Nutritional Composition, In Vitro Starch Digestibility and Antioxidant Activities of Composite Flour Made from Wheat and Mature, Unripe Pawpaw (Carica papaya) Fruit Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials Collection
2.1.1. Processing of Mature, Unripe Pawpaw Fruit to Flour
2.1.2. Preparation of the Composite Flour (Mature, Unripe Pawpaw Fruit Flour and Wheat Flour)
2.2. Proximate Composition of the Composite Flour (Wheat and Mature, Unripe Pawpaw Fruit Flour)
2.3. Functional Properties of the Composite Flour (Wheat and Mature, Unripe Pawpaw Fruit Flour)
2.4. Extraction of Free Phenolics
2.5. Determination of Total Phenolic Content (TPC) of the Samples
2.6. Determination of Radical Scavenging Activity (ABTS+) of the Samples
2.7. Oxygen Radical Absorbance Capacity (ORAC) Determination of the Flour Samples
2.8. Pasting Properties of Composite Flour (Wheat and Mature, Unripe Pawpaw Fruit Flour)
2.9. In Vitro Starch Digestibility of the Composite Flour Made from Wheat and Mature, Unripe Pawpaw Fruit Flour
2.10. Flour Fat Acidity
2.11. Statistical Analysis
3. Results and Discussions
3.1. Proximate Composition of the Samples
3.2. Functional Properties of the Composite Flour
3.3. Total Phenolic Content and Antioxidant Activities of the Samples
3.4. Pasting Properties of Composite Flour from Wheat Flour and Mature, Unripe Pawpaw Fruit Flour
3.5. The In Vitro Starch Digestibility of the Flour Samples
3.6. Flour Fat Acidity during Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruan, Y.; Guo, Y.; Zheng, Y.; Huang, Z.; Sun, S.; Kowal, P.; Wu, F. Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle-income countries: Results from SAGE Wave. BMC Public Health 2018, 18, 778. [Google Scholar] [CrossRef] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Daiber, A. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid. Med. Cell. Longev. 2019, 2019, 7092151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.S.; Park, S.Y.; Oh, H.J.; Jang, H.L.; Rhee, Y. Phenolic profiles, aantioxidant and aantimicrobial aactivities of ppawpaw pulp (Asimina triloba [L.] Dunal) at different rripening stages. J. Food Sci. 2019, 84, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Oboh, G.; Ademosun, A.O.; Akinleye, M.; Omojokun, O.S.; Boligon, A.A.; Athayde, M.L. Starch composition, glycemic indices, phenolic constituents, and antioxidative and antidiabetic properties of some common tropical fruits. J. Ethn. Foods 2015, 2, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Leitão, M.; Ribeiro, T.; García, P.A.; Barreiros, L.; Correia, P. Benefits of Fermented Papaya in Human Health. Foods 2022, 11, 563. [Google Scholar] [CrossRef]
- Zuraini, N.Z.A.; Sekar, M.; Wu, Y.S.; Gan, S.H.; Bonam, S.R.; Rani, N.N.I.M.; Fuloria, S. Promising nutritional fruits against cardiovascular diseases: An overview of experimental evidence and understanding their mechanisms of action. Vasc. Health Risk Manag. 2021, 17, 739. [Google Scholar] [CrossRef]
- Maisarah, A.M.; Amira, N.B.; Asmah, R.; Fauziah, O. Antioxidant analysis of different parts of Carica papaya. Int. Food Res. J. 2013, 20, 1043. [Google Scholar]
- Daagema, A.A.; Orafa, P.N.; Igbua, F.Z. Nutritional Potentials and Uses of Pawpaw (Carica papaya): A Review. Eur. J. Nutr. Food Saf. 2020, 52–66. [Google Scholar] [CrossRef]
- Wei, M.; Wang, H.; Ma, T.; Ge, Q.; Fang, Y.; Sun, X. Comprehensive utilization of thinned unripe fruits from horticultural crops. Foods 2021, 10, 2043. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Islas-Hernández, J.J.; Pacheco-Vargas, G.; Osorio-Díaz, P.; Bello-Pérez, L.A. Starch digestibility and glycemic index of cookies partially substituted with unripe banana flour. LWT-Food Sci. Technol. 2012, 46, 177–182. [Google Scholar] [CrossRef]
- . Das, S.; Chaki, A.K.; Hossain, A. Breeding and agronomic approaches for the biofortification of zinc in wheat (Triticum aestivum L.) to combat zinc deficiency in millions of a population: A Bangladesh perspective. Acta Agrobot. 2019, 72, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Molfetta, M.; Celano, G.; Minervini, F. Functional, nutritional, and sensory quality of mixed flours-based breads as compared to durum wheat semolina-based breads. Foods 2021, 10, 1613. [Google Scholar] [CrossRef]
- Asrani, P.; Ali, A.; Tiwari, K. Millets as an alternative diet for gluten-sensitive individuals: A critical review on nutritional components, sensitivities and popularity of wheat and millets among consumers. Food Rev. Int. 2021, 1–30. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis International, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000; p. 1230. [Google Scholar]
- Bamidele, O.P.; Fasogbon, M.B.; Oladiran, D.A.; Akande, E.O. Nutritional composition of fufu analog flour produced from Cassava root (Manihot esculenta) and Cocoyam (Colocasia esculenta) tuber. Food Sci. Nutr. 2015, 3, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Apea-Bah, F.B.; Minnaar, A.; Bester, M.J.; Duodu, K.G. Sorghum–cowpea composite porridge as a functional food, Part II: Antioxidant properties as affected by simulated in vitro gastrointestinal digestion. Food Chem. 2016, 197, 307–315. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Anonymous. Approved Methods; American Association of Cereal Chemists: St. Paul, MN, USA, 1990. [Google Scholar]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar] [PubMed]
- AACC. Approved methods of the AACC, 10th ed.; American Association of Cereal Chemists: Paul, MN, USA, 2000. [Google Scholar]
- Okon, W.I.; Ogri, A.I.; Igile, G.O.; Atangwho, I.J. Nutritional quality of raw and processed unripe Carica papaya fruit pulp and its contribution to dietary diversity and food security in some peasant communities in Nigeria. Int. J. Biol. Chem. Sci. 2017, 11, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Li, P.H.; Wang, C.W.; Lu, W.C.; Chan, Y.J.; Wang, C.C.R. Effect of Resistant Starch Sources on the Physical Properties of Dough and on the Eating Quality and Glycemic Index of Salted Noodles. Foods 2022, 11, 814. [Google Scholar] [CrossRef] [PubMed]
- Joymak, W.; Ngamukote, S.; Chantarasinlapin, P.; Adisakwattana, S. Unripe papaya by-product: From food wastes to functional ingredients in pancakes. Foods 2021, 10, 615. [Google Scholar] [CrossRef] [PubMed]
- Benayad, A.; Taghouti, M.; Benali, A.; Aboussaleh, Y.; Benbrahim, N. Nutritional and technological assessment of durum wheat-faba bean enriched flours, and sensory quality of developed composite bread. Saudi J. Biol. Sci. 2021, 28, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Igwe, V.S.; Echeta, C.K. The functional properties of foods and flours. Int. J. Adv. Acad. Res. Sci. Technol. Eng. 2019, 5, 139–160. [Google Scholar]
- Kaur, R.; Kaur, M. Microstructural, physicochemical, antioxidant, textural and quality characteristics of wheat muffins as influenced by partial replacement with ground flaxseed. LWT-Food Sci. Technol. 2018, 91, 278–285. [Google Scholar] [CrossRef]
- Ayo-Omogie, H.N.; Ogunsakin, R. Assessment of chemical, rheological and sensory properties of fermented maize-cardaba banana complementary food. Food Nutr. Sci. 2013, 4, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Ogundele, G.F.; Adebayo, T.K.; Adeyanju, A.A.; Bamide, O.P. Nutritional composition and in vitro starch digestibility of banku flour processed from cassava (Manihot esculenta Crantz) root and quality protein maize grain. Int. J. Food Sci. Technol. 2022, 57, 6548–6556. [Google Scholar] [CrossRef]
- Ovando-Martínez, M.; González-Aguilar, G.A. Papaya. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: San Diego, CA, USA, 2020; pp. 499–513. [Google Scholar]
- Danbaba, N.; Anounye, J.C.; Gana, A.S.; Abo, M.E.; Ukwungwu, M.N.; Maji, A.T. Physical and pasting properties of ‘ofada’ rice (Oryza sativa L.) varieties. Niger. Food J. 2012, 30, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Adebowale, A.A.; Sanni, L.O.; Awonarin, S.O. Effect of texture modifiers on the physicochemical and sensory properties of dried fufu. Food Sci. Technol. Int. 2005, 11, 373–382. [Google Scholar] [CrossRef]
- Collar, C. Impact of visco-metric profile of composite dough matrices on starch digestibility and firming and retrogradation kinetics of breads thereof: Additive and interactive effects of nonwheat flours. J. Cereal Sci. 2016, 69, 32–39. [Google Scholar] [CrossRef]
- Panyoo, A.E.; Emmambux, M.N. Amylose–lipid complex production and potential health benefits: A mini-review. Starch-Stärke 2017, 69, 1600203. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Y.; Ji, H.; Dong, J.; Li, X.; Liu, J.; Jin, Z. Insights into rice starch degradation by maltogenic α–amylase: Effect of starch structure on its rheological properties. Food Hydrocoll. 2022, 124, 107289. [Google Scholar] [CrossRef]
Samples (%) | Moisture | Crude Protein | Crude Fat | Crude Fiber | Ash | Carbohydrate |
---|---|---|---|---|---|---|
100% Wheat flour | 7.20 a ± 0.2 | 12.68 c ± 0.5 | 3.11 b ± 0.1 | 5.31 a ± 0.4 | 0.72 a ± 0.1 | 70.80 b ± 0.9 |
90 WF + 10 MUPFF | 7.38 a ± 0.3 | 11.98 c ± 0.6 | 3.01 b ± 0.3 | 7.46 a ± 0.4 | 1.23 b ± 0.1 | 67.94 a ± 0.8 |
80 WF + 20 MUPFF | 7.51 a ± 0.3 | 10.01 b ± 0.6 | 2.64 b ± 0.2 | 7.76 b ± 0.3 | 2.03 c ± 0.1 | 69.55 b ± 0.5 |
70 WF + 30 MUPFF | 7.53 a ± 0.5 | 9.62 b ± 0.5 | 2.02 a ± 0.3 | 8.02 b ± 0.5 | 2.67 c ± 0.2 | 70.14 b ± 0.7 |
60 WF + 40 MUPFF | 7.54 a ± 0.4 | 9.32 a ± 0.4 | 1.67 a ± 0.2 | 8.35 c ± 0.3 | 2.96 c ± 0.2 | 70.16 b ± 0.6 |
50 WF + 50 MUPFF | 7.55 a ± 0.3 | 9.12 a ± 0.5 | 1.62 a ± 0.1 | 8.67 c ± 0.5 | 3.01 c ± 0.3 | 70.03 b ± 0.5 |
Samples (%) | Water Absorption Capacity (%) | Swelling Capacity (%) | Bulk Density (g/mL) | Water Solubility Index (%) | |
---|---|---|---|---|---|
100% Wheat flour | 117.51 a ± 1.5 | 127.74 a ± 1.8 | 1.53 a ± 0.5 | 2.93 f ± 0.2 | |
90 WF + 10 MUPFF | 119.21 b ± 1.6 | 131.22 b ± 1.6 | 1.96 b ± 0.6 | 2.53 d ± 0.3 | |
80 WF + 20 MUPFF | 158.11 c ± 1.5 | 139.29 c ± 1.4 | 2.10 c ± 0.8 | 2.13 c ± 0.5 | |
70 WF + 30 MUPFF | 193.12 d ± 1.6 | 145.23 d ± 1.4 | 2.62 d ± 0.6 | 1.56 c ± 0.3 | |
60 WF + 40 MUPFF | 210.12 e ± 1.7 | 153.41 e ± 1.5 | 3.12 e ± 0.5 | 1.23 b ± 0.3 | |
50 WF + 50 MUPFF | 244.01 f ± 1.9 | 173.22 f ± 1.6 | 4.01 f ± 0.6 | 1.03 a ± 0.2 |
Samples (%) | TPC (mg CE/g) | ABTS (µmol TE/g) | ORAC (µmol TE/g) |
---|---|---|---|
100% Wheat flour | 16.09 a ± 0.6 | 1.62 a ± 0.2 | 1.12 a ± 0.1 |
90 WF + 10 MUPFF | 18.26 b ± 0.5 | 4.11 b ± 0.1 | 2.96 b ± 0.1 |
80 WF + 20 MUPFF | 20.15 c ± 0.5 | 6.32 c ± 0.1 | 3.13 c ± 0.2 |
70 WF + 30 MUPFF | 25.44 d ± 0.4 | 7.15 d ± 0.1 | 4.65 d ± 0.3 |
60 WF + 40 MUPFF | 25.69 d ± 0.4 | 8.86 e ± 0.2 | 5.96 e ± 0.2 |
50 WF + 50 MUPFF | 27.12 e ± 0.3 | 10.22 f ± 0.2 | 6.22 f ± 0.3 |
Samples (%) | Peak Viscosity (RVU) | Trough (RVU) | Breakdown Viscosity (RVU) | Final Viscosity (RVU) | Setback Viscosity (RVU) | Peak Time (Min) | Peak Temperature (°C) |
---|---|---|---|---|---|---|---|
100% Wheat flour | 120.46 a ± 1.5 | 76.46 a ± 0.5 | 44.00 a ± 0.6 | 112.51 a ± 1.6 | 36.12 a ± 0.3 | 5.12 a ± 0.1 | 81.26 a ± 0.6 |
90 WF + 10 MUPFF | 142.02 b ± 1.6 | 78.46 b ± 0.6 | 63.56 b ± 0.5 | 153.21 b ± 1.5 | 74.75 b ± 0.6 | 5.53 a ± 0.2 | 84.12 b ± 0.5 |
80 WF + 20 MUPFF | 162.62 c ± 1.6 | 82.44 c ± 0.8 | 80.18 c ± 1.4 | 175.21 c ± 1.7 | 92.77 c ± 0.8 | 5.61 a ± 0.1 | 84.22 b ± 0.7 |
70 WF + 30 MUPFF | 181.22 d ± 1.5 | 85.66 d ± 0.7 | 96.56 d ± 1.5 | 192.31 d ± 1.6 | 106.65 d ± 0.9 | 5.54 a ± 0.2 | 84.25 b ± 0.6 |
60 WF + 40 MUPFF | 193.41 e ± 1.5 | 89.76 e ± 0.6 | 103.65 e ± 2.6 | 221.41 e ± 1.5 | 131.65 e ± 0.9 | 5.56 a ± 0.1 | 84.56 b ± 0.5 |
50 WF + 50 MUPFF | 202.41 f ± 1.6 | 92.21 f ± 0.8 | 110.22 f ± 1.6 | 272.43 f ± 1.6 | 180.20 f ± 1.2 | 5.68 a ± 0.1 | 84.67 b ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyanju, A.A.; Bamidele, O.P. Nutritional Composition, In Vitro Starch Digestibility and Antioxidant Activities of Composite Flour Made from Wheat and Mature, Unripe Pawpaw (Carica papaya) Fruit Flour. Nutrients 2022, 14, 4821. https://doi.org/10.3390/nu14224821
Adeyanju AA, Bamidele OP. Nutritional Composition, In Vitro Starch Digestibility and Antioxidant Activities of Composite Flour Made from Wheat and Mature, Unripe Pawpaw (Carica papaya) Fruit Flour. Nutrients. 2022; 14(22):4821. https://doi.org/10.3390/nu14224821
Chicago/Turabian StyleAdeyanju, Adeyemi A., and Oluwaseun P. Bamidele. 2022. "Nutritional Composition, In Vitro Starch Digestibility and Antioxidant Activities of Composite Flour Made from Wheat and Mature, Unripe Pawpaw (Carica papaya) Fruit Flour" Nutrients 14, no. 22: 4821. https://doi.org/10.3390/nu14224821
APA StyleAdeyanju, A. A., & Bamidele, O. P. (2022). Nutritional Composition, In Vitro Starch Digestibility and Antioxidant Activities of Composite Flour Made from Wheat and Mature, Unripe Pawpaw (Carica papaya) Fruit Flour. Nutrients, 14(22), 4821. https://doi.org/10.3390/nu14224821