Effects of Native Whey Protein and Carbohydrate Supplement on Physical Performance and Plasma Markers of Muscle Damage and Inflammation during a Simulated Rugby Sevens Tournament: A Double-Blind, Randomized, Placebo-Controlled, Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Simulated Rugby 7s One-Day Tournament
2.4. Nutritional Strategies
- -
- A protein-carbohydrate drink (P-CHO), delivering 20 g of Pronativ® native whey proteins (Pronativ® native whey proteins, Lactalis Ingredients, Bourgbarré, France), 60 g of carbohydrates (50/50; glucose/maltodextrin) and 0.5 g of fat.
- -
- An isoenergetic carbohydrate drink (CHO), delivering 80 g of carbohydrates (50/50; glucose/maltodextrin) and 0.5 g of fat.
- -
- A nonenergetic placebo drink (PLA) with the same chocolate flavor.
2.5. Randomization, Blinding and Compliance
2.6. Diet Control
2.7. Performance Analysis
2.8. Physiological Load Quantification
2.9. Blood Analysis
2.10. Statistical Analysis
3. Results
3.1. Subjects and Dietary Intake
3.2. Physical Performances
3.2.1. Mean Power Output
3.2.2. High-Intensity Performance
3.2.3. Sprint Performance
3.3. Biomarkers of Muscle Damage and Inflammation
3.3.1. Creatine Phosphokinase (CPK)
3.3.2. Tumor Necrosis Factor-Alpha (TNF-Alpha)
3.3.3. Interleukin 1 Receptor Antagonist (IL-1ra)
3.3.4. Interleukin 6 (IL-6)
3.3.5. microRNA (miRNA)
3.3.6. Muscular microRNA (miR-1)
3.3.7. Inflammatory microRNA (miR-146a)
3.3.8. Cardiac microRNA (miR-208a)
3.4. Muscle Soreness
4. Discussion
5. Conclusions
Limits of the Study
6. Practical Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Smart, D.J.; Gill, N.D.; Beaven, C.M.; Cook, C.J.; Blazevich, A.J. The Relationship between Changes in Interstitial Creatine Kinase and Game-Related Impacts in Rugby Union. Br. J. Sports Med. 2008, 42, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Higham, D.G.; Pyne, D.B.; Anson, J.M.; Eddy, A. Movement Patterns in Rugby Sevens: Effects of Tournament Level, Fatigue and Substitute Players. J. Sci. Med. Sport 2012, 15, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; van Loon, L.J.C.; Hawley, J.A. Postexercise Muscle Glycogen Resynthesis in Humans. J. Appl. Physiol. (1985) 2017, 122, 1055–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maughan, R.J.; Shirreffs, S.M. Development of Hydration Strategies to Optimize Performance for Athletes in High-Intensity Sports and in Sports with Repeated Intense Efforts. Scand. J. Med. Sci. Sports 2010, 20 (Suppl. 2), 59–69. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, K.M.; Yaspelkis, B.B.; Ivy, J.L. Carbohydrate-Protein Complex Increases the Rate of Muscle Glycogen Storage after Exercise. J. Appl. Physiol. 1992, 72, 1854–1859. [Google Scholar] [CrossRef]
- Ivy, J.L.; Goforth, H.W.; Damon, B.M.; McCauley, T.R.; Parsons, E.C.; Price, T.B. Early Postexercise Muscle Glycogen Recovery Is Enhanced with a Carbohydrate-Protein Supplement. J. Appl. Physiol. 2002, 93, 1337–1344. [Google Scholar] [CrossRef]
- Phillips, S.M.; Van Loon, L.J.C. Dietary Protein for Athletes: From Requirements to Optimum Adaptation. J. Sports Sci. 2011, 29 (Suppl. 1), S29–S38. [Google Scholar] [CrossRef]
- Babault, N.; Deley, G.; Le Ruyet, P.; Morgan, F.; Allaert, F.A. Effects of Soluble Milk Protein or Casein Supplementation on Muscle Fatigue Following Resistance Training Program: A Randomized, Double-Blind, and Placebo-Controlled Study. J. Int. Soc. Sports Nutr. 2014, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Vicencio, S.; Ratel, S.; Gryson, C.; Masgrau, A.; Piponnier, E.; Brasy, J.; Ruyet, P.L.; Bucas, M.; Barachon, N.; Visseaux, V.; et al. A Moderate Supplementation of Native Whey Protein Promotes Better Muscle Training and Recovery Adaptations Than Standard Whey Protein-A 12-Week Electrical Stimulation and Plyometrics Training Study. Front. Physiol. 2018, 9, 1312. [Google Scholar] [CrossRef]
- Romano-Ely, B.C.; Todd, M.K.; Saunders, M.J.; Laurent, T.S. Effect of an Isocaloric Carbohydrate-Protein-Antioxidant Drink on Cycling Performance. Med. Sci. Sports Exerc. 2006, 38, 1608–1616. [Google Scholar] [CrossRef]
- Saunders, M.J.; Kane, M.D.; Todd, M.K. Effects of a Carbohydrate-Protein Beverage on Cycling Endurance and Muscle Damage. Med. Sci. Sports Exerc. 2004, 36, 1233–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, M.J. Coingestion of Carbohydrate-Protein during Endurance Exercise: Influence on Performance and Recovery. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, S87–S103. [Google Scholar] [CrossRef] [PubMed]
- Breen, L.; Tipton, K.D.; Jeukendrup, A.E. No Effect of Carbohydrate-Protein on Cycling Performance and Indices of Recovery. Med. Sci. Sports Exerc. 2010, 42, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Poulios, A.; Georgakouli, K.; Draganidis, D.; Deli, C.K.; Tsimeas, P.D.; Chatzinikolaou, A.; Papanikolaou, K.; Batrakoulis, A.; Mohr, M.; Jamurtas, A.Z.; et al. Protein-Based Supplementation to Enhance Recovery in Team Sports: What Is the Evidence? J. Sports Sci. Med. 2019, 18, 523–536. [Google Scholar] [PubMed]
- Hansen, M.; Bangsbo, J.; Jensen, J.; Bibby, B.M.; Madsen, K. Effect of Whey Protein Hydrolysate on Performance and Recovery of Top-Class Orienteering Runners. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 97–109. [Google Scholar] [CrossRef]
- Bradley, P.S.; Di Mascio, M.; Bangsbo, J.; Krustrup, P. The Maximal and Sub-Maximal Versions of the Yo-Yo Intermittent Endurance Test Level 2 Are Simply Reproducible, Sensitive and Valid. Eur. J. Appl. Physiol. 2012, 112, 1973–1975. [Google Scholar] [CrossRef]
- Furlan, N.; Waldron, M.; Shorter, K.; Gabbett, T.J.; Mitchell, J.; Fitzgerald, E.; Osborne, M.A.; Gray, A.J. Running-Intensity Fluctuations in Elite Rugby Sevens Performance. Int. J. Sports Physiol. Perform. 2015, 10, 802–807. [Google Scholar] [CrossRef]
- Dziedzic, C.E.; Higham, D.G. Performance nutrition guidelines for international rugby sevens tournaments. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 305–314. [Google Scholar] [CrossRef]
- Gaudino, P.; Iaia, F.M.; Alberti, G.; Hawkins, R.D.; Strudwick, A.J.; Gregson, W. Systematic Bias between Running Speed and Metabolic Power Data in Elite Soccer Players: Influence of Drill Type. Int. J. Sports Med. 2014, 35, 489–493. [Google Scholar] [CrossRef]
- Krustrup, P.; Mohr, M.; Nybo, L.; Jensen, J.M.; Nielsen, J.J.; Bangsbo, J. The Yo-Yo IR2 Test: Physiological Response, Reliability, and Application to Elite Soccer. Med. Sci. Sports Exerc. 2006, 38, 1666–1673. [Google Scholar] [CrossRef]
- Rostgaard, T.; Iaia, F.M.; Simonsen, D.S.; Bangsbo, J. A Test to Evaluate the Physical Impact on Technical Performance in Soccer. J. Strength Cond. Res. 2008, 22, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baggish, A.L.; Park, J.; Min, P.-K.; Isaacs, S.; Parker, B.A.; Thompson, P.D.; Troyanos, C.; D’Hemecourt, P.; Dyer, S.; Thiel, M.; et al. Rapid Upregulation and Clearance of Distinct Circulating microRNAs after Prolonged Aerobic Exercise. J. Appl. Physiol. 2014, 116, 522–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, S.; Åkerström, T.; Rinnov, A.; Yfanti, C.; Scheele, C.; Pedersen, B.K.; Laye, M.J. The MiRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training. PLoS ONE 2014, 9, e87308. [Google Scholar] [CrossRef] [PubMed]
- Wardle, S.L.; Bailey, M.E.S.; Kilikevicius, A.; Malkova, D.; Wilson, R.H.; Venckunas, T.; Moran, C.N. Plasma microRNA Levels Differ between Endurance and Strength Athletes. PLoS ONE 2015, 10, e0122107. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Lee, E.J.; Jiang, J.; Sarkar, A.; Yang, L.; Elton, T.S.; Chen, C. Real-Time PCR Quantification of Precursor and Mature microRNA. Methods 2008, 44, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Gilson, S.F.; Saunders, M.J.; Moran, C.W.; Moore, R.W.; Womack, C.J.; Todd, M.K. Effects of Chocolate Milk Consumption on Markers of Muscle Recovery Following Soccer Training: A Randomized Cross-over Study. J. Int. Soc. Sports Nutr. 2010, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Cockburn, E.; Bell, P.G.; Stevenson, E. Effect of Milk on Team Sport Performance after Exercise-Induced Muscle Damage. Med. Sci. Sports Exerc. 2013, 45, 1585–1592. [Google Scholar] [CrossRef]
- Gentle, H.L.; Love, T.D.; Howe, A.S.; Black, K.E. A Randomised Trial of Pre-Exercise Meal Composition on Performance and Muscle Damage in Well-Trained Basketball Players. J. Int. Soc. Sports Nutr. 2014, 11, 33. [Google Scholar] [CrossRef]
- Naclerio, F.; Larumbe-Zabala, E.; Cooper, R.; Allgrove, J.; Earnest, C.P. A Multi-Ingredient Containing Carbohydrate, Proteins L-Glutamine and L-Carnitine Attenuates Fatigue Perception with No Effect on Performance, Muscle Damage or Immunity in Soccer Players. PLoS ONE 2015, 10, e0125188. [Google Scholar] [CrossRef]
- Naclerio, F.; Larumbe-Zabala, E.; Cooper, R.; Jimenez, A.; Goss-Sampson, M. Effect of a Carbohydrate-Protein Multi-Ingredient Supplement on Intermittent Sprint Performance and Muscle Damage in Recreational Athletes. Appl. Physiol. Nutr. Metab. 2014, 39, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Gaitanos, G.C.; Williams, C.; Boobis, L.H.; Brooks, S. Human Muscle Metabolism during Intermittent Maximal Exercise. J. Appl. Physiol. 1993, 75, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parolin, M.L.; Chesley, A.; Matsos, M.P.; Spriet, L.L.; Jones, N.L.; Heigenhauser, G.J. Regulation of Skeletal Muscle Glycogen Phosphorylase and PDH during Maximal Intermittent Exercise. Am. J. Physiol. 1999, 277, E890–E900. [Google Scholar] [CrossRef] [PubMed]
- Smiles, W.J.; Hawley, J.A.; Camera, D.M. Effects of Skeletal Muscle Energy Availability on Protein Turnover Responses to Exercise. J. Exp. Biol. 2016, 219, 214–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.-C.; Chang, Y.-C.; Chen, Y.-M.; Hsu, Y.-J.; Huang, C.-C.; Kan, N.-W.; Chen, S.-S. Whey Protein Improves Marathon-Induced Injury and Exercise Performance in Elite Track Runners. Int. J. Med. Sci. 2017, 14, 648–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sports Sci. 2011, 29 (Suppl. 1), S17–S27. [Google Scholar] [CrossRef]
- Kato, H.; Suzuki, K.; Bannai, M.; Moore, D.R. Protein Requirements Are Elevated in Endurance Athletes after Exercise as Determined by the Indicator Amino Acid Oxidation Method. PLoS ONE 2016, 11, e0157406. [Google Scholar] [CrossRef] [Green Version]
- Atherton, P.J.; Smith, K. Muscle protein synthesis in response to nutrition and exercise. J. Physiol. 2012, 590, 1049–1057. [Google Scholar] [CrossRef] [Green Version]
- Morton, R.W.; McGlory, C.; Phillips, S.M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front. Physiol. 2015, 6, 245. [Google Scholar] [CrossRef]
- Toft, A.D.; Jensen, L.B.; Bruunsgaard, H.; Ibfelt, T.; Halkjaer-Kristensen, J.; Febbraio, M.; Pedersen, B.K. Cytokine Response to Eccentric Exercise in Young and Elderly Humans. Am. J. Physiol. Cell Physiol. 2002, 283, C289–C295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, B.K.; Steensberg, A.; Schjerling, P. Exercise and Interleukin-6. Curr. Opin. Hematol. 2001, 8, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Meckel, Y.; Eliakim, A.; Seraev, M.; Zaldivar, F.; Cooper, D.M.; Sagiv, M.; Nemet, D. The Effect of a Brief Sprint Interval Exercise on Growth Factors and Inflammatory Mediators. J. Strength Cond. Res. 2009, 23, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwetsloot, K.A.; John, C.S.; Lawrence, M.M.; Battista, R.A.; Shanely, R.A. High-Intensity Interval Training Induces a Modest Systemic Inflammatory Response in Active, Young Men. J. Inflamm. Res. 2014, 7, 9–17. [Google Scholar] [CrossRef]
- Arent, S.M.; Senso, M.; Golem, D.L.; McKeever, K.H. The Effects of Theaflavin-Enriched Black Tea Extract on Muscle Soreness, Oxidative Stress, Inflammation, and Endocrine Responses to Acute Anaerobic Interval Training: A Randomized, Double-Blind, Crossover Study. J. Int. Soc. Sports Nutr. 2010, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Croft, L.; Bartlett, J.D.; MacLaren, D.P.M.; Reilly, T.; Evans, L.; Mattey, D.L.; Nixon, N.B.; Drust, B.; Morton, J.P. High-Intensity Interval Training Attenuates the Exercise-Induced Increase in Plasma IL-6 in Response to Acute Exercise. Appl. Physiol. Nutr. Metab. 2009, 34, 1098–1107. [Google Scholar] [CrossRef]
- Knab, A.M.; Nieman, D.C.; Gillitt, N.D.; Shanely, R.A.; Cialdella-Kam, L.; Henson, D.; Sha, W.; Meaney, M.P. Effects of a Freeze-Dried Juice Blend Powder on Exercise-Induced Inflammation, Oxidative Stress, and Immune Function in Cyclists. Appl. Physiol. Nutr. Metab. 2014, 39, 381–385. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Liu, Q.; Kurakake, S.; Okamura, N.; Kumae, T.; Umeda, T.; Sugawara, K. Impact of a Competitive Marathon Race on Systemic Cytokine and Neutrophil Responses. Med. Sci. Sports Exerc. 2003, 35, 348–355. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Totsuka, M.; Sato, K.; Sugawara, K. Systemic Inflammatory Response to Exhaustive Exercise. Cytokine Kinetics. Exerc. Immunol. Rev. 2002, 8, 6–48. [Google Scholar]
- Kerasioti, E.; Stagos, D.; Jamurtas, A.; Kiskini, A.; Koutedakis, Y.; Goutzourelas, N.; Pournaras, S.; Tsatsakis, A.M.; Kouretas, D. Anti-Inflammatory Effects of a Special Carbohydrate-Whey Protein Cake after Exhaustive Cycling in Humans. Food Chem. Toxicol. 2013, 61, 42–46. [Google Scholar] [CrossRef]
- Serrano, E.; Venegas, C.; Escames, G.; Sánchez-Muñoz, C.; Zabala, M.; Puertas, A.; de Haro, T.; Gutierrez, A.; Castillo, M.; Acuna-Castroviejo, D. Antioxidant Defence and Inflammatory Response in Professional Road Cyclists during a 4-Day Competition. J. Sports Sci. 2010, 28, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J.; Aboul-Enein, B.H.; Duchnik, E. Exercise-Induced Oxidative Stress and Melatonin Supplementation: Current Evidence. J. Physiol. Sci. 2021, 71, 27. [Google Scholar] [CrossRef] [PubMed]
- Ranchordas, M.K.; Dawson, J.T.; Russell, M. Practical Nutritional Recovery Strategies for Elite Soccer Players When Limited Time Separates Repeated Matches. J. Int. Soc. Sports Nutr. 2017, 14, 35. [Google Scholar] [CrossRef] [PubMed]
PLA | CHO | P-CHO | Statistic | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Quantitative | Qualitative | |
Macronutrients | ||||||||
Energy (Kcal) | 2656 | 559 | 3616 * | 512 | 3616 * | 512 | p < 0.001 | Most likely very large |
Kcal/kg | 32 | 7 | 43 * | 8 | 43 * | 8 | ||
Protein (g) | 157 | 32 | 152 | 23 | 207 *µ | 23 | p < 0.001 | Most likely very large |
g/kg | 1.9 | 0.4 | 1.9 | 0.4 | 2.6 *µ | 0.4 | ||
% energy intake | 23 | - | 17 | - | 23 | - | ||
Carbohydrate (g) | 359 | 104 | 564 * | 80 | 509 *£ | 80 | p < 0.001 | Most likely very large £ Most likely small |
g/kg | 4.2 | 1.1 | 7.1 * | 1.2 | 6.3 *£ | 1.1 | ||
% energy intake | 52 | - | 64 | - | 58 | - | ||
Lipid (g) | 74 | 26 | 74 | 26 | 74 | 26 | p = 1 | |
g/kg | 0.9 | 0.3 | 0.9 | 0.3 | 0.9 | 0.3 | ||
% energy intake | 25 | - | 19 | - | 19 | - | ||
Micronutrients | ||||||||
Vitamin C (mg) | 141 | 99 | 141 | 99 | 141 | 99 | p = 1 | |
Magnesium (mg) | 533 | 77 | 533 | 77 | 533 | 77 | p = 1 | |
Sodium (mg) | 3360 | 614 | 3360 | 614 | 3360 | 614 | p = 1 | |
Potassium (mg) | 4378 | 1142 | 4378 | 1142 | 4378 | 1142 | p = 1 | |
Iron (mg) | 22 | 4 | 22 | 4 | 22 | 4 | p = 1 |
PRE | POST | POST6 | POST12 | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
CPK (IU·L−1) | ||||||||
PLA | 271 | 184 | 1043 # Large | 522 | 1245 # Large | 617 | 1010 # Large | 554 |
CHO | 253 | 114 | 915 # Very large | 757 | 1011 # Very large | 574 | 810 # Very large | 516 |
P-CHO | 165 | 95 | 1073 # Very large | 1239 | 964 #* # Very large * Moderate | 837 | 1000 # Very large | 865 |
TNF-α (pg·mL−1) | ||||||||
PLA | 0.97 | 0.1 | 0.78 # Large | 0.1 | 0.83 # Large | 0.1 | 1.01 # Small | 0.1 |
CHO | 0.99 | 0.1 | 0.79 # Large | 0.1 | 0.86 # Moderate | 0.1 | 1.01 | 0.1 |
P-CHO | 0.97 | 0.1 | 0.78 # Large | 0.1 | 0.82 # Large | 0.1 | 0.97 | 0.1 |
IL-1ra (pg·mL−1) | ||||||||
PLA | 218.9 | 69.3 | 450.1 # Large | 187.1 | 386.2 # Large | 120.2 | 260.2 # Small | 93.0 |
CHO | 210.7 | 64.7 | 391.8 # Large | 131.7 | 334.2 #* # Large * Small | 103.7 | 220.9 * * Small | 66.6 |
P-CHO | 210.0 | 60.2 | 419.4 # Very large | 189.9 | 332.0 #* # Large * Small | 116.1 | 208.8 * * Small | 56.6 |
IL-6 (pg·mL−1) | ||||||||
PLA | 4.7 | 8.2 | 10.8 # Moderate | 6.9 | 5.9 # Small | 8.0 | 5.7 # Small | 7.9 |
CHO | 4.0 | 7.3 | 8.9 # Moderate | 6.9 | 5.5 # Small | 7.2 | 6.0 # Small | 8.9 |
P-CHO | 3.5 | 6.7 | 9.2 # Moderate | 6.7 | 5.0 # Small | 6.5 | 4.1 *£ * Small £ Small | 6.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabre, M.; Mathieu, B.; Tiollier, E.; Leduc, C.; Clauss, M.; Marchand, A.; Robineau, J.; Piscione, J.; Serenari, T.; Brasy, J.; et al. Effects of Native Whey Protein and Carbohydrate Supplement on Physical Performance and Plasma Markers of Muscle Damage and Inflammation during a Simulated Rugby Sevens Tournament: A Double-Blind, Randomized, Placebo-Controlled, Crossover Study. Nutrients 2022, 14, 4780. https://doi.org/10.3390/nu14224780
Fabre M, Mathieu B, Tiollier E, Leduc C, Clauss M, Marchand A, Robineau J, Piscione J, Serenari T, Brasy J, et al. Effects of Native Whey Protein and Carbohydrate Supplement on Physical Performance and Plasma Markers of Muscle Damage and Inflammation during a Simulated Rugby Sevens Tournament: A Double-Blind, Randomized, Placebo-Controlled, Crossover Study. Nutrients. 2022; 14(22):4780. https://doi.org/10.3390/nu14224780
Chicago/Turabian StyleFabre, Marina, Bertrand Mathieu, Eve Tiollier, Cédric Leduc, Matthieu Clauss, Alexandre Marchand, Julien Robineau, Julien Piscione, Tanguy Serenari, Jacqueline Brasy, and et al. 2022. "Effects of Native Whey Protein and Carbohydrate Supplement on Physical Performance and Plasma Markers of Muscle Damage and Inflammation during a Simulated Rugby Sevens Tournament: A Double-Blind, Randomized, Placebo-Controlled, Crossover Study" Nutrients 14, no. 22: 4780. https://doi.org/10.3390/nu14224780
APA StyleFabre, M., Mathieu, B., Tiollier, E., Leduc, C., Clauss, M., Marchand, A., Robineau, J., Piscione, J., Serenari, T., Brasy, J., Guerville, M., Ligneul, A., & Bigard, X. (2022). Effects of Native Whey Protein and Carbohydrate Supplement on Physical Performance and Plasma Markers of Muscle Damage and Inflammation during a Simulated Rugby Sevens Tournament: A Double-Blind, Randomized, Placebo-Controlled, Crossover Study. Nutrients, 14(22), 4780. https://doi.org/10.3390/nu14224780