Effect of Ferric Carboxymaltose Supplementation in Patients with Heart Failure with Preserved Ejection Fraction: Role of Attenuated Oxidative Stress and Improved Endothelial Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Echocardiographic Evaluation of Diastolic Function
2.3. Determinations of Endothelial Function
2.4. Measurements of MDA in Patients with HFpEF
2.5. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alnuwaysir, R.I.S.; Hoes, M.F.; van Veldhuisen, D.J.; van der Meer, P.; Beverborg, N.G. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J. Clin. Med. 2021, 11, 125. [Google Scholar] [CrossRef] [PubMed]
- Anand, I.S.; Gupta, P. Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation 2018, 138, 80–98. [Google Scholar] [CrossRef] [PubMed]
- Warner, M.J.; Kamran, M.T. Iron Deficiency Anemia. StatPearls 2021, 372, 1832–1843. [Google Scholar]
- Elstrott, B.; Khan, L.; Olson, S.; Raghunathan, V.; DeLoughery, T.; Shatzel, J.J. The role of iron repletion in adult iron deficiency anemia and other diseases. Eur. J. Haematol. 2020, 104, 153–161. [Google Scholar] [CrossRef]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Lanser, L.; Fuchs, D.; Kurz, K.; Weiss, G. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasis-Mechanistic Insights into Anemia of Inflammation and Its Treatment. Nutrients 2021, 13, 3732. [Google Scholar] [CrossRef]
- Ensari, A. The Malabsorption Syndrome and Its Causes and Consequences. Pathobiol. Hum. Dis. 2014, 2014, 1266–1287. [Google Scholar] [CrossRef]
- Saboor, M.; Zehra, A.; Qamar, K.; Moinuddin. Disorders associated with malabsorption of iron: A critical review. Pak. J. Med. Sci. 2015, 31, 1549–1553. [Google Scholar] [CrossRef]
- Cleland, J.G.F.; Zhang, J.; Pellicori, P.; Dicken, B.; Dierckx, R.; Shoaib, A.; Wong, K.; Rigby, A.; Goode, K.; Clark, A.L. Prevalence and outcomes of anemia and hematinic deficiencies in patients with chronic heart failure. JAMA Cardiol. 2016, 1, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.P.; Bartlett, F.R.; Penston, H.S.; O’Leary, J.; Pollock, N.; Kaprielian, R.; Chapman, C.M. Intravenous iron alone for the treatment of anemia in patients with chronic heart failure. J. Am. Coll. Cardiol. 2006, 48, 1225–1227. [Google Scholar] [CrossRef] [Green Version]
- Okonko, D.O.; Grzeslo, A.; Witkowski, T.; Mandal, A.K.; Slater, R.M.; Roughton, M.; Foldes, G.; Thum, T.; Majda, J.; Banasiak, W.; et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: A randomized, controlled, observer-blinded trial. J. Am. Coll. Cardiol. 2008, 51, 103–112. [Google Scholar] [CrossRef]
- Tobilli, J.E.; Lombraña, A.; Duarte, P.; Di Gennaro, F. Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J. Am. Coll. Cardiol. 2007, 50, 1657–1665. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Comin Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. FAIR-HF Trial Investigators. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [CrossRef] [Green Version]
- Ponikowski, P.; van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. CONFIRM-HF Investigators. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency†. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef]
- Beale, A.L.; Warren, J.L.; Roberts, N.; Meyer, P.; Townsend, N.P.; Kaye, D. Iron deficiency in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Open Heart 2019, 6, e001012. [Google Scholar] [CrossRef] [Green Version]
- Klip, I.T.; Comin-Colet, J.; Voors, A.A.; Ponikowski, P.; Enjuanes, C.; Banasiak, W.; Lok, D.J.; Rosentryt, P.; Torrens, A.; Polonski, L.; et al. Iron deficiency in chronic heart failure: An international pooled analysis. Am. Heart J. 2013, 165, 575–582. [Google Scholar] [CrossRef]
- Zusman, O.; Itzhaki Ben Zadok, O.; Gafter-Gvili, A. Management of Iron Deficiency in Heart Failure. Acta Haematol. 2019, 142, 51–56. [Google Scholar] [CrossRef]
- Comín-Colet, J.; Enjuanes, C.; González, G.; Torrens, A.; Cladellas, M.; Meroño, O.; Ribas, N.; Ruiz, S.; Gómez, M.; Verdú, J.M.; et al. Iron deficiency is a key determinant of health-related quality of life in patients with chronic heart failure regardless of anaemia status. Eur. J. Heart Fail. 2013, 15, 1164–1172. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, E.A.; Kasztura, M.; Sokolski, M.; Bronisz, M.; Nawrocka, S.; Oleśkowska-Florek, W.; Zymliński, R.; Biegus, J.; Siwołowski, P.; Banasiak, W.; et al. Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure. Eur. Heart J. 2014, 35, 2468–2476. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Rozentryt, P.; Witkowska, A.; Nowak, J.; Hartmann, O.; Ponikowska, B.; Borodulin-Nadzieja, L.; Banasiak, W.; Polonski, L.; Filippatos, G.; et al. Iron deficiency: An ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 2010, 31, 1872–1880. [Google Scholar] [CrossRef]
- Vullaganti, S.; Goldsmith, J.; Teruya, S.; Alvarez, J.; Helmke, S.; Maurer, M.S. Cardiovascular effects of hemoglobin response in patients receiving epoetin alfa and oral iron in heart failure with a preserved ejection fraction. J. Geriatr. Cardiol. 2014, 11, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Kasner, M.; Aleksandrov, A.S.; Westermann, D.; Lassner, D.; Gross, M.; von Haehling, S.; Anker, S.D.; Schultheiss, H.P.; Tschöpe, C. Functional iron deficiency and diastolic function in heart failure with preserved ejection fraction. Int. J. Cardiol. 2013, 168, 4652–4657. [Google Scholar] [CrossRef]
- Dupas, T.; Pelé, T.; Dhot, J.; Burban, M.; Persello, A.; Aillerie, V.; Erraud, A.; Tesse, A.; Stevant, D.; Blangy-Letheule, A.; et al. The Endothelial Dysfunction Could Be a Cause of Heart Failure with Preserved Ejection Fraction Development in a Rat Model. Oxidative Med. Cell Longev. 2022, 2022, 7377877. [Google Scholar] [CrossRef] [PubMed]
- Mollace, V.; Rosano, G.M.C.; Anker, S.D.; Coats, A.J.S.; Seferovic, P.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Carresi, C.; et al. Pathophysiological Basis for Nutraceutical Supplementation in Heart Failure: A Comprehensive Review. Nutrients 2021, 13, 257. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Sullivan, M.J.; Thompson, P.J.; Fallen, E.L.; Pugsley, S.O.; Taylor, D.W.; Berman, L.B. The 6-minute walk: A new measure of exercise capacity in patients with chronic heart failure. Can. Med. Assoc. J. 1985, 132, 919–923. [Google Scholar]
- Naing, P.; Forrester, D.; Kangaharan, N.; Muthumala, A.; Mon Myint, S.; Playford, D. Heart failure with preserved ejection fraction: A growing global epidemic. Aust. J. Gen. Pract. 2019, 48, 465–471. [Google Scholar] [CrossRef]
- Zhang, H.; Zhabyeyev, P.; Wang, S.; Oudit, G.Y. Role of iron metabolism in heart failure: From iron deficiency to iron overload. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1925–1937. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.; Hastings, J.L.; Shibata, S.; Popovic, Z.B.; Arbab-Zadeh, A.; Bhella, P.S.; Okazaki, K.; Fu, Q.; Berk, M.; Palmer, D.; et al. Characterization of static and dynamic left ventricular diastolic function in patients with heart failure with a preserved ejection fraction. Circ. Heart Fail. 2010, 3, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Hoes, M.F.; Grote Beverborg, N.; Kijlstra, J.D.; Kuipers, J.; Swinkels, D.W.; Giepmans, B.N.G.; Rodenburg, R.J.; van Veldhuisen, D.J.; de Boer, R.A.; van der Meer, P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur. J. Heart Fail. 2018, 20, 910–919. [Google Scholar] [CrossRef] [Green Version]
- Franssen, C.; Chen, S.; Unger, A.; Korkmaz, H.I.; De Keulenaer, G.W.; Tschöpe, C.; Leite-Moreira, A.F.; Musters, R.; Niessen, H.W.; Linke, W.A.; et al. Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2016, 4, 312–324. [Google Scholar] [CrossRef]
- Oppedisano, F.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Macrì, R.; Carresi, C.; Maiuolo, J.; Serra, M.; Cardamone, A.; et al. PUFA Supplementation and Heart Failure: Effects on Fibrosis and Cardiac Remodeling. Nutrients 2021, 13, 2965. [Google Scholar] [CrossRef]
Study Groups | Without ID n = 26 | With ID n = 38 | ||
---|---|---|---|---|
Placebo | FCM | Placebo | FCM | |
Group 1 E/e’ ≥ 15 | 3 | 3 | 9 | 9 |
Group 2 E/e’ 9–16 | 5 | 5 | 7 | 7 |
Group 3 E/e’ ≤ 8 | 5 | 5 | 3 | 3 |
Parameter | Without ID n = 26 | With ID n = 38 |
---|---|---|
Sex (M/W) | 13/13 | 21/17 |
Age (years) | 61.9 ± 8.9 | 63.2 ± 9.6 |
BMI (Kg/m2) Basal Placebo FCM | 27.5 ± 5.6 27.2 + 4.6 26.8 + 5.1 | 26.5 ± 5.2 26.8 + 5.0 26.6 + 4.5 |
FSG (mg/dL) Basal Placebo FCM | 114 ± 11.8 110 ± 8.1 110 ± 8.9 | 115.8 ± 11.2 112 ± 9.4 112 ± 10.1 |
Triglycerides (mg/dL) Basal Placebo FCM | 195 ± 21.5 190 ± 18.4 191 ± 16.9 | 196 ± 21.8 192 ± 15.6 190 ± 17.8 |
Creatinine (mg/dL) Basal Placebo FCM | 1.0 ± 0.9 1.1 ± 0.7 1.0 ± 0.8 | 1.1 ± 0.8 1.0 ± 0.7 1.0 ± 0.9 |
LDL-Cholesterol (mg/dL) Basal Placebo FCM | 94.2 ± 23.8 95.1 ± 21.2 94.2 ± 20.6 | 96.1 ± 24.3 95.4 ± 24.2 95.2 ± 21.9 |
HDL-Cholesterol (mg/dL) Basal Placebo FCM | 38.0 ± 6.8 40.2 ± 6.5 39.7 ± 7.1 | 39.1 ± 6.1 41.5 ± 6.4 42.4 ± 6.3 |
LVEF (%) Basal Placebo FCM | 54.6 ± 6.0 54.9 ± 5.4 55.6 ± 5.2 | 53.5 ± 5.8 54.3 ± 5.5 56.4 ± 5.7 |
E/e’ ratio Basal Placebo FCM | 9.2 ± 2.4 9.1 ± 2.6 8.8 ± 2.2 | 14.4 ± 2.7 14.1 ± 2.1 11.8 ± 2.5 * |
LAVI (mL/m2) Basal Placebo FCM | 37.8 ± 12.7 36.6 ± 10.3 37.4 ± 11.7 | 39.2 ± 14.1 38.1 ± 12.8 34.4 ± 13.7 |
Parameter | Group 1 E/e’ ≥ 15 n = 24 | Group 2 E/e’ 9–14 n = 24 | Group 3 E/e’ ≤ 8 n = 16 |
---|---|---|---|
Ferritin (ng/mL) Basal Placebo FCM | 60.3 ± 13.3 62.3 ± 12.4 129.1 ± 13.9 * | 110.2 ± 14.6 112.2 ± 13.6 132.2 ± 14.3 | 98.2 ± 14.1 120.4 ± 14.6 145.1 ± 15.3 |
6 mWT (mt/6 min) Basal Placebo FCM | 291.1 ± 22.6 294.7 + 20.7 354.4 + 23.7 * | 335.4 ± 21.3 340.8 + 20.5 365.9 + 21.1 | 395.4 ± 28.6 401.5 + 24.4 421.6 + 24.3 |
MDA (μg/dL) Basal Placebo FCM | 1.1 ± 0.1 1.0 ± 0.2 0.7 ± 0.1 * | 1.3 ± 0.2 1.4 ± 0.2 0.8 ± 0.1 * | 1.6 ± 0.1 1.5 ± 0.2 0.9 ± 0.2 * |
EndoPAT Index | Group 1 E/e’ ≥ 15 n = 24 | Group 2 E/e’ 9–14 n = 24 | Group 3 E/e’ ≤ 8 n = 16 |
---|---|---|---|
RHI Basal After Placebo After FCM | 1.50 ± 0.3 1.54 ± 0.4 2.15 ± 0.11 * | 1.90 ± 0.4 1.93 ± 0.3 2.12 + 0.4 | 1.95 ± 0.2 1.98 ± 0.3 2.21 ± 0.06 |
fRHI Basal After Placebo After FCM | 0.20 ± 0.05 0.21 ± 0.03 0.28 + 0.04 * | 0.24 ± 0.03 0.23 ± 0.02 0.24 ± 0.04 | 0.28 ± 0.02 0.25 ± 0.03 0.29 ± 0.03 |
AI Basal After Placebo After FCM | 7.6 ± 3.2 8.1 ± 2.6 9.1 ± 4.2 | 8.3 ± 2.6 8.4 ± 2.3 8.4 ± 3.8 | 9.6 ± 2.5 9.5 ± 2.2 9.6 ± 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollace, A.; Macrì, R.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Nicita, M.; Caminiti, R.; et al. Effect of Ferric Carboxymaltose Supplementation in Patients with Heart Failure with Preserved Ejection Fraction: Role of Attenuated Oxidative Stress and Improved Endothelial Function. Nutrients 2022, 14, 5057. https://doi.org/10.3390/nu14235057
Mollace A, Macrì R, Mollace R, Tavernese A, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Nicita M, Caminiti R, et al. Effect of Ferric Carboxymaltose Supplementation in Patients with Heart Failure with Preserved Ejection Fraction: Role of Attenuated Oxidative Stress and Improved Endothelial Function. Nutrients. 2022; 14(23):5057. https://doi.org/10.3390/nu14235057
Chicago/Turabian StyleMollace, Annachiara, Roberta Macrì, Rocco Mollace, Annamaria Tavernese, Micaela Gliozzi, Vincenzo Musolino, Cristina Carresi, Jessica Maiuolo, Martina Nicita, Rosamaria Caminiti, and et al. 2022. "Effect of Ferric Carboxymaltose Supplementation in Patients with Heart Failure with Preserved Ejection Fraction: Role of Attenuated Oxidative Stress and Improved Endothelial Function" Nutrients 14, no. 23: 5057. https://doi.org/10.3390/nu14235057
APA StyleMollace, A., Macrì, R., Mollace, R., Tavernese, A., Gliozzi, M., Musolino, V., Carresi, C., Maiuolo, J., Nicita, M., Caminiti, R., Paone, S., Barillà, F., Volterrani, M., & Mollace, V. (2022). Effect of Ferric Carboxymaltose Supplementation in Patients with Heart Failure with Preserved Ejection Fraction: Role of Attenuated Oxidative Stress and Improved Endothelial Function. Nutrients, 14(23), 5057. https://doi.org/10.3390/nu14235057