.; et al. Prevalence of diabetes and glycemic control in Mexico: National results from 2018 and 2020. Salud Publica Mex. 2021, 63, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Krist, A.H.; Kubik, M.; et al. Screening for Prediabetes and Type 2 Diabetes: US Preventive Services Task Force Recommendation Statement. JAMA J. Am. Med. Assoc. 2021, 326, 736–743. [Google Scholar] [CrossRef]
- Zulet, M.I.; Iriarte, M.M. Epigenetic Changes in DNA Methylation and Environment in Multiple Sclerosis. Nutr. Lifestyle Neurol. Autoimmune Dis. Mult. Scler. 2017, 32, 3–8. [Google Scholar] [CrossRef]
- Bansal, A.; Pinney, S.E. DNA methylation and its role in the pathogenesis of diabetes. Pediatr. Diabetes 2017, 18, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Wasko, M.C.M.; Hubert, H.B.; Lingala, V.B.; Elliott, J.R.; Luggen, M.E.; Fries, J.F.; Ward, M.M. Risk of diabetes in patients with rheumatoid arthritis taking hydroxychloroquine: Reply [5]. J. Am. Med. Assoc. 2007, 298, 2369–2370. [Google Scholar] [CrossRef]
- Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes. Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef] [Green Version]
- Elliott, H.R.; Shihab, H.A.; Lockett, G.A.; Holloway, J.W.; McRae, A.F.; Smith, G.D.; Ring, S.M.; Gaunt, T.R.; Relton, C.L. Role of DNA methylation in type 2 diabetes etiology: Using genotype as a causal anchor. Diabetes 2017, 66, 1713–1722. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.; Dekker Nitert, M.; Volkov, P.; Malmgren, S.; Mulder, H.; Bacos, K.; Ling, C. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Mol. Cell Endocrinol. 2018, 472, 57–67. [Google Scholar] [CrossRef]
- Pinzón-Cortés, J.A.; Perna-Chaux, A.; Rojas-Villamizar, N.S.; Díaz-Basabe, A.; Polanía-Villanueva, D.C.; Jácome, M.F.; Mendivil, C.O.; Groot, H.; López-Segura, V. Effect of diabetes status and hyperglycemia on global DNA methylation and hydroxymethylation. Endocr. Connect. 2017, 6, 708–725. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, E. Epigenetics of chronic inflammatory diseases. J. Inflamm. Res. 2019, 12, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowen, N.; Bhatnagar, A. The potential role of activating the ATP-sensitive potassium channel in the treatment of hyperphagic obesity. Genes 2020, 11, 450. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, A.; Rauch, T.A.; Todorov, I.; Ku, H.T.; Al-Abdullah, I.H.; Kandeel, F.; Mullen, Y.; Pfeifer, G.; Ferreri, K. Insulin gene expression is regulated by DNA methylation. PLoS ONE 2009, 4, 6953. [Google Scholar] [CrossRef]
- Yang, B.T.; Dayeh, T.A.; Kirkpatrick, C.L.; Taneera, J.; Kumar, R.; Groop, L.; Wollheim, C.B.; Nitert, M.D.; Ling, C. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA1c levels in human pancreatic islets. Diabetologia 2011, 54, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Rodelo, C.; Roura-Guiberna, A.; Olivares-Reyes, J.A. Mecanismos moleculares de la resistencia a la insulina: Una actualización. Gac. Med. Mex. 2017, 153, 214–228. [Google Scholar]
- Akcan, T.; Alam, T.; Sollinger, H.W. Insulin Gene Therapy for Treating Type I Diabetes Mellitus: History, Progress and Future Challenges. J. Diabetes Res. Ther. 2020, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Madrigal, L.; Sangronis, E. La inulina y derivados como ingredientes claves en alimentos funcionales. Arch. Latinoam Nutr. 2007, 57, 387–396. [Google Scholar]
- Hernández-González, S.O.; Bricio-Ramírez, R.I.; Ramos-Zavala, M.G. Effect of Inulin from Agave tequilana Weber Blue Variety on the Metabolic Profile of Overweight and Obese Dyslipidemic Patients. J. Clin. Trials 2016, 6, 4–7. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, H.; Xiao, X.; Hu, L.; Xin, F.; Yu, X. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ 2018, 2018, e4446. [Google Scholar] [CrossRef]
- Delzenne, N.M.; Cani, P.D.; Neyrinck, A.M. Modulation of glucagon-like peptide 1 and energy metabolism by inulin and oligofructose: Experimental data. J. Nutr. 2007, 137, 2547–2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Yang, Q.; He, Z.; Yao, S. Efficacy and safety of inulin supplementation for functional constipation: A systematic review protocol. BMJ Open 2021, 11, 1–5. [Google Scholar] [CrossRef]
- Coussement, P.A.A. Nutritional and health benefits of inulin and oligofructose inulin and oligofructose: Safe intakes and legal status 1. J. Nutr. 1999, 129, 1412–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R. Body mass index, waist circumference, and health risk: Evidence in support of current national institutes of health guidelines. Arch. Intern. Med. 2002, 162, 2074–2079. [Google Scholar] [CrossRef] [Green Version]
- Pérez Lizaur, A. Sistema Mexicano de Alimentos. 2021. 4a ed. 25–80. Available online: https://fisiologia.facmed.unam.mx/wp-content/uploads/2019/02/2-Valoraci%C3%B3n-nutricional-Anexos.pdf (accessed on 12 October 2022).
- Lahiri, D.K.; Numberger, J.I. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic. Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef]
- International Diabetes Federation. Diabetes Atlas, 10th ed.; Novo Nordisk, Pfizer-MSD Alliance and Sanofi: Bagsværd, Denmark, 2021. [Google Scholar]
- Darsini, D.; Hamidah, H.; Notobroto, H.B.; Cahyono, E.A. Health risks associated with high waist circumference: A systematic review. J. Public Health Res. 2020, 9, 1811. [Google Scholar] [CrossRef]
- Hernández-Medina, M.S. Overview of the overweight and obesity epidemic in Mexico Panorama de la epidemia de sobrepeso y obesidad en México. Mex. J. Med. Res. ICSa Biannu. Publ. 2020, 8, 65–71. [Google Scholar] [CrossRef]
- Álvarez-Mercado, A.I.; Plaza-Diaz, J. Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients 2022, 14, 4116. [Google Scholar] [CrossRef]
- Tian, N.; Li, L.; Ng, J.K.-C.; Li, P.K.-T. The Potential Benefits and Controversies of Probiotics Use in Patients at Different Stages of Chronic Kidney Disease. Nutrients 2022, 14, 4044. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, X.; Zheng, J.; Li, M.; Yu, M.; Ping, F.; Wang, T.; Wang, X. Maternal Inulin Supplementation Alters Hepatic DNA Methylation Profile and Improves Glucose Metabolism in Offspring Mice. Front. Physiol. 2020, 11, 70. [Google Scholar] [CrossRef]
- Dick, K.J.; Nelson, C.P.; Tsaprouni, L.; Sandling, J.K.; Aïssi, D.; Wahl, S.; Meduri, E.; Morange, P.E.; Gagnon, F.; Grallert, H.; et al. DNA methylation and body-mass index: A genome-wide analysis. Lancet 2014, 383, 1990–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Wong, E.M.; Bui, M.; Nguyen, T.L.; Joo, J.E.; Stone, J.; Dite, G.S.; Dugué, P.A.; Milne, R.L.; Giles, G.G.; et al. Inference about causation between body mass index and DNA methylation in blood from a twin family study. Int. J. Obes. 2019, 43, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Walaszczyk, E.; Luijten, M.; Spijkerman, A.M.W.; Bonder, M.J.; Lutgers, H.L.; Snieder, H.; Wolffenbuttel, B.H.R.; van Vliet-Ostaptchouk, J.V. DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: A systematic review and replication in a case–control sample of the Lifelines study. Diabetologia 2018, 61, 354–368. [Google Scholar] [CrossRef]
- Ahmed, S.A.H.; Ansari, S.A.; Mensah-Brown, E.P.K.; Emerald, B.S. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin. Epigenetics 2020, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, N.; Burns, D.M.; Blau, H.M. DNA demethylation dynamics. Cell 2011, 146, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Yip, L.; Fuhlbrigge, R.; Alkhataybeh, R.; Fathman, C.G. Gene Expression Analysis of the Pre-Diabetic Pancreas to Identify Pathogenic Mechanisms and Biomarkers of Type 1 Diabetes. Front. Endocrinol. 2020, 11, 609271. [Google Scholar] [CrossRef]
- Kaimala, S.; Kumar, C.A.; Allouh, M.Z.; Ansari, S.A.; Emerald, B.S. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med. Res. Rev. 2022, 42, 1343–1371. [Google Scholar] [CrossRef]
- van Otterdijk, S.D.; Binder, A.M.; Szarc Vel Szic, K.; Schwald, J.; Michels, K.B. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome. PLoS ONE 2017, 12, 180955. [Google Scholar] [CrossRef]
- Bacos, K.; Gillberg, L.; Volkov, P.; Olsson, A.H.; Hansen, T.; Pedersen, O.; Gjesing, A.P.; Eiberg, H.; Tuomi, T.; Almgren, P.; et al. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat. Commun. 2016, 7, 11089. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, J.; Qiu, X.; Wen, Q.; Liu, M.; Chen, Q. Blood DNA methylation and type 2 diabetes mellitus: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e20530. [Google Scholar] [CrossRef]
- Makris, K.; Spanou, L. Is there a relationship between mean blood glucose and glycated hemoglobin? J. Diabetes Sci. Technol. 2011, 5, 1572–1583. [Google Scholar] [CrossRef] [PubMed]
Parameters | Before | After | p |
---|---|---|---|
Sex | Men | 23 (34.4%) | - |
Women | 44 (65.7%) | - | |
Age (years) X ± ST | 54.4 ± 10.2 | - | |
Metabolic control parameters | |||
Weight (kg) | 73.8 ± 13.6 | 72.5 ± 14.3 | 0.001 |
BMI (kg/m2) | 30.4 ± 04.29 | 29.8± 04.6 | <0.001 |
Waist circumference (cm) | 100.3 ± 10.1 | 99.5 ± 10.2 | 0.001 |
Fat mass (%) | 35.2 ± 07.3 | 35.1 ± 07.6 | 0.966 |
Muscle mass (%) | 44.5 ± 09.0 | 43.9 ± 08.9 | 0.020 |
Fasting Glucose (mg/dL) | 164.5 ± 84.6 | 144.7 ± 57.6 | 0.013 |
Triglycerides (mg/dL) | 221.3 ± 196.0 | 171 ± 101.0 | 0.008 |
Cholesterol (mg/dL) | 202.7 ± 47.9 | 194.5 ± 47.9 | 0.120 |
c-LDL (mg/dL) | 113.6 ± 39.26 | 115.3 ± 38.9 | 0.695 |
Uric acid (mg/dL) | 04.9 ± 02.5 | 04.6 ± 01.4 | 0.372 |
Dietary evaluation | |||
Energy cal | 1668 ± 1074 | 1613 ± 1331 | 0.792 |
Proteins | 70.42 ± 66.22 | 60.50 ± 19.92 | 0.242 |
Lipids | 61.20 ± 68.6 | 50.14 ± 28.01 | 0.224 |
Carbohydrates | 209 ± 93.2 | 194 ± 82.2 | 0.320 |
Fiber | 19.3 ± 9.60 | 16.9 ± 8.2 | 0.129 |
Status | Before | After | |||
---|---|---|---|---|---|
n | % | n | % | p | |
INS | |||||
Methylated | 51 | 76.1 | 35 | 52.2 | 0.0001 |
Hemimethylated | 16 | 23.8 | 32 | 47.7 | |
IRS1 | |||||
Hemimethylated | 15 | 22.3 | 13 | 19.4 | 0.79 |
Unmethylated | 52 | 77.6 | 54 | 80.6 |
Parameters | Before | After | p | ||
---|---|---|---|---|---|
BMI | # | % | % | ||
Recommended | 0 | 0 | 13 | 19.4 | |
Not recommended | 67 | 100 | 54 | 80.5 | -- |
Abdominal circumference | |||||
Recommended | 17 | 25.4 | 18 | 26.9 | 1 |
Not recommended | 50 | 74.6 | 49 | 73.1 | |
Fat mass | |||||
Recommended | 12 | 17.9 | 15 | 22.4 | 0.37 |
Not recommended | 55 | 82.1 | 52 | 77.6 | |
Muscle mass | |||||
Recommended | 67 | 100 | 66 | 98.5 | -- |
Not recommended | 0 | 0 | 1 | 1.5 | |
Fasting Glucose | |||||
Recommended | 30 | 44.8 | 35 | 52.2 | 0.30 |
Not recommended | 37 | 55.2 | 32 | 47.8 | |
Triglycerides | |||||
Recommended | 32 | 47.8 | 32 | 47.8 | 1 |
Not recommended | 35 | 52.2 | 35 | 52.2 | |
Cholesterol | |||||
Recommended | 34 | 50.7 | 40 | 59.7 | 0.28 |
Not recommended | 33 | 49.3 | 27 | 40.3 | |
c-LDL | |||||
Recommended | 24 | 35.8 | 20 | 29.9 | 0.38 |
Not recommended | 43 | 64.2 | 47 | 70.1 | |
Uric acid | |||||
Recommended | 52 | 77.6 | 36 | 53.7 | |
Not recommended | 15 | 22.4 | 31 | 46.3 | 0.004 |
Parameters | Methylated INS | Hemimethylated INS | Unmethylated IRS1 | Hemimethylated IRS1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | p | Before | After | p | Before | After | p | Before | After | p | |
BMI | ||||||||||||
Recommended | 0 | 7 | 0 | 6 | 0 | 12 | 0 | 1 | ||||
Not recommended | 51 | 28 | - | 16 | 26 | - | 67 | 42 | - | 67 | 12 | - |
Waist circumference | ||||||||||||
Recommended | 15 | 11 | 2 | 7 | 12 | 13 | 5 | 5 | ||||
Not recommended | 36 | 24 | 1 | 14 | 25 | 0.69 | 40 | 41 | 1 | 10 | 8 | 1 |
Fat mass | ||||||||||||
Recommended | 9 | 9 | 3 | 6 | 7 | 12 | 5 | 3 | ||||
Not recommended | 42 | 26 | 0.37 | 13 | 26 | 1 | 45 | 42 | 0.28 | 10 | 10 | 0.63 |
Muscle mass | ||||||||||||
Recommended | 51 | 34 | 16 | 32 | 52 | 54 | 15 | 12 | ||||
Not recommended | 0 | 1 | - | 0 | 0 | - | 52 | 0 | - | 15 | 1 | 0.01 |
Fasting Glucose | ||||||||||||
Recommended | 22 | 20 | 8 | 15 | 24 | 27 | 6 | 8 | ||||
Not recommended | 29 | 15 | 0.31 | 8 | 17 | 1 | 28 | 27 | 0.60 | 9 | 5 | 0.41 |
Triglycerides | ||||||||||||
Recommended | 23 | 17 | 9 | 15 | 27 | 26 | 5 | 6 | ||||
Not recommended | 28 | 18 | 0.62 | 7 | 17 | 0.76 | 25 | 28 | 0.76 | 10 | 7 | 0.68 |
Cholesterol | ||||||||||||
Recommended | 25 | 20 | 9 | 20 | 27 | 33 | 7 | 7 | ||||
Not recommended | 26 | 15 | 0.48 | 7 | 12 | 0.75 | 25 | 21 | 0.46 | 8 | 6 | 1 |
c-LDL | ||||||||||||
Recommended | 21 | 9 | 3 | 11 | 19 | 17 | 5 | 3 | ||||
Not recommended | 30 | 26 | 0.06 | 13 | 21 | 0.32 | 33 | 37 | 0.71 | 10 | 10 | 0.65 |
Uric acid | ||||||||||||
Recommended | 40 | 15 | 12 | 21 | 41 | 29 | 11 | 7 | ||||
Not recommended | 11 | 20 | 0.0012 | 4 | 11 | 0.74 | 11 | 25 | 0.007 | 4 | 6 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Ramírez, O.C.; Salazar-Piña, A.; Cerón-Ramírez, X.; Rubio-Lightbourn, J.; Torres-Romero, F.; Casas-Avila, L.; Castro-Hernández, C. Effect of Inulin Intervention on Metabolic Control and Methylation of INS and IRS1 Genes in Patients with Type 2 Diabetes Mellitus. Nutrients 2022, 14, 5195. https://doi.org/10.3390/nu14235195
Martínez-Ramírez OC, Salazar-Piña A, Cerón-Ramírez X, Rubio-Lightbourn J, Torres-Romero F, Casas-Avila L, Castro-Hernández C. Effect of Inulin Intervention on Metabolic Control and Methylation of INS and IRS1 Genes in Patients with Type 2 Diabetes Mellitus. Nutrients. 2022; 14(23):5195. https://doi.org/10.3390/nu14235195
Chicago/Turabian StyleMartínez-Ramírez, Ollin Celeste, Azucena Salazar-Piña, Ximena Cerón-Ramírez, Julieta Rubio-Lightbourn, Fernando Torres-Romero, Leonora Casas-Avila, and Clementina Castro-Hernández. 2022. "Effect of Inulin Intervention on Metabolic Control and Methylation of INS and IRS1 Genes in Patients with Type 2 Diabetes Mellitus" Nutrients 14, no. 23: 5195. https://doi.org/10.3390/nu14235195
APA StyleMartínez-Ramírez, O. C., Salazar-Piña, A., Cerón-Ramírez, X., Rubio-Lightbourn, J., Torres-Romero, F., Casas-Avila, L., & Castro-Hernández, C. (2022). Effect of Inulin Intervention on Metabolic Control and Methylation of INS and IRS1 Genes in Patients with Type 2 Diabetes Mellitus. Nutrients, 14(23), 5195. https://doi.org/10.3390/nu14235195