Impact of Daily Consumption of Whole-Grain Quinoa-Enriched Bread on Gut Microbiome in Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stool Bacterial DNA Extraction and 16S rRNA Bacterial Profiling
2.2. Statistics
3. Results
3.1. Participant Characteristics and Fiber Intake
3.2. Bacterial Profiles
3.3. Alpha Diversity and Beta Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wu, K.; Zhang, X.; Nishihara, R.; Cao, Y.; Fuchs, C.S.; Giovannucci, E.L.; Ogino, S.; Chan, A.T.; Song, M. Dietary intake of fiber, whole grains and risk of colorectal cancer: An updated analysis according to food sources, tumor location and molecular subtypes in two large US cohorts. Int. J. Cancer 2019, 145, 3040–3051. [Google Scholar] [CrossRef]
- Hu, Y.; Ding, M.; Sampson, L.; Willett, W.C.; Manson, J.E.; Wang, M.; Rosner, B.; Hu, F.B.; Sun, Q. Intake of whole grain foods and risk of type 2 diabetes: Results from three prospective cohort studies. BMJ 2020, 370, m2206. [Google Scholar] [CrossRef]
- Kyrø, C.; Tjønneland, A.; Overvad, K.; Olsen, A.; Landberg, R. Higher Whole-Grain Intake Is Associated with Lower Risk of Type 2 Diabetes among Middle-Aged Men and Women: The Danish Diet, Cancer, and Health Cohort. J. Nutr. 2018, 148, 1434–1444. [Google Scholar] [CrossRef]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, H.; Kim, H.; Lee, D.H.; Lee, A.; Giovannucci, E.L.; Kang, S.-S.; Keum, N. Different dietary fibre sources and risks of colorectal cancer and adenoma: A dose–response meta-analysis of prospective studies. Br. J. Nutr. 2019, 122, 605–615. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Wang, X.-K.; Tang, Y.-J.; Guan, X.-X.; Guo, Y.; Fan, J.-M.; Cui, L.-L. Association of whole grains intake and the risk of digestive tract cancer: A systematic review and meta-analysis. Nutr. J. 2020, 19, 52. [Google Scholar] [CrossRef]
- Seal, C.J.; Courtin, C.M.; Venema, K.; de Vries, J. Health benefits of whole grain: Effects on dietary carbohydrate quality, the gut microbiome and consequences of processing. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2742–2768. [Google Scholar] [CrossRef]
- van der Kamp, J.W.; Poutanen, K.; Seal, C.J.; Richardson, D.P. The HEALTHGRAIN definition of ‘whole grain’. Food Nutr. Res. 2014, 58, 22100. [Google Scholar] [CrossRef]
- Whole Grain Initiative. Definition of Whole Grain as Food Ingredient. 2020. Available online: https://wgi.meetinghand.com/projectData/775/webData/Definition-of-Whole-Grain-as-Food-Ingredient-Version-20190501C.pdf (accessed on 17 August 2021).
- Li, L.; Lietz, G.; Bal, W.; Watson, A.; Morfey, B.; Seal, C. Effects of Quinoa (Chenopodium quinoa Willd.) Consumption on Markers of CVD Risk. Nutrients 2018, 10, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åberg, S.; Mann, J.; Neumann, S.; Ross, A.B.; Reynolds, A.N. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized Crossover Trial. Diabetes Care 2020, 43, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lietz, G.; Seal, C.J. Phenolic, apparent antioxidant and nutritional composition of quinoa (Chenopodium quinoa Willd.) seeds. Int. J. Food Sci. Technol. 2021, 56, 3245–3254. [Google Scholar] [CrossRef]
- Dingeo, G.; Brito, A.; Samouda, H.; Iddir, M.; La Frano, M.R.; Bohn, T. Phytochemicals as modifiers of gut microbial communities. Food Funct. 2020, 11, 8444–8471. [Google Scholar] [CrossRef] [PubMed]
- Cantarel, B.L.; Lombard, V.; Henrissat, B. Complex Carbohydrate Utilization by the Healthy Human Microbiome. PLoS ONE 2012, 7, e28742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, H.J.; Duncan, S.H.; Scott, K.P.; Louis, P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 2015, 74, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Graf, D.; Di Cagno, R.; Fåk, F.; Flint, H.J.; Nyman, M.; Saarela, M.; Watzl, B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis. 2015, 26, 26164. [Google Scholar] [CrossRef]
- Cao, Y.; Zou, L.; Li, W.; Song, Y.; Zhao, G.; Hu, Y. Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. Int. J. Biol. Macromol. 2020, 163, 55–65. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Qiu, B.; Fan, S.; Ding, H.; Liu, Z. Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran Sulfate sodium in C57BL/6 mice. Sci. Rep. 2018, 8, 14916. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Mills, D.; Noratto, G. Molecular exploration of fecal microbiome in quinoa-supplemented obese mice. FEMS Microbiol. Ecol. 2016, 92, fiw089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gullón, B.; Gullón, P.; Tavaria, F.K.; Yáñez, R. Assessment of the prebiotic effect of quinoa and amaranth in the human intestinal ecosystem. Food Funct. 2016, 7, 3782–3788. [Google Scholar] [CrossRef]
- Houghton, D.; Stewart, C.; Stamp, C.; Nelson, A.; Ami, N.J.A.; Petrosino, J.F.; Wipat, A.; Trenell, M.; Turnbull, D.; Greaves, L.C. Impact of Age-Related Mitochondrial Dysfunction and Exercise on Intestinal Microbiota Composition. J. Gerontol. Ser. A 2018, 73, 571–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- R-Core-Team. A language and environment for statistical computing Vienna, Austria. 2014. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, A.; Ince, J.; Duncan, S.H.; Webster, L.M.; Holtrop, G.; Ze, X.; Brown, D.; Stares, M.D.; Scott, P.; Bergerat, A.; et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011, 5, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, S.M.; Meydani, M.; Barnett, J.B.; Goldin, B.; Kane, A.; Rasmussen, H.; Brown, C.; Vangay, P.; Knights, D.; Jonnalagadda, S.; et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am. J. Clin. Nutr. 2017, 105, 635–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langkamp-Henken, B.; Nieves, J.C.; Culpepper, T.; Radford, A.; Girard, S.-A.; Hughes, C.; Christman, M.C.; Mai, V.; Dahl, W.J.; Boileau, T.; et al. Fecal Lactic Acid Bacteria Increased in Adolescents Randomized to Whole-Grain but Not Refined-Grain Foods, whereas Inflammatory Cytokine Production Decreased Equally with Both Interventions. J. Nutr. 2012, 142, 2025–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitaglione, P.; Mennella, I.; Ferracane, R.; A Rivellese, A.; Giacco, R.; Ercolini, D.; Gibbons, S.M.; La Storia, A.; A Gilbert, J.; Jonnalagadda, S.; et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: Role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr. 2015, 101, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angelis, M.; Montemurno, E.; Vannini, L.; Cosola, C.; Cavallo, N.; Gozzi, G.; Maranzano, V.; Di Cagno, R.; Gobbetti, M.; Gesualdo, L. Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome. Appl. Environ. Microbiol. 2015, 81, 7945–7956. [Google Scholar] [CrossRef] [Green Version]
- Martínez, I.; Lattimer, J.M.; Hubach, K.L.; Case, J.A.; Yang, J.; Weber, C.G.; Louk, J.A.; Rose, D.J.; Kyureghian, G.; Peterson, D.A.; et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013, 7, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Ampatzoglou, A.; Atwal, K.K.; Maidens, C.M.; Williams, C.L.; Ross, A.B.; Thielecke, F.; Jonnalagadda, S.S.; Kennedy, O.B.; Yaqoob, P. Increased Whole Grain Consumption Does Not Affect Blood Biochemistry, Body Composition, or Gut Microbiology in Healthy, Low-Habitual Whole Grain Consumers. J. Nutr. 2015, 145, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, A.B.; Bruce, S.J.; Blondel-Lubrano, A.; Oguey-Araymon, S.; Beaumont, M.; Bourgeois, A.; Nielsen-Moennoz, C.; Vigo, M.; Fay, L.-B.; Kochhar, S.; et al. A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects. Br. J. Nutr. 2011, 105, 1492–1502. [Google Scholar] [CrossRef] [Green Version]
- Saa, D.T.; Turroni, S.; Serrazanetti, D.I.; Rampelli, S.; Maccaferri, S.; Candela, M.; Severgnini, M.; Simonetti, E.; Brigidi, P.; Gianotti, A. Impact of Kamut® Khorasan on gut microbiota and metabolome in healthy volunteers. Food Res. Int. 2014, 63, 227–232. [Google Scholar] [CrossRef]
- Cooper, D.N.; Kable, M.E.; Marco, M.L.; De Leon, A.; Rust, B.; Baker, J.E.; Horn, W.; Burnett, D.; Keim, N.L. The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota. Nutrients 2017, 9, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, E.G.; Licht, T.R.; Kristensen, M.; Bahl, M.I. Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted dietary intervention in postmenopausal women. Eur. J. Clin. Nutr. 2013, 67, 1316–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef] [PubMed]
Control Bread (n = 28) | Quinoa Bread (n = 28) | p (∆QR vs. ∆WR) ∆QR − ∆WR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Week 4 | ∆CB | p3 | Baseline | Week 4 | ∆QB | p | ∆QB − ∆CB | ||
Actinobacteria | 4.07 ± 3.57 | 5.31 ± 4.20 | 1.24 ± 3.65 | 0.40 | 5.07 ± 4.29 | 5.86 ± 4.83 | 0.79 ± 4.24 | 0.79 | −0.45 ± 5.41 | 0.67 |
Bifidobacterium | 2.97 ± 2.90 | 3.96 ± 3.49 | 0.99 ± 2.76 | 0.21 | 3.74 ± 3.63 | 4.23 ± 3.86 | 0.49 ± 3.67 | 0.49 | −0.50 ±4.44 | 0.56 |
Bacteroidetes | 25.01 ± 13.71 | 16.56 ± 11.26 | −8.45 ± 15.39 | 0.21 | 23.35 ± 11.70 | 17.92 ± 12.22 | −5.43 ± 13.65 | 0.11 | 3.02 ± 20.00 | 0.43 |
Alistipes | 3.45 ± 3.35 | 2.21 ± 2.54 | −1.24 ± 3.61 | 0.34 | 3.20 ± 3.20 | 2.23 ± 2.40 | −0.96 ± 3.69 | 0.18 | 0.28 ± 2.72 | 0.60 |
Bacteroides | 15.46 ± 13.79 | 8.57 ± 8.58 | −6.89 ± 10.76 | 0.15 | 12.45 ± 9.29 | 10.34 ± 10.02 | −2.10 ± 8.67 | 0.91 | 4.79 ± 13.70 | 0.08 |
Cyanobacteria | 0.06 ± 0.15 | 0.02 ± 0.06 | −0.04 ± 0.13 | 0.95 | 0.08 ± 0.30 | 0.09 ± 0.25 | 0.01 ± 0.39 | 0.78 | 0.05 ± 0.41 | 0.49 |
Euryarchaeota | 1.67 ± 2.83 | 1.32 ± 2.19 | −0.36 ± 1.71 | 0.93 | 1.11 ± 1.94 | 1.54 ± 2.20 | 0.44 ± 1.28 | 0.76 | 0.79 ± 1.57 | 0.05 |
Firmicutes | 64.14 ± 14.51 | 71.65 ± 14.29 | 7.51 ± 15.16 | 0.30 | 65.55 ± 11.83 | 69.91 ± 12.33 | 4.36 ± 10.82 | 0.11 | −3.15 ± 18.43 | 0.37 |
Anaerostipes | 1.96 ± 2.05 | 2.64 ± 2.25 | 0.68 ± 1.87 | 0.70 | 1.70 ± 1.62 | 2.36 ± 1.93 | 0.66 ± 1.53 | 0.33 | −0.02 ± 2.27 | 0.96 |
Blautia | 3.43 ±2.48 | 4.70 ± 3.57 | 1.27 ± 3.53 | 0.72 | 3.92 ± 4.08 | 4.44 ± 3.20 | 0.52± 2.72 | 0.32 | −0.75 ± 5.01 | 0.43 |
Dorea | 1.87 ± 1.61 | 2.24 ± 1.37 | 0.38 ± 1.54 | 0.20 | 1.90 ± 1.36 | 2.50 ± 1.79 | 0.60 ± 1.50 | 0.40 | 0.22 ± 2.19 | 0.60 |
Faecalibacterium | 7.57 ± 5.07 | 7.68 ± 5.72 | 0.11 ± 5.54 | 0.92 | 7.87 ± 5.18 | 7.56 ± 4.44 | −0.31 ± 3.88 | 0.67 | −0.42 ± 5.72 | 0.70 |
Fusicatenibacter | 1.58 ± 1.44 | 3.01 ± 3.09 | 1.42 ± 2.76 | 0.19 | 2.21 ± 1.57 | 2.65 ± 2.39 | 0.45 ± 1.89 | 0.22 | −0.98 ± 3.24 | 0.12 |
Romboutsia | 5.06 ± 8.28 | 4.82 ± 5.74 | −0.24 ± 7.02 | 0.86 | 4.41 ± 8.21 | 3.81 ± 4.00 | −0.59 ± 6.45 | 0.63 | −0.36 ± 5.85 | 0.75 |
Subdoligranulum | 4.07 ± 3.01 | 5.97 ± 4.31 | 1.89 ± 3.47 | 0.44 | 5.25 ± 3.12 | 5.28 ± 3.87 | 0.03 ± 4.03 | 0.97 | −1.86 ± 5.32 | 0.08 |
Proteobacteria | 1.41 ± 1.20 | 2.05 ± 3.38 | 0.65 ± 2.85 | 0.61 | 2.50 ± 5.51 | 2.58 ± 5.53 | 0.08 ± 3.46 4646 | 0.77 | −0.57 ± 4.28 | 0.49 |
Tenericutes | 2.04 ± 5.29 | 1.30 ± 3.16 | −0.74 ± 4.71 | 0.96 | 1.42 ± 3.68 | 0.89 ± 1.62 | −0.52 ± 3.51 | 0.75 | 0.21 ± 6.06 | 0.85 |
Verrucomicrobia | 1.51 ± 3.12 | 1.65 ± 2.81 | 0.14 ± 2.04 | 0.95 | 0.87 ± 1.70 | 1.18 ± 2.21 | 0.30 ± 1.25 | 0.78 | 0.17 ± 2.38 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Houghton, D.; Lietz, G.; Watson, A.; Stewart, C.J.; Bal, W.; Seal, C.J. Impact of Daily Consumption of Whole-Grain Quinoa-Enriched Bread on Gut Microbiome in Males. Nutrients 2022, 14, 4888. https://doi.org/10.3390/nu14224888
Li L, Houghton D, Lietz G, Watson A, Stewart CJ, Bal W, Seal CJ. Impact of Daily Consumption of Whole-Grain Quinoa-Enriched Bread on Gut Microbiome in Males. Nutrients. 2022; 14(22):4888. https://doi.org/10.3390/nu14224888
Chicago/Turabian StyleLi, Liangkui, David Houghton, Georg Lietz, Anthony Watson, Christopher J. Stewart, Wendy Bal, and Chris J. Seal. 2022. "Impact of Daily Consumption of Whole-Grain Quinoa-Enriched Bread on Gut Microbiome in Males" Nutrients 14, no. 22: 4888. https://doi.org/10.3390/nu14224888
APA StyleLi, L., Houghton, D., Lietz, G., Watson, A., Stewart, C. J., Bal, W., & Seal, C. J. (2022). Impact of Daily Consumption of Whole-Grain Quinoa-Enriched Bread on Gut Microbiome in Males. Nutrients, 14(22), 4888. https://doi.org/10.3390/nu14224888