Gut Microbiota Associated with Gestational Health Conditions in a Sample of Mexican Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Type and Selection of Subjects
2.2. Data and Specimen Collection
2.3. DNA Extraction
2.4. Amplification of the V3 Region of the Bacterial 16S rRNA Gene
2.5. High-Throughput DNA Sequencing
2.6. Taxonomic Assignment and Bacterial Diversity
2.7. Analysis of Short-Chain Fatty Acids by HPLC
2.8. Analysis of Metabolites by ESI FT-ICR MS
2.9. Sequence Accession Numbers
3. Results
3.1. Characteristics of Mothers in the Sample
3.2. Alfa and Beta Diversity of the Gut Microbiota in Gestational Health Conditions
3.3. Diversity of the Fecal Microbiota Shows a Predominance of Proteobacteria Phylum
3.4. DESeq2 Analysis Reveals the Abundance of Taxa Characterized by the Phylum Firmicutes
3.5. Spearman’s Correlation Analyses of Selected Metadata with Bacterial Abundance
3.6. Prediction of Bacterial Metagenome and Metabolite Profile in Fecal Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current Understanding of the Human Microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Murugesan, S.; Nirmalkar, K.; Hoyo-Vadillo, C.; García-Espitia, M.; Ramírez-Sánchez, D.; García-Mena, J. Gut Microbiome Production of Short-Chain Fatty Acids and Obesity in Children. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, N.; Yamashita, T.; Hirata, K. Gut Microbiome and Cardiovascular Diseases. Diseases 2018, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Nirmalkar, K.; Murugesan, S.; Pizano-Zárate, M.L.; Villalobos-Flores, L.E.; García-González, C.; Morales-Hernández, R.M.; Nuñez-Hernández, J.A.; Hernández-Quiroz, F.; Romero-Figueroa, M.D.S.; Hernández-Guerrero, C.; et al. Gut Microbiota and Endothelial Dysfunction Markers in Obese Mexican Children and Adolescents. Nutrients 2018, 10, 2009. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Carbajal, A.; Pizano-Zárate, M.L.; Hernández-Quiroz, F.; Ortiz-Luna, G.F.; Morales-Hernández, R.M.; de Sales-Millán, A.; Hernández-Trejo, M.; García-Vite, A.; Beltrán-Lagunes, L.; Hoyo-Vadillo, C.; et al. Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms 2020, 8, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez, R.V.; Taddei, C.R.; Sparvoli, L.G.; Ângelo, A.G.S.; Padilha, M.; Mattar, R.; Daher, S. Microbiome and Its Relation to Gestational Diabetes. Endocrine 2019, 64, 254–264. [Google Scholar] [CrossRef]
- Wang, B.; Yao, M.; Lv, L.; Ling, Z.; Li, L. The Human Microbiota in Health and Disease. Engineering 2017, 3, 71–82. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- American Diabetes Association 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, L.; Liu, H.; Zhang, S.; Tian, H.; Shen, Y.; Tuomilehto, J.; Yu, Z.; Yang, X.; Hu, G.; et al. β-Cell Function or Insulin Resistance Was Associated with the Risk of Type 2 Diabetes among Women with or without Obesity and a History of Gestational Diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001060. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhang, J.; Xia, J.; Zhu, Y.; Chen, C.; Shan, C.; Cui, X. Influence of Gestational Diabetes Mellitus on Lipid Signatures in Breast Milk and Association with Fetal Physical Development. Front. Nutr. 2022, 9, 1820. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Hernández, M.Á.; Hernández-Aldana, F.J.; Barrera-Tenorio, E.F.; Teresa, G.-M.M. Prevalencia de Diabetes Mellitus Gestacional En El Hospital Juárez de México. Rev. Hosp. Juárez México 2010, 77, 123–128. [Google Scholar]
- Metzger, B.E. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Sacks, D.B. Diagnosis of Gestational Diabetes Mellitus: It Is Time for International Consensus. Clin. Chem. 2014, 60, 141–143. [Google Scholar] [CrossRef]
- Mayo, K.; Melamed, N.; Vandenberghe, H.; Berger, H. The Impact of Adoption of the International Association of Diabetes in Pregnancy Study Group Criteria for the Screening and Diagnosis of Gestational Diabetes. Am. J. Obs. Gynecol. 2015, 212, 224.e1–224.e9. [Google Scholar] [CrossRef]
- Dainelli, L.; Prieto-Patron, A.; Silva-Zolezzi, I.; Sosa-Rubi, S.G.; Sosa, S.E.Y.; Reyes-Muñoz, E.; Lopez-Ridaura, R.; Detzel, P. Screening and Management of Gestational Diabetes in Mexico: Results from a Survey of Multilocation, Multi-Health Care Institution Practitioners. Diabetes Metab. Syndr. Obes. 2018, 11, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Kelley, K.W.; Carroll, D.G.; Meyer, A. A Review of Current Treatment Strategies for Gestational Diabetes Mellitus. Drugs Context 2015, 4, 212282. [Google Scholar] [CrossRef]
- Giannakou, K.; Evangelou, E.; Yiallouros, P.; Christophi, C.A.; Middleton, N.; Papatheodorou, E.; Papatheodorou, S.I. Risk Factors for Gestational Diabetes: An Umbrella Review of Meta-Analyses of Observational Studies. PLoS ONE 2019, 14, e0215372. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Ngo, C.; Jayabalan, N.; Salomon, C.; Lappas, M. Molecular Pathways Disrupted by Gestational Diabetes Mellitus. J. Mol. Endocrinol. 2019, 63, R51–R72. [Google Scholar] [CrossRef] [PubMed]
- Johns, E.C.; Denison, F.C.; Norman, J.E.; Reynolds, R.M. Gestational Diabetes Mellitus: Mechanisms, Treatment, and Complications. Trends Endocrinol. Metab. 2018, 29, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [Green Version]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational Diabetes and the Risk of Cardiovascular Disease in Women: A Systematic Review and Meta-Analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Szmuilowicz, E.D.; Josefson, J.L.; Metzger, B.E. Gestational Diabetes Mellitus. Endocrinol. Metab. Clin. N. Am. 2019, 48, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Thonusin, C.; Chattipakorn, N.; Chattipakorn, S.C. Impacts of Gut Microbiota on Gestational Diabetes Mellitus: A Comprehensive Review. Eur. J. Nutr. 2021, 60, 2343–2360. [Google Scholar] [CrossRef]
- Crusell, M.K.W.; Hansen, T.H.; Nielsen, T.; Allin, K.H.; Rühlemann, M.C.; Damm, P.; Vestergaard, H.; Rørbye, C.; Jørgensen, N.R.; Christiansen, O.B.; et al. Gestational Diabetes Is Associated with Change in the Gut Microbiota Composition in Third Trimester of Pregnancy and Postpartum. Microbiome 2018, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Kling Bäckhed, H.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Medici Dualib, P.; Ogassavara, J.; Mattar, R.; Mariko Koga da Silva, E.; Atala Dib, S.; de Almeida Pititto, B. Gut Microbiota and Gestational Diabetes Mellitus: A Systematic Review. Diabetes Res. Clin. Pract. 2021, 180, 109078. [Google Scholar] [CrossRef]
- Kuang, Y.S.; Lu, J.H.; Li, S.H.; Li, J.H.; Yuan, M.Y.; He, J.R.; Chen, N.N.; Xiao, W.Q.; Shen, S.Y.; Qiu, L.; et al. Connections between the Human Gut Microbiome and Gestational Diabetes Mellitus. Gigascience 2017, 6, gix058. [Google Scholar] [CrossRef] [Green Version]
- Hasain, Z.; Mokhtar, N.M.; Kamaruddin, N.A.; Mohamed Ismail, N.A.; Razalli, N.H.; Gnanou, J.V.; Raja Ali, R.A. Gut Microbiota and Gestational Diabetes Mellitus: A Review of Host-Gut Microbiota Interactions and Their Therapeutic Potential. Front. Cell. Infect. Microbiol. 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Kaehler, B.D.; Bokulich, N.A.; McDonald, D.; Knight, R.; Caporaso, J.G.; Huttley, G.A. Species Abundance Information Improves Sequence Taxonomy Classification Accuracy. Nat. Commun. 2019, 10, 4643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2022. [Google Scholar]
- Bisanz, J.E. Qiime2R: Importing QIIME2 Artifacts and Associated Data into R Sessions; GitHub: San Francisco, CA, USA, 2018. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2022. Available online: https://cran.r-project.org/web/packages/vegan/ (accessed on 10 August 2022).
- Lahti, L.; Shetty, S. Microbiome R Package microbiome. 1.18.0. 2019. Available online: https://bioconductor.org/packages/release/bioc/html/microbiome.thml (accessed on 10 August 2022).
- Gu, Z. Complex Heatmap Visualization. iMeta 2022, 1, e43. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’, L.; Mcgowan, A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. 2022. Available online: https://cran.r-project.org/web/packages/psych/index.html (accessed on 10 August 2022).
- Yu, G. Ggplotify: Convert Plot to “grob” or “Ggplot” Object 2021. Available online: https://www.biorxiv.org/content/10.1101/2021.05.10.443470v2.full.pdf (accessed on 10 August 2022).
- Kassambara, A. Ggpubr: “ggplot2” Based Publication Ready Plots 2020. Available online: https://cran.r-project.org/web/packages/ggpubr/ggpubr.pdf (accessed on 10 August 2022).
- Wright, K. Pals: Color Palettes, Colormaps, and Tools to Evaluate Them 2021. Available online: https://cran.r-project.org/web/packages/pals/pals.pdf (accessed on 10 August 2022).
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- de Baere, S.; Eeckhaut, V.; Steppe, M.; de Maesschalck, C.; de Backer, P.; van Immerseel, F.; Croubels, S. Development of a HPLC–UV Method for the Quantitative Determination of Four Short-Chain Fatty Acids and Lactic Acid Produced by Intestinal Bacteria during in Vitro Fermentation. J. Pharm. Biomed. Anal. 2013, 80, 107–115. [Google Scholar] [CrossRef]
- Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; et al. Dysfunction of the Intestinal Microbiome in Inflammatory Bowel Disease and Treatment. Genome Biol. 2012, 13, R79. [Google Scholar] [CrossRef]
- Ponzo, V.; Fedele, D.; Goitre, I.; Leone, F.; Lezo, A.; Monzeglio, C.; Finocchiaro, C.; Ghigo, E.; Bo, S. Diet-Gut Microbiota Interactions and Gestational Diabetes Mellitus (GDM). Nutrients 2019, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Cantabrana, C.; Delgado, S.; Ruiz, L.; Ruas-Madiedo, P.; Sánchez, B.; Margolles, A. Bifidobacteria and Their Health-Promoting Effects. Microbiol. Spectr. 2017, 5, 73–98. [Google Scholar] [CrossRef] [PubMed]
- Vetrani, C.; di Nisio, A.; Paschou, S.A.; Barrea, L.; Muscogiuri, G.; Graziadio, C.; Savastano, S.; Colao, A. From Gut Microbiota through Low-Grade Inflammation to Obesity: Key Players and Potential Targets. Nutrients 2022, 14, 2103. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.D.; Chen, C.Y.; Knox, N.C.; Marrie, R.A.; El-Gabalawy, H.; de Kievit, T.; Alfa, M.; Bernstein, C.N.; van Domselaar, G. A Comparative Study of the Gut Microbiota in Immune-Mediated Inflammatory Diseases-Does a Common Dysbiosis Exist? Microbiome 2018, 6, 221. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zheng, J.; Shi, W.; Du, N.; Xu, X.; Zhang, Y.; Ji, P.; Zhang, F.; Jia, Z.; Wang, Y.; et al. Dysbiosis of Maternal and Neonatal Microbiota Associated with Gestational Diabetes Mellitus. Gut 2018, 67, 1614–1625. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Liu, J.; Zhu, W.; Mao, S. A High Grain Diet Dynamically Shifted the Composition of Mucosa-Associated Microbiota and Induced Mucosal Injuries in the Colon of Sheep. Front. Microbiol. 2017, 8, 2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; et al. Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. Science 2011, 331, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Kanbay, M.; Onal, E.M.; Afsar, B.; Dagel, T.; Yerlikaya, A.; Covic, A.; Vaziri, N.D. The Crosstalk of Gut Microbiota and Chronic Kidney Disease: Role of Inflammation, Proteinuria, Hypertension, and Diabetes Mellitus. Int. Urol. Nephrol. 2018, 50, 1453–1466. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhao, F.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut Microbiota Dysbiosis Contributes to the Development of Hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shi, Z.H.; Yang, J.; Wei, Y.; Wang, X.Y.; Zhao, Y.Y. Gut Microbiota Dysbiosis in Preeclampsia Patients in the Second and Third Trimesters. Chin. Med. J. 2020, 133, 1057–1065. [Google Scholar] [CrossRef]
- Ohland, C.L.; MacNaughton, W.K. Probiotic Bacteria and Intestinal Epithelial Barrier Function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G807–G819. [Google Scholar] [CrossRef] [PubMed]
- Green, P.N.; Ardley, J.K. Review of the Genus Methylobacterium and Closely Related Organisms: A Proposal That Some Methylobacterium Species Be Reclassified into a New Genus, Methylorubrum Gen. Nov. Int. J. Syst. Evol. Microbiol. 2018, 68, 2727–2748. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.L.; Xue, J.; Sun, Y.C.; Xue, H.; Wang, E.T.; Yan, H.; Tong, S.; Wang, L.W.; Zhang, X.; Sun, J. guang Mesorhizobium Rhizophilum Sp. Nov., a 1-Aminocyclopropane-1-Carboxylate Deaminase Producing Bacterium Isolated from Rhizosphere of Maize in Northeast China. Antonie Leeuwenhoek 2020, 113, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Kovaleva, J.; Degener, J.E.; van der Mei, H.C. Methylobacterium and Its Role in Health Care-Associated Infection. J. Clin. Microbiol. 2014, 52, 1317–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, H.; Acharjee, A.; Pearce, H.; Quraishi, M.N.; Powell, R.; Rossiter, A.; Beggs, A.; Ewer, A.; Moss, P.; Toldi, G. Breastfeeding Promotes Early Neonatal Regulatory T-Cell Expansion and Immune Tolerance of Non-Inherited Maternal Antigens. Allergy 2021, 76, 2447–2460. [Google Scholar] [CrossRef] [PubMed]
- Palmas, V.; Pisanu, S.; Madau, V.; Casula, E.; Deledda, A.; Cusano, R.; Uva, P.; Vascellari, S.; Loviselli, A.; Manzin, A.; et al. Gut Microbiota Markers Associated with Obesity and Overweight in Italian Adults. Sci. Rep. 2021, 11, 5532. [Google Scholar] [CrossRef]
- Gomez-Arango, L.F.; Barrett, H.L.; McIntyre, H.D.; Callaway, L.K.; Morrison, M.; Dekker Nitert, M. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension 2016, 68, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.A.; Österman, J.; Wahlberg, N.; Nesme, X.; Lavire, C.; Vial, L.; Paulin, L.; de Lajudie, P.; Lindström, K. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium Clade Supports the Delineation of Neorhizobium Gen. Nov. Syst. Appl. Microbiol. 2014, 37, 208–215. [Google Scholar] [CrossRef]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and Laboratory Contamination Can Critically Impact Sequence-Based Microbiome Analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef] [Green Version]
- Mulcahy, L.R.; Isabella, V.M.; Lewis, K. Pseudomonas Aeruginosa Biofilms in Disease. Microb. Ecol. 2014, 68, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Chen, J.; He, J.; Xiao, M.; He, X.; Liu, B.; Zeng, F. Anti-Diabetic Potential of Chlorella Pyrenoidosa-Based Mixture and Its Regulation of Gut Microbiota. Plant Foods Hum. Nutr. 2022, 77, 292–298. [Google Scholar] [CrossRef]
- Mu, Q.; Shi, Y.; Li, R.; Ma, C.; Tao, Y.; Yu, B. Production of Propionate by a Sequential Fermentation-Biotransformation Process via l-Threonine. J. Agric. Food Chem. 2021, 69, 13895–13903. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ge, J.; Li, X.; Jiao, R.; Li, Y.; Quan, H.; Li, J.; Guo, Q.; Wang, W. Integrated Metabolome Analysis Reveals Novel Connections between Maternal Fecal Metabolome and the Neonatal Blood Metabolome in Women with Gestational Diabetes Mellitus. Sci. Rep. 2020, 10, 3660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.; Wu, S.; Fang, C.; Wang, C.; Yang, Y.; Liu, C.; Hu, J.; Huang, Y. Amino Acids Levels in Early Pregnancy Predict Subsequent Gestational Diabetes. J. Diabetes 2020, 12, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Barragan, L.; Chai, J.N.; Tianero, M.D.; di Luccia, B.; Ahern, P.P.; Merriman, J.; Cortez, V.S.; Caparon, M.G.; Donia, M.S.; Gilfillan, S.; et al. Lactobacillus Reuteri Induces Gut Intraepithelial CD4+CD8αα+ T Cells. Science 2017, 357, 806–810. [Google Scholar] [CrossRef] [Green Version]
- Magnúsdóttir, S.; Ravcheev, D.; de Crécy-Lagard, V.; Thiele, I. Systematic Genome Assessment of B-Vitamin Biosynthesis Suggests Cooperation among Gut Microbes. Front. Genet. 2015, 6, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alesi, S.; Ghelani, D.; Rassie, K.; Mousa, A. Metabolomic Biomarkers in Gestational Diabetes Mellitus: A Review of the Evidence. Int. J. Mol. Sci. 2021, 22, 5512. [Google Scholar] [CrossRef]
- Liang, S.; Hou, Z.; Li, X.; Wang, J.; Cai, L.; Zhang, R.; Li, J. The Fecal Metabolome Is Associated with Gestational Diabetes Mellitus. RSC Adv. 2019, 9, 29973–29979. [Google Scholar] [CrossRef]
Variable | CO | GD | PD | PE | p-Value | |
---|---|---|---|---|---|---|
Number of subjects (n = 54) | 30 | 11 | 5 | 8 | nd | |
Age (years) | 24.70 (±6.59) | 31.09 (±3.60) | 28.20 (±5.26) | 28.13 (±7.99) | 0.0097 * | |
Gestational age (weeks) | 32.38 (±5.99) | 33.05 (±5.62) | 29.85 (±4.60) | 33.37 (±3.51) | 0.5947 | |
Anthropometry | Height (m) | 1.55 (±0.08) | 1.56 (±0.07) | 1.60 (±0.06) | 1.57 (±0.06) | 0.2474 |
Weight (Kg) | 67.59 (±11.87) | 69.28 (±10.56) | 75.28 (±6.77) | 74.09 (±13.51) | 0.1085 | |
Normal (BMI 18.5–24.9) | 10 (33.33%) | 3 (27.27%) | 2 (40.00%) | 2 (25.00%) | - | |
Overweight (BMI 25.0–29.9) | 8 (26.67%) | 3 (27.27%) | 1 (20.00%) | 3 (37.50%) | - | |
Obesity (BMI > 30.0) | 12 (36.67%) | 5 (45.45%) | 2 (20.00%) | 3 (12.50%) | - | |
Body Surface Area (m2) | 1.66 (±0.16) | 1.69 (±0.14) | 1.78 (±0.12) | 1.81 (±0.10) | 0.1350 | |
Heart rate (beats/min) | 83.55 (±12.01) | 82.64 (±6.93) | 81.20 (±13.57) | 97.63 (±14.87) | 0.0828 | |
Blood test | Fasting glucose (mg/dL) | 80.21 (±10.08) | 83.89 (±9.43) | 115.00 (±14.54) | 86.25 (±16.07) | 0.0007 * |
Total Cholesterol (mg/dL) | 218.08 (±64.05) | 241.42 (±87.29) | 174.25 (±13.82) | 229.25 (±79.72) | 0.1670 | |
Triglycerides (mg/dL) | 234.17 (±88.71) | 256.96 (±100.78) | 456.25 (±258.78) | 349.75 (±142.23) | 0.0297 * | |
Glycosylated hemoglobin (%) | nd | 5.85 (±1.15) | 9.53 (±4.79) | Nd | - | |
Risk factors # | Alcoholism | 1 (3.33%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | - |
Smoking | 2 (6.67%) | 0 (0.00%) | 1 (20.00%) | 0 (0.00%) | - | |
Drug addiction | 1 (3.33%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | - | |
Average parities | Total | 2.63 (±1.96) | 3.00 (±1.48) | 3.00 (±1.22) | 2.13 (±1.13) | 0.4747 |
Vaginal | 0.70 (±1.26) | 0.18 (±0.40) | 0.20 (±0.45) | 0.50 (±1.07) | 0.4543 | |
Cesarean | 0.70 (±0.84) | 1.09 (±0.83) | 0.40 (±0.55) | 1.13 (±0.64) | 0.1559 | |
Abortions | 0.40 (±0.67) | 0.45 (±0.69) | 0.80 (±0.45) | 0.25 (±0.46) | 0.2585 | |
Socioeconomic data | ||||||
Educational level | Primary school (6 years) | 3 (10.00%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | - |
Secondary school (3 years) | 12 (40.00%) | 6 (54.55%) | 3 (60.00%) | 4 (50.00%) | - | |
High school (3 years) | 9 (30.00%) | 3 (27.27%) | 2 (40.00%) | 4 (50.00%) | - | |
University school (4–5 years) | 6 (20.00%) | 2 (18.18%) | 0 (0.00%) | 0 (0.00%) | - | |
Marital status | Free union | 14 (46.67%) | 7 (63.64%) | 2 (40.00%) | 6 (75.00%) | - |
Married | 7 (23.33%) | 4 (36.36%) | 2 (40.00%) | 2 (25.00%) | - | |
Single | 9 (30.00%) | 0 (0.00%) | 1 (20.00%) | 0 (0.00%) | - | |
Main activity | Housewife | 23 (76.67%) | 10 (90.91%) | 5 (100.00%) | 7 (87.50%) | - |
General employee | 4 (13.33%) | 1 (9.09%) | 0 (0.00%) | 0 (0.00%) | - | |
Student | 3 (10.00%) | 0 (0.00%) | 0 (0.00%) | 1 (12.50%) | - | |
Fecal SCFA | Formic acid | 30.13 (±24.88) | 21.77 (±6.32) | 24.85 (±7.61) | 19.37 (±4.54) | 0.1207 |
(mM/100 mg) | Acetic acid | 0.71 (±0.93) | 0.90 (±1.45) | 0.74 (±0.70) | 0.43 (±0.76) | 0.8657 |
Propionic acid | 1.13 (±2.11) | 0.94 (±0.94) | 0.57 (±0.78) | 0.71 (±1.22) | 0.8678 | |
Butyric acid | 0.29 (±0.56) | 0.11 (±0.23) | 0.16 (±0.36) | <0.08 ** | 0.3378 | |
Valeric acid | 3.53 (±3.32) | 2.72 (±2.27) | 6.36 (±8.63) | 0.95 (±1.62) | 0.1518 |
Macronutrients | CO | GD | PD | PE | p-Value |
---|---|---|---|---|---|
Number of subjects | 26 | 10 | 4 | 6 | nd |
Energy Intake (kcal/day) | 2496.0 (±1214.0) | 1143.3 (±529.0) | 2562.0 (±1706.0) | 1892.0 (±828.3) | 0.0103 * |
Fat intake (g/day) | 74.9 (±55.4) | 39.0 (±27.2) | 77.0 (±102.1) | 58.6 (±49.2) | 0.3292 |
Carbohydrates intake (g/day) | 255.3 (±157.8) | 121.4 (±80.4) | 150.7 (±190.8) | 158.4 (±110.9) | 0.0480 * |
Protein intake (g/day) | 124.5 (±85.6) | 46.3 (±23.5) | 76.5 (±53.5) | 82.7 (±50.5) | 0.0243 * |
Total fiber intake (g/day) | 21.0 (±10.6) | 10.2 (±5.6) | 16.7 (±10.0) | 16.2 (±8.1) | 0.0170 * |
Cholesterol (g/day) | 62.1 (± 56.4) | 34.2 (±32.5) | 36.9 (±27.70) | 68.2 (±81.7) | 0.6719 |
Saturated fatty acids (g/day) | 19.0 (±13.4) | 10.0 (±8.3) | 9.0 (±4.302) | 15.7 (±16.0) | 0.3267 |
Monosaturated fatty acids (g/day) | 13.3 (± 9.8) | 6.4 (±5.8) | 5.3 (±1.8) | 7.3 (±4.6) | 0.1260 |
Polyunsaturated fatty acids (g/day) | 5.2 (±7.9) | 1.6 (±1.37) | 1.4 (±1.0) | 2.3 (±1.7) | 0.0505 |
Starch (g/day) | 27.3 (±28.8) | 11.1 (±20.7) | 1.9 (±0.8) | 29.0 (±29.4) | 0.0290 * |
Vegetable use (kcal/day) | 210.5 (±380.5) | 31.4 (±21.3) | 465.1 (±857.7) | 156.2 (±319.7) | 0.1477 |
Fruits and berries use (kcal/day) | 207.6 (±264.8) | 34.5 (±38.5) | 25.2 (±17.5) | 41.4 (±27.6) | 0.0550 |
Cereal (kcal/day) | 1018.0 (±443.5) | 552.2 (±257.0) | 1009.0 (±514.0) | 1035.0 (±456.5) | 0.0150 * |
Milk products (kcal/day) | 222.6 (±274.0) | 150.0 (±178.7) | 101.3 (±181.0) | 136.8 (±184.1) | 0.4649 |
Sour milk products (kcal/day) | 112.4 (±186.3) | 18.6 (±16.1) | 77.6 (±68.5) | 20.0 (±36.6) | 0.1176 |
Meat (kcal/day) | 163.4 (±192.3) | 103.0 (±144.0) | 77.9 (±79.6) | 124.4 (±191.2) | 0.9181 |
Sucrose (g/day) | 29.0 (±35.4) | 4.9 (±4.5) | 6.6 (±3.9) | 5.0 (±5.7) | 0.0303 * |
Fructose (g/day) | 7.8 (±8.5) | 2.3 (±2.6) | 1.1 (±0.2) | 3.1 (±2.9) | 0.0501 |
Glucose (g/day) | 4.5 (±4.0) | 1.8 (±2.3) | 0.7 (±0.2) | 2.4 (±2.6) | 0.0303 * |
Caffeine (mg/day) | 40.0 (±74.5) | 38.3 (±62.9) | 79.3 (±88.7) | 52.2 (±80.4) | 0.5784 |
Sodium (mg/day) | 1426.0 (±891.4) | 494.8 (±278.7) | 1225.0 (±1515) | 1589.0 (±1600.0) | 0.0093 * |
Parameter before Trimming | ||
Forward reads total | 4,711,327 | |
Forward reads mean | 87,246.80 | |
Min-Max forward reads | 5247–568,088 | |
Sequence length (median) | 173 nt | |
Samples with <10,000 reads | 8 | |
Parameter after trimming | ||
QS (median) | 32 | |
Total ASV counts | 2849 | |
Identified ASVs | 2668 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benítez-Guerrero, T.; Vélez-Ixta, J.M.; Juárez-Castelán, C.J.; Corona-Cervantes, K.; Piña-Escobedo, A.; Martínez-Corona, H.; De Sales-Millán, A.; Cruz-Narváez, Y.; Gómez-Cruz, C.Y.; Ramírez-Lozada, T.; et al. Gut Microbiota Associated with Gestational Health Conditions in a Sample of Mexican Women. Nutrients 2022, 14, 4818. https://doi.org/10.3390/nu14224818
Benítez-Guerrero T, Vélez-Ixta JM, Juárez-Castelán CJ, Corona-Cervantes K, Piña-Escobedo A, Martínez-Corona H, De Sales-Millán A, Cruz-Narváez Y, Gómez-Cruz CY, Ramírez-Lozada T, et al. Gut Microbiota Associated with Gestational Health Conditions in a Sample of Mexican Women. Nutrients. 2022; 14(22):4818. https://doi.org/10.3390/nu14224818
Chicago/Turabian StyleBenítez-Guerrero, Tizziani, Juan Manuel Vélez-Ixta, Carmen Josefina Juárez-Castelán, Karina Corona-Cervantes, Alberto Piña-Escobedo, Helga Martínez-Corona, Amapola De Sales-Millán, Yair Cruz-Narváez, Carlos Yamel Gómez-Cruz, Tito Ramírez-Lozada, and et al. 2022. "Gut Microbiota Associated with Gestational Health Conditions in a Sample of Mexican Women" Nutrients 14, no. 22: 4818. https://doi.org/10.3390/nu14224818
APA StyleBenítez-Guerrero, T., Vélez-Ixta, J. M., Juárez-Castelán, C. J., Corona-Cervantes, K., Piña-Escobedo, A., Martínez-Corona, H., De Sales-Millán, A., Cruz-Narváez, Y., Gómez-Cruz, C. Y., Ramírez-Lozada, T., Acosta-Altamirano, G., Sierra-Martínez, M., Zárate-Segura, P. B., & García-Mena, J. (2022). Gut Microbiota Associated with Gestational Health Conditions in a Sample of Mexican Women. Nutrients, 14(22), 4818. https://doi.org/10.3390/nu14224818