The Dietary Inflammatory Index Is Associated with Subclinical Mastitis in Lactating European Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Collection of Human Milk Samples
2.3. SCM Assessment
2.4. Dietary Intake Assessment
2.5. DII Assessment Method
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fetherston, C. Risk factors for lactation mastitis. J. Hum. Lact. 1998, 14, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Gomo, E.; Filteau, S.M.; Tomkins, A.M.; Ndhlovu, P.; Michaelsen, K.F.; Friis, H. Subclinical mastitis among HIV-infected and uninfected Zimbabwean women participating in a multimicronutrient supplementation trial. Trans. R. Soc. Trop. Med. Hyg. 2003, 97, 212–216. [Google Scholar] [CrossRef]
- Li, C.; Solomons, N.W.; Scott, M.E.; Koski, K.G. Anthropometry before Day 46 and Growth Velocity before 6 Months of Guatemalan Breastfed Infants Are Associated with Subclinical Mastitis and Milk Cytokines, Minerals, and Trace Elements. J. Nutr. 2019, 149, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Samuel, T.M.; De Castro, C.A.; Dubascoux, S.; Affolter, M.; Giuffrida, F.; Billeaud, C.; Picaud, J.-C.; Agosti, M.; Al-Jashi, I.; Pereira, A.B.; et al. Subclinical Mastitis in a European Multicenter Cohort: Prevalence, Impact on Human Milk (HM) Composition, and Association with Infant HM Intake and Growth. Nutrients 2019, 12, 105. [Google Scholar] [CrossRef] [Green Version]
- Atakisi, O.; Oral, H.; Atakisi, E.; Merhan, O.; Metin Pancarci, S.; Ozcan, A.; Marasli, S.; Polat, B.; Colak, A.; Kaya, S. Subclinical mastitis causes alterations in nitric oxide, total oxidant and antioxidant capacity in cow milk. Res. Vet. Sci. 2010, 89, 10–13. [Google Scholar] [CrossRef]
- Lo, Y.Y.; Wong, J.M.; Cruz, T.F. Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J. Biol. Chem. 1996, 271, 15703–15707. [Google Scholar] [CrossRef] [Green Version]
- Singh, U.; Devaraj, S. Vitamin E: Inflammation and atherosclerosis. Vitam. Horm. 2007, 76, 519–549. [Google Scholar] [CrossRef]
- Zhao, X.J.; Li, Z.P.; Wang, J.H.; Xing, X.M.; Wang, Z.Y.; Wang, L.; Wang, Z.H. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows. J. Vet. Sci. 2015, 16, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Li, X. Role of antioxidant vitamins and trace elements in mastitis in dairy cows. J. Adv. Vet. Anim. Res. 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Das, U.N.; Stefanadis, C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J. Am. Coll. Cardiol. 2004, 44, 152–158. [Google Scholar] [CrossRef]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [Green Version]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am. J. Clin. Nutr. 2006, 84, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Pantalena, L.C.; Liu, X.K.; Gaffen, S.L.; Liu, H.; Rohowsky-Kochan, C.; Ichiyama, K.; Yoshimura, A.; Steinman, L.; Christakos, S.; et al. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol. Cell Biol. 2011, 31, 3653–3669. [Google Scholar] [CrossRef] [Green Version]
- Claycombe, K.J.; Brissette, C.A.; Ghribi, O. Epigenetics of inflammation, maternal infection, and nutrition. J. Nutr. 2015, 145, 1109s–1115s. [Google Scholar] [CrossRef] [Green Version]
- Pal-Bhadra, M.; Ramaiah, M.J.; Reddy, T.L.; Krishnan, A.; Pushpavalli, S.N.; Babu, K.S.; Tiwari, A.K.; Rao, J.M.; Yadav, J.S.; Bhadra, U. Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1 by altering chromatin of STAT response element in A375 cells. BMC Cancer 2012, 12, 180. [Google Scholar] [CrossRef] [Green Version]
- Van Herpen-Broekmans, W.M.; Klopping-Ketelaars, I.A.; Bots, M.L.; Kluft, C.; Princen, H.; Hendriks, H.F.; Tijburg, L.B.; van Poppel, G.; Kardinaal, A.F. Serum carotenoids and vitamins in relation to markers of endothelial function and inflammation. Eur. J. Epidemiol. 2004, 19, 915–921. [Google Scholar] [CrossRef]
- Devaraj, S.; Jialal, I. Alpha tocopherol supplementation decreases serum C-reactive protein and monocyte interleukin-6 levels in normal volunteers and type 2 diabetic patients. Free Radic. Biol. Med. 2000, 29, 790–792. [Google Scholar] [CrossRef]
- Dibaba, D.T.; Xun, P.; He, K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: Meta-analysis and systematic review. Eur. J. Clin. Nutr. 2015, 69, 409. [Google Scholar] [CrossRef] [Green Version]
- Wannamethee, S.G.; Lowe, G.D.; Rumley, A.; Bruckdorfer, K.R.; Whincup, P.H. Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am. J. Clin. Nutr. 2006, 83, 567–574; quiz 726–727. [Google Scholar] [CrossRef] [Green Version]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hebert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Schneider, A.; Hebert, J.R.; Koenig, W.; Peters, A.; Thorand, B. Association between dietary inflammatory index, and cause-specific mortality in the MONICA/KORA Augsburg Cohort Study. Eur. J. Public Health 2018, 28, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabung, F.K.; Steck, S.E.; Ma, Y.; Liese, A.D.; Zhang, J.; Caan, B.; Hou, L.; Johnson, K.C.; Mossavar-Rahmani, Y.; Shivappa, N.; et al. The association between dietary inflammatory index and risk of colorectal cancer among postmenopausal women: Results from the Women’s Health Initiative. Cancer Causes Control. 2015, 26, 399–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahid, F.; Shivappa, N.; Faghfoori, Z.; Khodabakhshi, A.; Zayeri, F.; Hebert, J.R.; Davoodi, S.H. Validation of a Dietary Inflammatory Index (DII) and Association with Risk of Gastric Cancer: A Case-Control Study. Asian Pac. J. Cancer Prev. 2018, 19, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.D.; Shivappa, N.; Davis, L.; Hurley, T.G.; Ortaglia, A.; Drayton, R.; Blair, S.N.; Hebert, J.R. Construct Validation of the Dietary Inflammatory Index among African Americans. J. Nutr. Health Aging 2017, 21, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, H.M.; Brantsaeter, A.L.; Ydersbond, T.A.; Alexander, J.; Haugen, M. Methodological challenges when monitoring the diet of pregnant women in a large study: Experiences from the Norwegian Mother and Child Cohort Study (MoBa). Matern. Child Nutr. 2008, 4, 14–27. [Google Scholar] [CrossRef]
- Aryeetey, R.N.; Marquis, G.S.; Brakohiapa, L.; Timms, L.; Lartey, A. Subclinical mastitis may not reduce breastmilk intake during established lactation. Breastfeed. Med. 2009, 4, 161–166. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef] [Green Version]
- Aryeetey, R.N.; Marquis, G.S.; Timms, L.; Lartey, A.; Brakohiapa, L. Subclinical mastitis is common among Ghanaian women lactating 3 to 4 months postpartum. J. Hum. Lact. 2008, 24, 263–267. [Google Scholar] [CrossRef]
- Filteau, S.M.; Rice, A.L.; Ball, J.J.; Chakraborty, J.; Stoltzfus, R.; de Francisco, A.; Willumsen, J.F. Breast milk immune factors in Bangladeshi women supplemented postpartum with retinol or beta-carotene. Am. J. Clin. Nutr. 1999, 69, 953–958. [Google Scholar] [CrossRef]
- Tuaillon, E.; Viljoen, J.; Dujols, P.; Cambonie, G.; Rubbo, P.A.; Nagot, N.; Bland, R.M.; Badiou, S.; Newell, M.L.; Van de Perre, P. Subclinical mastitis occurs frequently in association with dramatic changes in inflammatory/anti-inflammatory breast milk components. Pediatr. Res. 2017, 81, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Pachikian, B.D.; Neyrinck, A.M.; Deldicque, L.; De Backer, F.C.; Catry, E.; Dewulf, E.M.; Sohet, F.M.; Bindels, L.B.; Everard, A.; Francaux, M.; et al. Changes in intestinal bifidobacteria levels are associated with the inflammatory response in magnesium-deficient mice. J. Nutr. 2010, 140, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Khan, M.Z.; Ma, Y.; Alugongo, G.M.; Ma, J.; Chen, T.; Khan, A.; Cao, Z. The Antioxidant Properties of Selenium and Vitamin E; Their Role in Periparturient Dairy Cattle Health Regulation. Antioxidants 2021, 10, 1555. [Google Scholar] [CrossRef]
- Salman, S.; Khol-Parisini, A.; Schafft, H.; Lahrssen-Wiederholt, M.; Hulan, H.W.; Dinse, D.; Zentek, J. The role of dietary selenium in bovine mammary gland health and immune function. Anim. Health Res. Rev. 2009, 10, 21–34. [Google Scholar] [CrossRef]
- Ganda, E.K.; Bisinotto, R.S.; Vasquez, A.K.; Teixeira, A.G.V.; Machado, V.S.; Foditsch, C.; Bicalho, M.; Lima, F.S.; Stephens, L.; Gomes, M.S.; et al. Effects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts. J. Dairy Sci. 2016, 99, 7319–7329. [Google Scholar] [CrossRef] [Green Version]
- Machado, V.S.; Bicalho, M.L.S.; Pereira, R.V.; Caixeta, L.S.; Knauer, W.A.; Oikonomou, G.; Gilbert, R.O.; Bicalho, R.C. Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on the health and production of lactating Holstein cows. Vet. J. 2013, 197, 451–456. [Google Scholar] [CrossRef]
- Arsenault, J.E.; Aboud, S.; Manji, K.P.; Fawzi, W.W.; Villamor, E. Vitamin Supplementation Increases Risk of Subclinical Mastitis in HIV-Infected Women. J. Nutr. 2010, 140, 1788–1792. [Google Scholar] [CrossRef] [Green Version]
- Filteau, S.M.; Lietz, G.; Mulokozi, G.; Bilotta, S.; Henry, C.J.; Tomkins, A.M. Milk cytokines and subclinical breast inflammation in Tanzanian women: Effects of dietary red palm oil or sunflower oil supplementation. Immunology 1999, 97, 595–600. [Google Scholar] [CrossRef]
- Mumtaz, S.; Mumtaz, S.; Ali, S.; Tahir, H.M.; Kazmi, S.A.R.; Mughal, T.A.; Younas, M. Evaluation of antibacterial activity of vitamin C against human bacterial pathogens. Braz. J. Biol. 2021, 83, e247165. [Google Scholar] [CrossRef]
- Boix-Amorós, A.; Hernández-Aguilar, M.T.; Artacho, A.; Collado, M.C.; Mira, A. Human milk microbiota in sub-acute lactational mastitis induces inflammation and undergoes changes in composition, diversity and load. Sci. Rep. 2020, 10, 18521. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P. Nutrients and Oxidative Stress: Friend or Foe? Oxid. Med. Cell. Longev. 2018, 2018, 9719584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.; Paul, S.; Roy, S.; Sutradhar, H.; Bin Emran, T.; Nainu, F.; Khandaker, M.U.; Almalki, M.; Wilairatana, P.; Mubarak, M.S. Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. Molecules 2022, 27, 555. [Google Scholar] [CrossRef] [PubMed]
- Hindle, L.J.; Gitau, R.; Filteau, S.M.; Newens, K.J.; Osrin, D.; Costello, A.M.; Tomkins, A.M.; Vaidya, A.; Mahato, R.K.; Yadav, B.; et al. Effect of multiple micronutrient supplementation during pregnancy on inflammatory markers in Nepalese women. Am. J. Clin. Nutr. 2006, 84, 1086–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tertiles of the DII | ||||
---|---|---|---|---|
Characteristic | T1 Median (Min, Max) −1.20 (−3.52, 0.06) | T2 Median (Min, Max) 0.70 (0.07, 1.67) | T3 Median (Min, Max) 2.22 (1.68, 4.07) | p-Value b |
Sample size, n | 59 | 58 | 60 | |
Mean maternal age at delivery, years, mean (SD) | 31.9 (3.4) | 31.6 (4.4) | 30.9 (3.9) | 0.41 |
Country, n (%) | <0.01 | |||
Spain | 2 (3) | 7 (12) | 0 (0) | |
France | 18 (31) | 23 (40) | 25 (42) | |
Italy | 7 (12) | 2 (3) | 5 (8) | |
Norway | 6 (10) | 4 (7) | 0 (0) | |
Portugal | 13 (22) | 18 (31) | 26 (43) | |
Sweden | 13 (22) | 4 (7) | 4 (7) | |
Mean maternal pre-pregnancy BMI, kg/m2, mean (SD) | 22.7 (2.2) | 22.4 (2.4) | 22.5 (2.9) | 0.36 |
Number of years of education, n (%) | 0.01 | |||
<10 years | 17 (28) | 35 (61) | 26 (45) | |
>10 years | 42 (71) | 22 (40) | 32 (55) | |
Mode of delivery, n (%) | 0.30 | |||
Cesarean | 6 (10) | 10 (17) | 12 (20) | |
Vaginal | 53 (90) | 48 (83) | 48 (80) | |
Parity, n (%) | 0.73 | |||
Primiparous | 41 (69) | 35 (60) | 45 (75) | |
Multiparous | 18 (31) | 23 (40) | 15 (25) |
Geometric Mean (95% CI) a | Odds of Being below the DRV d | ||||||
---|---|---|---|---|---|---|---|
Nutrient Intake per Day | Women without SCM | Women with SCM | Difference b | p-Value c | Women without SCM | Women with SCM | p-Value e |
Energy, kcal | 2125 (2010–2246) | 1973 (1840–2114) | +152 | 0.07 | 2.7 | 4.2 | 0.85 |
Carbohydrates, g | 113.5 (106.3–121.1) | 110.7 (102–120.1) | +2.78 | 0.05 | 0.6 | 0.7 | 1 |
Proteins, g | 41.2 (38.9–43.7) | 41.3 (38.4–44.5) | −0.09 | 0.1 | 0 | 0.1 | 0.59 |
Fat, g | 38.2 (35.7–40.9) | 39.7 (36.5–43.2) | −1.46 | 0.52 | 0 | 0 | 1 |
Sugars, total, g | 45.2 (41.4–49.5) | 43.5 (38.9–48.7) | +1.73 | 0.09 | 0 | 0 | 1 |
Fiber, g | 10.2 (9.3–11.1) | 8.9 (7.9–9.9) | +1.32 | 0.01 | 3.3 | 5.5 | 0.27 |
SFA, g f | 14.6 (13.5–15.9) | 15.5 (14–17.1) | +0.83 | 0.77 | 0.1 | 0.2 | |
MUFA, g f | 13.4 (12.4–14.4) | 13.8 (12.5–15.1) | −0.37 | 0.46 | |||
PUFA, g f | 4.9 (4.5–5.3) | 5 (4.5–5.6) | −0.15 | 0.53 | |||
Cholesterol, mg | 139 (127.8–151.2) | 147.8 (133.1–164.2) | -8.84 | 0.83 | |||
18:2 n-6 (linoleic acid), g | 3.2 (2.9–3.5) | 3.3 (2.9–3.7) | −0.12 | 0.69 | 9.4 | 9.4 | |
18:3 n-3–3 (alpha linolenic acid), g | 0.43 (0.39–0.48) | 0.45 (0.4–0.52) | −0.02 | 0.77 | 6.4 | 3 | |
20:4 n-6 (arachidonic acid), g | 0.05 (0.04–0.05) | 0.06 (0.05–0.06) | −0.01 | 0.28 | |||
20:5 n-3 (eicosapentaenoic acid), g | 0.05 (0.04–0.08) | 0.06 (0.04–0.1) | −0.01 | 0.77 | |||
22:6 n-3 (docosahexaenoic acid), g | 0.08 (0.06–0.11) | 0.1 (0.07–0.14) | −0.01 | 0.74 | |||
Sum n-6 fatty acids, g | 1.65 (1.48–1.83) | 1.73 (1.52–1.98) | −0.08 | 0.77 | |||
Sum n-3 fatty acids, g | 10 (9.3–10.8) | 10.7 (9.7–11.8) | −0.66 | 0.84 | |||
Vitamin A, µg RE | 386.2 (337.1–442.4) | 356 (300–422) | +30.43 | 0.12 | 0.16 | 0.08 | 0.48 |
β-carotene, µg | 1161.5 (953.1–1415.4) | 908 (709–1163) | +253.28 | 0.04 | |||
Thiamin, mg | 0.8 (0.7–1) | 0.8 (0.6–0.9) | +0.08 | 0.08 | 0 | 0 | 1 |
Riboflavin, mg | 0.9 (0.8–1.1) | 0.9 (0.7–1) | +0.09 | 0.05 | 0.9 | 1.7 | 0.27 |
Niacin, mg | 10.5 (9.3–11.7) | 9.9 (8.6–11.5) | +0.53 | 0.14 | 0 | 0 | 1 |
Pantothenic acid, mg | 2.8 (2.6–3.2) | 2.6 (2.3–3) | +0.22 | 0.06 | 6.4 | 7.7 | 0.57 |
Vitamin B6, mg | 1 (0.9–1.1) | 0.9 (0.8–1) | +0.11 | 0.03 | 0.2 | 0.3 | 0.07 |
Folate, µg | 175 (155.3–197.3) | 154.8 (133.3–179.8) | +20.26 | 0.04 | 3 | 4.8 | 0.59 |
Vitamin B12, µg | 2.8 (2.4–3.3) | 2.4 (1.9–2.9) | +0.44 | 0.05 | 0.7 | 1.5 | 0.07 |
Vitamin C, mg | 60.3 (50.5–71.9) | 49.9 (40–62.3) | +10.35 | 0.05 | 2.3 | 4.8 | 0.59 |
Vitamin D, µg | 2.4 (2–2.8) | 2.4 (1.9–3) | −0.06 | 0.76 | 16.3 | 51 | 0.98 |
Vitamin E, mg | 6.5 (5.6–7.4) | 5.6 (4.7–6.7) | +0.85 | 0.05 | |||
Calcium, mg | 511.9 (460–569.5) | 435.3 (380.9–497.5) | +76.56 | 0.01 | 0.3 | 1 | 0.16 |
Iron, total, mg | 6 (5.2–6.9) | 5.7 (4.7–6.7) | +0.37 | 0.19 | 0.2 | 0.3 | 0.4 |
Magnesium, mg | 170 (155.4–186.1) | 152.6 (136.3–170.8) | +17.43 | 0.01 | 0.9 | 1.6 | 0.16 |
Selenium, µg | 73.7 (66.5–81.7) | 66.4 (58.4–75.5) | +7.33 | 0.03 | 0.1 | 0.2 | 0.27 |
Phosphorus, mg | 672.9 (632.7–715.8) | 632.1 (585.1–682.8) | +40.87 | 0.01 | 0 | 0 | 1 |
Manganese, mg | 1.6 (1.4–1.8) | 1.3 (1.1–1.5) | +0.27 | 0.01 | 1.4 | 2.5 | 0.18 |
Copper, mg | 0.8 (0.7–0.9) | 0.7 (0.6–0.9) | +0.07 | 0.06 | 1.2 | 3.3 | 0.07 |
Zinc, mg | 5.1 (4.6–5.6) | 4.8 (4.2–5.4) | +0.31 | 0.07 | 1.5 | 2.5 | 0.74 |
Iodine, µg | 77.3 (69–86.7) | 74.3 (64.4–85.7) | +3 | 0.19 | 6.4 | 6.4 | 0.59 |
Sodium, mg | 1270 (1160–1390) | 1290 (1160–1450) | −20 | 0.5 | 0.2 | 0.4 | 0.37 |
Potassium, mg | 1520 (1410–1640) | 1390 (1260–1520) | +130 | 0.01 | 7.7 | 9.4 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afeiche, M.C.; Iroz, A.; Thielecke, F.; De Castro, A.C.; Lefebvre, G.; Draper, C.F.; Martínez-Costa, C.; Haaland, K.; Marchini, G.; Agosti, M.; et al. The Dietary Inflammatory Index Is Associated with Subclinical Mastitis in Lactating European Women. Nutrients 2022, 14, 4719. https://doi.org/10.3390/nu14224719
Afeiche MC, Iroz A, Thielecke F, De Castro AC, Lefebvre G, Draper CF, Martínez-Costa C, Haaland K, Marchini G, Agosti M, et al. The Dietary Inflammatory Index Is Associated with Subclinical Mastitis in Lactating European Women. Nutrients. 2022; 14(22):4719. https://doi.org/10.3390/nu14224719
Chicago/Turabian StyleAfeiche, Myriam C., Alison Iroz, Frank Thielecke, Antonio C. De Castro, Gregory Lefebvre, Colleen F. Draper, Cecilia Martínez-Costa, Kirsti Haaland, Giovanna Marchini, Massimo Agosti, and et al. 2022. "The Dietary Inflammatory Index Is Associated with Subclinical Mastitis in Lactating European Women" Nutrients 14, no. 22: 4719. https://doi.org/10.3390/nu14224719
APA StyleAfeiche, M. C., Iroz, A., Thielecke, F., De Castro, A. C., Lefebvre, G., Draper, C. F., Martínez-Costa, C., Haaland, K., Marchini, G., Agosti, M., Domellöf, M., Rakza, T., Costeira, M. J., Vanpee, M., Billeaud, C., Picaud, J. -C., Hian, D. L. K., Liu, G., Shivappa, N., ... Samuel, T. M. (2022). The Dietary Inflammatory Index Is Associated with Subclinical Mastitis in Lactating European Women. Nutrients, 14(22), 4719. https://doi.org/10.3390/nu14224719