Usual Intake of Micronutrients and Prevalence of Inadequate Intake among Chinese Adults: Data from CNHS 2015–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Data Collection
2.3. Micronutrients Analysis
2.4. Usual Intake Estimation
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Subjects
3.2. Prevalence of Inadequacy Micronutrient Intakes in Chinese Adults
3.3. Distribution of Usual Mineral Intake, Prevalence of Inadequacy in Different Age–Sex Subgroups
3.4. Distribution of Usual Vitamin Intake, Prevalence of Inadequacy in Different Age–Sex Subgroups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2019, 396, 1223–1249. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. Int. Rev. J. 2013, 4, 176–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuenca-Micó, O.; Aceves, C. Micronutrients and Breast Cancer Progression: A Systematic Review. Nutrients 2020, 12, 3613. [Google Scholar] [CrossRef]
- Alexander, D.D.; Weed, D.L.; Chang, E.T.; Miller, P.E.; Mohamed, M.A.; Elkayam, L. A Systematic Review of Multivitamin–Multimineral Use and Cardiovascular Disease and Cancer Incidence and Total Mortality. J. Am. Coll. Nutr. 2013, 32, 339–354. [Google Scholar] [CrossRef]
- Webb, A.L.; Villamor, E. Update: Effects of Antioxidant and Non-Antioxidant Vitamin Supplementation on Immune Function. Nutr. Rev. 2008, 65, 181–217. [Google Scholar] [CrossRef]
- Olivares, M.; Hertrampf, E.; Capurro, M.; Wegner, D. Prevalence of anemia in elderly subjects living at home: Role of micronutrient deficiency and inflammation. Eur. J. Clin. Nutr. 2000, 54, 834–839. [Google Scholar] [CrossRef] [Green Version]
- Whalley, L.J.; Duthie, S.J.; Collins, A.R.; Starr, J.M.; Deary, I.J.; Lemmon, H.; Duthie, A.C.; Murray, A.D.; Staff, R.T. Homocysteine, antioxidant micronutrients and late onset dementia. Eur. J. Nutr. 2013, 53, 277–285. [Google Scholar] [CrossRef]
- Ströhle, A.; Zänker, K.; Hahn, A. Nutrition in oncology: The case of micronutrients (Review). Oncol. Rep. 2010, 24, 815–828. [Google Scholar] [CrossRef] [Green Version]
- Witte, K.K.; Nikitin, N.P.; Parker, A.C.; Von Haehling, S.; Volk, H.-D.; Anker, S.D.; Clark, A.L.; Cleland, J.G. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur. Heart J. 2005, 26, 2238–2244. [Google Scholar] [CrossRef]
- Ma, E.; Iso, H.; Yamagishi, K.; Ando, M.; Wakai, K.; Tamakoshi, A. Dietary Antioxidant Micronutrients and All-Cause Mortality: The Japan Collaborative Cohort Study for Evaluation of Cancer Risk. J. Epidemiol. 2018, 28, 388–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The Epidemiology of Global Micronutrient Deficiencies. Ann. Nutr. Metab. 2015, 66 (Suppl. 2), 22–33. [Google Scholar] [CrossRef] [PubMed]
- Tooze, J.A.; Midthune, D.; Dodd, K.W.; Freedman, L.S.; Krebs-Smith, S.M.; Subar, A.F.; Guenther, P.M.; Carroll, R.J.; Kipnis, V. A New Statistical Method for Estimating the Usual Intake of Episodically Consumed Foods with Application to Their Distribution. J. Am. Diet. Assoc. 2006, 106, 1575–1587. [Google Scholar] [CrossRef] [Green Version]
- Tooze, J.A.; Kipnis, V.; Buckman, D.W.; Carroll, R.J.; Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Dodd, K.W. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The NCI method. Stat. Med. 2010, 29, 2857–2868. [Google Scholar] [CrossRef] [Green Version]
- Herrick, K.A.; Rossen, L.M.; Parsons, R.; Dodd, K.W. Estimating Usual Dietary in Take from National Health and Nut rition Examination Survey Data Using the National Cancer Institute Method. Vital-Health Stat. Ser. 2 Data Eval. Methods Res. 2018, 178, 1–63. [Google Scholar]
- Birrell, C.L.; Neale, E.P.; Probst, Y.C. Usual intake of meat in Australians: Secondary analysis of the 2011–12 National Nutrition and Physical Activity Survey using the NCI method. J. Hum. Nutr. Diet. 2020, 33, 505–517. [Google Scholar] [CrossRef]
- Huang, K.; Yu, D.; Guo, Q.; Yang, Y.; Wei, X.; Zhao, L.; Fang, H. Validation of the MSM and NCI Method for Estimating the Usual Intake of Nutrients and Food According to Four Seasons of Seven Consecutive Daily 24 Hour Dietary Recalls in Chinese Adults. Nutrients 2022, 14, 445. [Google Scholar] [CrossRef]
- Zhao, F.; He, L.; Zhao, L.; Guo, Q.; Yu, D.; Ju, L.; Fang, H. The Status of Dietary Energy and Nutrients Intakes among Chinese Elderly Aged 80 and Above: Data from the CACDNS 2015. Nutrients 2021, 13, 1622. [Google Scholar] [CrossRef]
- Liu, A.; Han, A.; Chai, L. Assessing the Nutrient Adequacy in China’s Food Supply from 1965 to 2018. Nutrients 2021, 13, 2734. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; Ding, G. China Nutrition and Health Surveys (1982−2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhao, W. Status and trends in consumption of grains and dietary fiber among Chinese adults (1982–2015). Nutr. Rev. 2020, 78, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X. Chinese Food Composition Table, 2nd ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Yang, Y.X. Chinese Food Composition Table Standard Edition; Peking University Medical Press: Beijing, China, 2018. [Google Scholar]
- Society, C.N. Dietary Reference Intakes (2013); Science Press: Beijing, China, 2014. [Google Scholar]
- Fan, Y.; Liu, A.; He, Y.; Yang, X.; Xu, G.; Ma, G. Assessment of nutrient adequacy of adult residents in china. Acta. Nutr. Sin. 2012, 34, 15–19. [Google Scholar]
- Liu, Z.; Zhao, L.; Man, Q.; Wang, J.; Zhao, W.; Zhang, J. Dietary Micronutrients Intake Status among Chinese Elderly People Living at Home: Data from CNNHS 2010–2012. Nutrients 2019, 11, 1787. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, R.; Kato, Y.; Nishita, Y.; Tange, C.; Tomida, M.; Nakamoto, M.; Imai, T.; Ando, F.; Shimokata, H. Age-related changes in energy intake and weight in community-dwelling middle-aged and elderly Japanese. J. Nutr. Health Aging 2016, 20, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Zhang, B.; Wang, H.; Wang, Z.; Zhang, J.; Jiang, H.; Jia, X.; Huang, F. Milk consumption and effects on dietary calcium among Chinese aged 45 and above in 15 provinces, 2015. Wei Sheng Yan Jiu 2018, 47, 194–198. [Google Scholar]
- Fang, H.; Guo, Q.; Ju, L.; Li, S.; Xu, X.; Piao, W.; Yu, D.; Zhao, L. Weight Status and Self-Perception of Weight Among Women of Childbearing Age—China, 2015. China CDC Wkly. 2021, 3, 185–188. [Google Scholar] [CrossRef]
- Devarshi, P.P.; Legette, L.L.; Grant, R.W.; Mitmesser, S.H. Total estimated usual nutrient intake and nutrient status biomarkers in women of childbearing age and women of menopausal age. Am. J. Clin. Nutr. 2021, 113, 1042–1052. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agricultural Research Service. Nutrient Intakes from Food and Beverages: Mean Amounts Consumed per Individual, by Gender and Age, What We Eat in America, NHANES 2015–2016. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweia-data-tables/ (accessed on 2 October 2022).
- Gibson, R.S.; Bailey, K.B.; Gibbs, M.; Ferguson, E.L. A Review of Phytate, Iron, Zinc, and Calcium Concentrations in Plant-Based Complementary Foods Used in Low-Income Countries and Implications for Bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. [Google Scholar] [CrossRef]
- Lonnerdal, B. Dietary Factors Influencing Zinc Absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Li, Y.; Jin, Y.; Zhai, F.; Kok, F.J.; Yang, X. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. Eur. J. Clin. Nutr. 2006, 61, 368–374. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Issues New Guidance on Dietary Salt and Potassium. 2013. Available online: https://www.who.int/mediacentre/news/notes/2013/salt_potassium_20130131/en/ (accessed on 2 October 2022).
- Whelton, P.K. Sodium, Potassium, Blood Pressure, and Cardiovascular Disease in Humans. Curr. Hypertens. Rep. 2014, 16, 465. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Filippini, T.; Crippa, A.; de Sesmaisons, A.; Wise, L.; Orsini, N. Meta-Analysis of Potassium Intake and the Risk of Stroke. J. Am. Heart Assoc. 2016, 5, e004210. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; He, J.; Cutler, J.A.; Brancati, F.L.; Appel, L.J.; Follmann, D.; Klag, M.J. Effects of Oral Potassium on Blood Pressure. Meta-analysis of randomized controlled clinical trials. JAMA 1997, 277, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R.; Obarzanek, E.; Cutler, J.A.; Buring, J.E.; Rexrode, K.M.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K.; Trials of Hypertension Prevention Collaborative Research Group. Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease: The Trials of Hypertension Prevention Follow-up Study. Arch. Intern. Med. 2009, 169, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zhang, B.; Wang, H.; Wang, Z.; Wang, L.; Wang, S.; Hao, L.; Jiang, H. Status and trends in dietary vitamin intakes of adults aged 18 to 35 in 15 provinces (autonomous regions, municipalities) of China during 1989–2015. Wei Sheng Yan Jiu 2021, 50, 448–453. [Google Scholar] [CrossRef]
- Laureano, G.H.C.; Torman, V.B.L.; Crispim, S.P.; Dekkers, A.L.M.; Camey, S.A.; Laureano, G.H.C.; Torman, V.B.L.; Crispim, S.P.; Dekkers, A.L.M.; Camey, S.A. Comparison of the ISU, NCI, MSM, and SPADE Methods for Estimating Usual Intake: A Simulation Study of Nutrients Consumed Daily. Nutrients 2016, 8, 166. [Google Scholar] [CrossRef]
- Pereira, J.L.; de Castro, M.A.; Crispim, S.P.; Fisberg, R.M.; Isasi, C.R.; Mossavar-Rahmani, Y.; Van Horn, L.; Carnethon, M.R.; Daviglus, M.L.; Perreira, K.M.; et al. Comparing Methods from the National Cancer Institute vs Multiple Source Method for Estimating Usual Intake of Nutrients in the Hispanic Community Health Study/Study of Latino Youth. J. Acad. Nutr. Diet. 2020, 121, 59–73.e16. [Google Scholar] [CrossRef]
- Reider, C.A.; Chung, R.-Y.; Devarshi, P.P.; Grant, R.W.; Mitmesser, S.H. Inadequacy of Immune Health Nutrients: Intakes in US Adults, the 2005–2016 NHANES. Nutrients 2020, 12, 1735. [Google Scholar] [CrossRef]
- Zhao, L.; Fang, Y.; He, Y.; Yu, D.; Guo, Q.; Yu, W.; Fang, H.; Wang, X.; Zhao, W. Trends of food consumption among Chinese population in 1992–2012. Wei Sheng Yan Jiu 2016, 45, 522–526. [Google Scholar]
- Liu, S.; Yu, D.; Guo, Q.; Wang, X.; Xu, X.; Jia, F.; Li, J.; Zhao, L. Consumption status and trend of added sugar containing food among Chinese from 2002 to 2012. Wei Sheng Yan Jiu 2016, 45, 398–401. [Google Scholar]
- Guo, Q.; Yu, D.; Zhao, L.; Fang, H.; Ju, L.; Li, S. Status of fresh vegetables and fruit consumption among Chinese aged 60 years old and above in 2015. Wei Sheng Yan Jiu 2021, 50, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; He, Y.; Yu, D.; Guo, Q.; Wang, X.; Xu, X.; Zhao, L. Status and Changes of Edible Oil Consumption Among Chinese Residents. Food Nutr. China 2017, 23, 56–58. [Google Scholar]
- Liu, Z.; Pang, S.J.; Song, P.K.; Jia, S.S.; Zhang, J. Dietary calcium intake among Chinese elderly during 2010–2012. Acta Nu-Trimenta Sin. 2017, 39, 442–447+453. [Google Scholar]
- Kipnis, V.; Midthune, D.; Buckman, D.W.; Dodd, K.W.; Guenther, P.; Krebs-Smith, S.M.; Subar, A.F.; Tooze, J.A.; Carroll, R.; Freedman, L.S. Modeling Data with Excess Zeros and Measurement Error: Application to Evaluating Relationships between Episodically Consumed Foods and Health Outcomes. Biometrics 2009, 65, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (%) | Male (%) | Female (%) |
---|---|---|---|
Total | 72,231 (100) | 34,011 (47.09) | 38,220 (52.91) |
Age (year) | |||
18~49 | 29,900 (41.39) | 13,414 (39.44) | 16,486 (43.13) |
50~64 | 27,509 (38.08) | 12,909 (37.96) | 14,600 (38.2) |
65~79 | 13,412 (18.57) | 6951 (20.44) | 6461 (16.9) |
80~ | 1410 (1.95) | 737 (2.17) | 673 (1.76) |
Residence | |||
Urban | 29,359 (40.65) | 13,514 (39.73) | 15,845 (41.46) |
Rural | 42,872 (59.35) | 20,497 (60.27) | 22,375 (58.54) |
Education level | |||
Illiteracy | 20,607 (28.53) | 6539 (19.23) | 14,068 (36.81) |
Primary or middle school | 36,925 (51.12) | 19,469 (57.24) | 17,456 (45.67) |
High school or above | 14,699 (20.35) | 8003 (23.53) | 6696 (17.52) |
Household income level (CNY) | |||
<20,000 | 15,646 (21.66) | 7576 (22.28) | 8070 (21.11) |
20,000~50,000 | 24,367 (33.73) | 11,418 (33.57) | 12,949 (33.88) |
>50,000 | 20,437 (28.29) | 9587 (28.19) | 10,850 (28.39) |
Unclear | 11,781 (16.31) | 5430 (15.97) | 6351 (16.62) |
BMI (kg/m2) | |||
<18.5 | 2775 (3.84) | 1220 (3.59) | 1555 (4.07) |
18.5~23.9 | 33,778 (46.76) | 16,017 (47.09) | 17,761 (46.47) |
24~27.9 | 25,384 (35.14) | 12,224 (35.94) | 13,160 (34.43) |
28~ | 10,294 (14.25) | 4550 (13.38) | 5744 (15.03) |
Physical activity | |||
Low | 17,257 (23.89) | 9071 (26.67) | 8186 (21.42) |
Medium | 17914 (24.8) | 7788 (22.9) | 10,126 (26.49) |
High | 37,060 (51.31) | 17,152 (50.43) | 19,908 (52.09) |
Age Group | Calcium (mg/Day) | Iron (mg/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR * (SE) | Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR * (SE) | |
Males | ||||||||||
18~49 | 350.18 (4.59) | 244.4 (3.53) | 322.91 (4.16) | 425.07 (5.83) | 95.79 (0.41) | 18.91 (0.19) | 14.33 (0.17) | 17.93 (0.19) | 22.37 (0.23) | 1.84 (0.24) |
50~64 | 360.03 (4.66) | 252.42 (3.78) | 331.76 (4.44) | 436.48 (5.83) | 98.53 (0.16) | 18.72 (0.19) | 14.22 (0.15) | 17.74 (0.18) | 22.15 (0.23) | 1.99 (0.22) |
65~79 | 333.98 (5.09) | 233.15 (4.23) | 307.46 (4.9) | 404.63 (6.16) | 99.04 (0.12) | 16.54 (0.16) | 12.54 (0.12) | 15.67 (0.15) | 19.57 (0.19) | 4.76 (0.37) |
80~ | 304.94 (8.57) | 212.1 (6.16) | 280.25 (7.96) | 370.91 (10.85) | 99.49 (0.13) | 14.7 (0.32) | 11.12 (0.25) | 13.91 (0.31) | 17.43 (0.38) | 9.52 (1.22) |
Females | ||||||||||
18~49 | 306.65 (4.58) | 214.09 (2.83) | 282.51 (3.93) | 372.17 (6) | 98.01 (0.27) | 15.75 (0.14) | 11.94 (0.12) | 14.93 (0.14) | 18.65 (0.18) | 50.58 (1.1) |
50~64 | 313.68 (4.95) | 219.09 (3.42) | 288.96 (4.44) | 380.52 (6.36) | 99.39 (0.1) | 15.62 (0.15) | 11.84 (0.11) | 14.81 (0.14) | 18.49 (0.19) | 6.69 (0.43) |
65~79 | 290.26 (5.33) | 202.36 (3.81) | 266.99 (4.84) | 352.26 (6.66) | 99.65 (0.08) | 13.75 (0.13) | 10.4 (0.09) | 13.02 (0.11) | 16.3 (0.17) | 13.21 (0.6) |
80~ | 262.73 (7.58) | 182.86 (5.46) | 241.78 (7.05) | 317.86 (9.94) | 99.8 (0.06) | 12.12 (0.26) | 9.14 (0.2) | 11.48 (0.24) | 14.35 (0.3) | 23.55 (2.45) |
Total | 327.98 (3.94) | 227.55 (2.83) | 301.43 (3.51) | 398.63 (5.03) | 97.63 (0.25) | 17.02 (0.14) | 12.7 (0.11) | 16.05 (0.13) | 20.27 (0.17) | 19.41 (0.51) |
Age Group | Zinc (mg/Day) | Copper (mg/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (SE) | P25 (SE) | Median (SE) | P75 (SE) | %Below EAR * (SE) | Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR * (SE) | |
Males | ||||||||||
18~49 | 9.46 (0.29) * | 7.11 (0.49) * | 8.94 (0.38) * | 11.23 (0.27) * | 67.27 (2.97) | 1.49 (0.02) | 1.09 (0.02) | 1.4 (0.02) | 1.79 (0.03) | 1.16 (0.16) |
50~64 | 9.11 (0.76) * | 6.86 (0.87) | 8.61 (0.83) | 10.8 (0.75) * | 71.26 (7.24) | 1.47 (0.02) | 1.07 (0.01) | 1.38 (0.02) | 1.77 (0.02) | 1.26 (0.15) |
65~79 | 8.09 (0.58) | 6.08 (0.69) | 7.64 (0.65) | 9.59 (0.56) | 81.93 (3.66) | 1.35 (0.02) | 0.98 (0.01) | 1.26 (0.02) | 1.62 (0.02) | 2.33 (0.27) |
80~ | 7.32 (0.83) | 5.5 (0.84) | 6.91 (0.88) | 8.71 (0.91) | 88.56 (4.14) | 1.22 (0.02) | 0.89 (0.02) | 1.14 (0.02) | 1.47 (0.03) | 4.21 (0.58) |
Females | ||||||||||
18~49 | 7.67 (0.46) | 5.77 (0.12) | 7.25 (0.32) | 9.1 (0.67) | 30.59 (2.63) | 1.27 (0.02) | 0.92 (0.01) | 1.19 (0.01) | 1.52 (0.02) | 3.34 (0.29) |
50~64 | 7.4 (0.13) | 5.56 (0.19) | 7 (0.09) | 8.79 (0.27) | 34.32 (2.43) | 1.25 (0.01) | 0.91 (0.01) | 1.17 (0.01) | 1.5 (0.02) | 3.68 (0.31) |
65~79 | 6.56 (0.25) | 4.92 (0.09) | 6.19 (0.16) | 7.79 (0.41) | 48.33 (2.69) | 1.14 (0.01) | 0.83 (0.01) | 1.07 (0.01) | 1.37 (0.02) | 6.09 (0.48) |
80~ | 5.9 (0.24) | 4.42 (0.25) | 5.57 (0.25) | 6.98 (0.3) | 60.52 (4.67) | 1.03 (0.02) | 0.74 (0.02) | 0.96 (0.02) | 1.23 (0.02) | 10.36 (0.92) |
Total | 8.34 (0.12) | 6.14 (0.23) | 7.83 (0.15) | 9.98 (0.17) | 51.91 (1.71) | 1.36 (0.02) | 0.98 (0.01) | 1.27 (0.01) | 1.64 (0.02) | 2.58 (0.22) |
Age Group | Selenium (μg/Day) | Phosphorus (mg/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR * (SE) | Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR * (SE) | |
Males | ||||||||||
18~49 | 42.25 (0.82) | 28.76 (0.54) | 38.68 (0.7) | 51.73 (1.05) | 72.44 (1.56) | 877.78 (7.86) | 690.91 (7.31) | 844.63 (7.65) | 1026.77 (9.12) | 12.54 (0.79) |
50~64 | 38.87 (0.62) | 26.48 (0.52) | 35.51 (0.62) | 47.57 (0.78) | 78.57 (1.12) | 857.12 (7.79) | 675.91 (7.29) | 823.86 (7.94) | 1002.82 (8.88) | 14.22 (0.87) |
65~79 | 34.24 (0.49) | 23.16 (0.45) | 31.2 (0.52) | 41.87 (0.6) | 86.05 (0.69) | 771.61 (7.67) | 605.72 (6.86) | 741.08 (7.63) | 903.44 (8.87) | 22.29 (1.13) |
80~ | 31.96 (0.73) | 21.54 (0.57) | 29.1 (0.74) | 39.31 (0.92) | 89.16 (0.91) | 706.12 (11.36) | 552.23 (9.35) | 676.6 (11.05) | 828.83 (13.95) | 26.32 (1.68) |
Females | ||||||||||
18~49 | 34.16 (0.47) | 23.17 (0.27) | 31.2 (0.38) | 41.84 (0.61) | 86.2 (0.88) | 725.46 (5.64) | 569.04 (4.71) | 696.89 (5.52) | 850.57 (7.08) | 30.92 (0.92) |
50~64 | 31.04 (0.32) | 20.98 (0.28) | 28.31 (0.33) | 38.03 (0.41) | 90.39 (0.48) | 706.68 (5.62) | 553.72 (5.01) | 678.71 (5.61) | 828.7 (6.87) | 34.09 (1.07) |
65~79 | 27.28 (0.32) | 18.36 (0.28) | 24.81 (0.33) | 33.46 (0.41) | 94.49 (0.38) | 633.38 (5.84) | 494.35 (4.84) | 606.9 (5.82) | 743.86 (7.13) | 46.23 (1.26) |
80~ | 25.22 (0.59) | 16.9 (0.46) | 22.97 (0.54) | 30.74 (0.7) | 96.18 (0.56) | 574.89 (9.44) | 446.12 (7.94) | 551.01 (9.07) | 674.89 (11.46) | 52.34 (2.4) |
Total | 36.61 (0.5) | 24.32 (0.31) | 33.18 (0.42) | 45.08 (0.65) | 81.73 (0.93) | 785.07 (5.64) | 605.47 (4.86) | 750.82 (5.58) | 927.3 (6.88) | 23.78 (0.77) |
Age Group | Magnesium (mg/Day) | Manganese (mg/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR * (SE) | Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below AI * (SE) | |
Males | ||||||||||
18~49 | 268.3 (2.16) | 206.28 (2.06) | 255.48 (2.15) | 315.84 (2.5) | 61.36 (1.02) | 3.93 (0.04) | 2.69 (0.04) | 3.59 (0.04) | 4.78 (0.05) | 70.2 (0.85) |
50~64 | 275.04 (2.83) | 211.93 (2.38) | 261.86 (2.77) | 323.83 (3.35) | 58.45 (1.29) | 3.98 (0.04) | 2.73 (0.03) | 3.64 (0.04) | 4.84 (0.06) | 69.15 (0.9) |
65~79 | 249.9 (3.14) | 192.05 (2.65) | 237.7 (3.06) | 294.16 (3.64) | 65.66 (1.45) | 3.53 (0.05) | 2.42 (0.04) | 3.23 (0.04) | 4.3 (0.06) | 78.28 (0.9) |
80~ | 222.39 (3.84) | 170.79 (3.05) | 211.4 (3.59) | 262.33 (4.61) | 74.13 (1.68) | 3.16 (0.08) | 2.16 (0.06) | 2.88 (0.08) | 3.85 (0.09) | 84.89 (1.41) |
Females | ||||||||||
18~49 | 226.3 (1.71) | 173.86 (1.47) | 215.35 (1.62) | 266.65 (2.16) | 79.68 (0.74) | 3.29 (0.03) | 2.26 (0.02) | 3.01 (0.03) | 4.02 (0.04) | 82.68 (0.71) |
50~64 | 231.55 (2.54) | 178 (2.04) | 220.5 (2.39) | 272.67 (3.11) | 77.61 (1.09) | 3.35 (0.04) | 2.29 (0.02) | 3.06 (0.03) | 4.08 (0.06) | 81.74 (0.91) |
65~79 | 209.54 (2.6) | 160.78 (2.1) | 199.19 (2.48) | 247.05 (3) | 83.01 (1.04) | 2.96 (0.04) | 2.02 (0.03) | 2.7 (0.04) | 3.61 (0.05) | 88.4 (0.77) |
80~ | 185.26 (3.43) | 141.92 (2.69) | 176.07 (3.24) | 218.53 (4.15) | 88.81 (1.13) | 2.62 (0.06) | 1.78 (0.05) | 2.39 (0.06) | 3.19 (0.07) | 92.98 (0.68) |
Total | 246.22 (1.78) | 186.78 (1.57) | 233.46 (1.72) | 291.54 (2.13) | 70.5 (0.78) | 3.57 (0.03) | 2.42 (0.02) | 3.25 (0.03) | 4.37 (0.04) | 77.09 (0.65) |
Age Group | Sodium (mg/Day) | Potassium (mg/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below AI * (SE) | Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below AI * (SE) | |
Males | ||||||||||
18~49 | 5721.7 (63.5) | 3503.7 (55.9) | 5209.6 (63.9) | 7368.9 (78.2) | 3.22 (0.3) | 1615.7 (17.4) | 1225.8 (16.4) | 1538.6 (17.4) | 1918.1 (20) | 78.9 (0.92) |
50~64 | 5765.4 (62.5) | 3546.7 (49.5) | 5253.1 (55.7) | 7428.1 (77.9) | 2.56 (0.25) | 1585.1 (15.1) | 1205.9 (14.8) | 1507.9 (15.7) | 1880.8 (17.3) | 80.65 (0.76) |
65~79 | 5216.4 (80.5) | 3129.6 (58.3) | 4716.7 (70.5) | 6749 (106.9) | 3.99 (0.31) | 1444.3 (13.4) | 1092.3 (13.5) | 1371.9 (13.8) | 1714.7 (14.9) | 87.31 (0.56) |
80~ | 4576.2 (126.3) | 2651.4 (93.7) | 4091.7 (125.5) | 5991.6 (152.8) | 5.63 (0.75) | 1272.1 (26.8) | 956 (21.1) | 1205.6 (25.6) | 1516 (32.7) | 93.43 (0.86) |
Females | ||||||||||
18~49 | 4649.4 (46.1) | 2714.2 (39.8) | 4171 (46.8) | 6067.7 (61.1) | 7.26 (0.46) | 1385.5 (14.4) | 1047.8 (12.1) | 1316.8 (13.9) | 1647.8 (17.7) | 89.8 (0.67) |
50~64 | 4736.4 (44.2) | 2780.1 (37.1) | 4257.5 (40.7) | 6164.3 (59) | 5.81 (0.43) | 1353.6 (14) | 1022.3 (12.2) | 1286.1 (13.8) | 1609.6 (17) | 90.93 (0.59) |
65~79 | 4255.1 (59.9) | 2425.9 (40.8) | 3783.9 (55.7) | 5582.7 (81.2) | 8.3 (0.53) | 1227.4 (13) | 923.4 (11.2) | 1163.5 (12.9) | 1462.4 (15.8) | 94.82 (0.39) |
80~ | 3659.8 (97.8) | 2001.6 (97.3) | 3217.6 (91.5) | 4825.6 (129.5) | 11.29 (1.12) | 1070.6 (23.1) | 801.1 (18.4) | 1013.1 (22.2) | 1272.7 (28.2) | 97.91 (0.48) |
Total | 5139.6 (45.9) | 3029.2 (39.4) | 4624.3 (43.2) | 6687.8 (60.7) | 5.15 (0.36) | 1472.4 (12.8) | 1101.9 (11.7) | 1395.3 (12.9) | 1758.1 (15.2) | 85.49 (0.61) |
Age Group | Vitamin A (μgRAE/Day) | Vitamin E (mg/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR * (SE) | Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below AI * (SE) | |
Males | ||||||||||
18~49 | 327.07 (7.89) | 164.18 (4.23) | 271.63 (6.34) | 428.18 (10.5) | 86.51 (0.926) | 29.72 (0.32) | 16.8 (0.23) | 26.47 (0.31) | 39.05 (0.42) | 17.98 (0.48) |
50~64 | 313.59 (7.66) | 157.58 (4.63) | 259.51 (6.48) | 409.96 (9.95) | 87.94 (0.81) | 30.53 (0.31) | 17.44 (0.24) | 27.24 (0.3) | 40.08 (0.4) | 16.67 (0.51) |
65~79 | 299.97 (7.3) | 148.13 (4.41) | 246.45 (6.21) | 391.61 (9.32) | 89.13 (0.741) | 27.28 (0.39) | 15.02 (0.28) | 24.06 (0.38) | 36.01 (0.52) | 22.2 (0.71) |
80~ | 281.46 (17.43) | 137.01 (10) | 229.92 (15.12) | 370.31 (23.31) | 90.7 (1.582) | 25.58 (0.82) | 13.81 (0.57) | 22.42 (0.81) | 33.92 (1.04) | 25.53 (1.56) |
Females | ||||||||||
18~49 | 303.89 (7.41) | 150.42 (3.85) | 250.72 (5.99) | 397.85 (9.7) | 83.33 (1.04) | 26.48 (0.32) | 14.48 (0.2) | 23.33 (0.31) | 35.04 (0.44) | 23.62 (0.54) |
50~64 | 288.74 (7.08) | 141.8 (4.08) | 237.12 (5.93) | 378.1 (9.15) | 85.16 (0.908) | 26.99 (0.24) | 14.84 (0.19) | 23.84 (0.25) | 35.68 (0.34) | 22.67 (0.5) |
65~79 | 274.95 (7.22) | 133.72 (4.21) | 224.56 (6.12) | 360.44 (9.52) | 86.8 (0.835) | 23.95 (0.36) | 12.65 (0.22) | 20.84 (0.35) | 31.94 (0.5) | 29.23 (0.8) |
80~ | 254.67 (15.76) | 122.45 (8.73) | 207.38 (14.23) | 332.75 (21.28) | 88.94 (1.658) | 22.21 (0.71) | 11.4 (0.48) | 19.16 (0.65) | 29.61 (0.92) | 33.41 (1.86) |
Total | 308.81 (6.51) | 153.03 (3.5) | 254.68 (5.13) | 404.31 (8.53) | 85.67 (0.835) | 27.93 (0.25) | 15.43 (0.17) | 24.69 (0.25) | 36.89 (0.35) | 21.18 (0.4) |
Age Group | Vitamin C (mg/Day) | Thiamine (mg/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR * (SE) | Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR (SE) | |
Males | ||||||||||
18~49 | 78.69 (1.36) | 49.13 (1.12) | 71.97 (1.3) | 100.8 (1.67) | 62.65 (1.29) | 0.88 (0.01) | 0.65 (0.01) | 0.83 (0.01) | 1.06 (0.01) | 85.27 (0.84) |
50~64 | 83.08 (1.4) | 52.59 (1.11) | 76.18 (1.32) | 106.06 (1.73) | 58.54 (1.3) | 0.85 (0.01) | 0.63 (0.01) | 0.81 (0.01) | 1.03 (0.01) | 87.17 (0.74) |
65~79 | 78.11 (1.59) | 48.77 (1.29) | 71.33 (1.53) | 99.97 (1.89) | 63.38 (1.52) | 0.78 (0.01) | 0.57 (0.01) | 0.73 (0.01) | 0.93 (0.01) | 91.86 (0.54) |
80~ | 67.42 (2.89) | 40.8 (2.23) | 60.83 (2.75) | 87.1 (3.58) | 73.31 (2.86) | 0.69 (0.02) | 0.51 (0.02) | 0.65 (0.02) | 0.84 (0.02) | 95.65 (0.66) |
Females | ||||||||||
18~49 | 75.2 (1.41) | 46.63 (1) | 68.54 (1.3) | 96.56 (1.79) | 66.09 (1.36) | 0.72 (0.01) | 0.53 (0.01) | 0.68 (0.01) | 0.87 (0.01) | 85.68 (0.66) |
50~64 | 79.66 (1.58) | 49.94 (1.13) | 72.91 (1.46) | 102 (1.98) | 61.78 (1.52) | 0.7 (0.01) | 0.51 (0.01) | 0.66 (0.01) | 0.84 (0.01) | 87.53 (0.62) |
65~79 | 74.48 (1.8) | 45.91 (1.33) | 67.71 (1.71) | 95.72 (2.23) | 66.77 (1.71) | 0.63 (0.01) | 0.46 (0.01) | 0.6 (0.01) | 0.77 (0.01) | 92.36 (0.46) |
80~ | 63.7 (2.81) | 37.93 (2.29) | 57.25 (2.81) | 82.15 (3.57) | 77.08 (2.51) | 0.56 (0.02) | 0.41 (0.01) | 0.53 (0.01) | 0.68 (0.02) | 96.03 (0.68) |
Total | 77.67 (1.27) | 48.33 (0.97) | 70.91 (1.19) | 99.61 (1.6) | 63.69 (1.21) | 0.78 (0.01) | 0.57 (0.01) | 0.74 (0.01) | 0.95 (0.01) | 86.72 (0.62) |
Age Group | Riboflavin (mg/Day) | Niacin (mg/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR (SE) | Mean * (SE) | P25 * (SE) | Median * (SE) | P75 * (SE) | %Below EAR * (SE) | |
Males | ||||||||||
18~49 | 0.69 (0.01) | 0.5 (0.01) | 0.64 (0.01) | 0.82 (0.01) | 95.63 (0.41) | 15.02 (0.24) | 10.67 (0.18) | 14.07 (0.22) | 18.31 (0.3) | 34.75 (1.47) |
50~64 | 0.66 (0.01) | 0.48 (0.01) | 0.62 (0.01) | 0.79 (0.01) | 96.62 (0.24) | 14.27 (0.22) | 10.14 (0.17) | 13.35 (0.21) | 17.39 (0.28) | 39.57 (1.52) |
65~79 | 0.6 (0.01) | 0.43 (0.01) | 0.56 (0.01) | 0.71 (0.01) | 98.13 (0.17) | 12.56 (0.18) | 8.83 (0.13) | 11.71 (0.17) | 15.34 (0.24) | 43.96 (1.36) |
80~ | 0.54 (0.02) | 0.39 (0.01) | 0.5 (0.01) | 0.65 (0.02) | 99.01 (0.2) | 11.33 (0.38) | 7.91 (0.28) | 10.54 (0.36) | 13.92 (0.47) | 54.18 (3.29) |
Females | ||||||||||
18~49 | 0.58 (0.01) | 0.42 (0.01) | 0.54 (0.01) | 0.7 (0.01) | 95.2 (0.41) | 12.12 (0.14) | 8.5 (0.11) | 11.3 (0.13) | 14.84 (0.18) | 38.46 (1.03) |
50~64 | 0.55 (0.01) | 0.4 (0) | 0.52 (0.01) | 0.66 (0.01) | 96.37 (0.28) | 11.56 (0.14) | 8.08 (0.1) | 10.77 (0.13) | 14.17 (0.18) | 42.97 (1.11) |
65~79 | 0.5 (0.01) | 0.36 (0) | 0.46 (0.01) | 0.6 (0.01) | 98.11 (0.19) | 10.1 (0.13) | 6.99 (0.08) | 9.37 (0.12) | 12.42 (0.18) | 46.26 (1.09) |
80~ | 0.45 (0.01) | 0.33 (0.01) | 0.42 (0.01) | 0.54 (0.02) | 99.01 (0.18) | 9.01 (0.32) | 6.19 (0.25) | 8.35 (0.31) | 11.05 (0.4) | 45.94 (3.47) |
Total | 0.62 (0.01) | 0.44 (0.01) | 0.57 (0.01) | 0.74 (0.01) | 95.98 (0.31) | 13.15 (0.17) | 9.09 (0.11) | 12.21 (0.15) | 16.19 (0.22) | 38.67 (1.09) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Fang, H.; Yu, D.; Guo, Q.; Xu, X.; Ju, L.; Cai, S.; Yang, Y.; Wei, X.; Zhao, L. Usual Intake of Micronutrients and Prevalence of Inadequate Intake among Chinese Adults: Data from CNHS 2015–2017. Nutrients 2022, 14, 4714. https://doi.org/10.3390/nu14224714
Huang K, Fang H, Yu D, Guo Q, Xu X, Ju L, Cai S, Yang Y, Wei X, Zhao L. Usual Intake of Micronutrients and Prevalence of Inadequate Intake among Chinese Adults: Data from CNHS 2015–2017. Nutrients. 2022; 14(22):4714. https://doi.org/10.3390/nu14224714
Chicago/Turabian StyleHuang, Kun, Hongyun Fang, Dongmei Yu, Qiya Guo, Xiaoli Xu, Lahong Ju, Shuya Cai, Yuxiang Yang, Xiaoqi Wei, and Liyun Zhao. 2022. "Usual Intake of Micronutrients and Prevalence of Inadequate Intake among Chinese Adults: Data from CNHS 2015–2017" Nutrients 14, no. 22: 4714. https://doi.org/10.3390/nu14224714
APA StyleHuang, K., Fang, H., Yu, D., Guo, Q., Xu, X., Ju, L., Cai, S., Yang, Y., Wei, X., & Zhao, L. (2022). Usual Intake of Micronutrients and Prevalence of Inadequate Intake among Chinese Adults: Data from CNHS 2015–2017. Nutrients, 14(22), 4714. https://doi.org/10.3390/nu14224714