Associations of Liver Function Parameters with New-Onset Hyperuricemia in a Large Taiwanese Population Study
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. Definition of New-Onset Hyperuricemia
2.3. Ethics Statement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cicero, A.F.; Rosticci, M.; Fogacci, F.; Grandi, E.; D’Addato, S.; Borghi, C. High serum uric acid is associated to poorly controlled blood pressure and higher arterial stiffness in hypertensive subjects. Eur. J. Intern. Med. 2017, 37, 38–42. [Google Scholar] [CrossRef]
- Su, H.Y.; Yang, C.; Liang, D.; Liu, H.F. Research advances in the mechanisms of hyperuricemia-induced renal injury. BioMed Res. Int. 2020, 2020, 5817348. [Google Scholar] [CrossRef]
- Saito, Y.; Tanaka, A.; Node, K.; Kobayashi, Y. Uric acid and cardiovascular disease: A clinical review. J. Cardiol. 2021, 78, 51–57. [Google Scholar] [CrossRef]
- Borghi, C.; Fogacci, F.; Piani, F. Not all the eggs and the chickens are the same: The case of uric acid and metabolic syndrome. Eur. J. Intern. Med. 2022, 103, 36–37. [Google Scholar] [CrossRef]
- Copur, S.; Demiray, A.; Kanbay, M. Uric acid in metabolic syndrome: Does uric acid have a definitive role? Eur. J. Intern. Med. 2022, 103, 4–12. [Google Scholar] [CrossRef]
- Day, R.O.; Graham, G.G.; Hicks, M.; McLachlan, A.J.; Stocker, S.L.; Williams, K.M. Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin. Pharm. 2007, 46, 623–644. [Google Scholar] [CrossRef]
- Kuwabara, M.; Kuwabara, R.; Niwa, K.; Hisatome, I.; Smits, G.; Roncal-Jimenez, C.A.; MacLean, P.S.; Yracheta, J.M.; Ohno, M.; Lanaspa, M.A.; et al. Different risk for hypertension, diabetes, dyslipidemia, and hyperuricemia according to level of body mass index in japanese and american subjects. Nutrients 2018, 10, 1011. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Li, L.; Cui, J.; Yin, F.; Yang, F.; Yuan, D.M.; Xin, H.L.; Zhang, L.; Gao, W.G.; Sun, J.P. Associations between anthropometric parameters (body mass index, waist circumference and waist to hip ratio) and newly diagnosed hyperuricemia in adults in qingdao, china: A cross-sectional study. Asia Pac. J. Clin. Nutr. 2020, 29, 763–770. [Google Scholar]
- Mortada, I. Hyperuricemia, type 2 diabetes mellitus, and hypertension: An emerging association. Curr. Hypertens. Rep. 2017, 19, 69. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Qian, T.; Sun, H.; Xu, Q.; Hou, X.; Hu, W.; Zhang, G.; Drummond, G.R.; Sobey, C.G.; et al. Reduced renal function may explain the higher prevalence of hyperuricemia in older people. Sci. Rep. 2021, 11, 1302. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Grandi, E.; D’Addato, S.; Borghi, C. Interaction between low-density lipoprotein-cholesterolaemia, serum uric level and incident hypertension: Data from the brisighella heart study. J. Hypertens. 2019, 37, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Grandi, E.; Rosticci, M.; D’Addato, S.; Borghi, C. Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the brisighella heart study. Sci. Rep. 2018, 8, 11529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; He, Q.; Chen, Z.; Qin, J.J.; Lei, F.; Liu, Y.M.; Liu, W.; Chen, M.M.; Sun, T.; Zhu, Q.; et al. A bidirectional relationship between hyperuricemia and metabolic dysfunction-associated fatty liver disease. Front. Endocrinol. 2022, 13, 821689. [Google Scholar] [CrossRef]
- Chen, C.H.; Yang, J.H.; Chiang, C.W.K.; Hsiung, C.N.; Wu, P.E.; Chang, L.C.; Chu, H.W.; Chang, J.; Song, I.W.; Yang, S.L.; et al. Population structure of han chinese in the modern taiwanese population based on 10,000 participants in the taiwan biobank project. Hum. Mol. Genet. 2016, 25, 5321–5331. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.T.; Hung, T.H.; Yeh, C.K. Taiwan regulation of biobanks. J. Law Med. Ethics 2015, 43, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of diet in renal disease study group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kwon, B.C.; Choi, H.G. Analyses of the relationship between hyperuricemia and osteoporosis. Sci. Rep. 2021, 11, 12080. [Google Scholar] [CrossRef]
- Qian, T.; Sun, H.; Xu, Q.; Hou, X.; Hu, W.; Zhang, G.; Drummond, G.R.; Sobey, C.G.; Charchar, F.J.; Golledge, J.; et al. Hyperuricemia is independently associated with hypertension in men under 60 years in a general chinese population. J. Hum. Hypertens. 2021, 35, 1020–1028. [Google Scholar] [CrossRef]
- Li, Q.; Li, R.; Zhang, S.; Zhang, Y.; Liu, M.; Song, Y.; Liu, C.; Liu, L.; Wang, X.; Wang, B.; et al. Relation of bmi and waist circumference with the risk of new-onset hyperuricemia in hypertensive patients. QJM Mon. J. Assoc. Physicians 2022, 115, 271–278. [Google Scholar] [CrossRef]
- Yang, W.X.; Ma, Y.; Hou, Y.L.; Wang, Y.B.; You, C.G. Prevalence of hyperuricemia and its correlation with serum lipids and blood glucose in physical examination population in 2015–2018: A retrospective study. Clin. Lab. 2019, 65. [Google Scholar] [CrossRef]
- Oliveira, I.O.; Mintem, G.C.; Oliveira, P.D.; Freitas, D.F.; Brum, C.B.; Wehrmeister, F.C.; Gigante, D.P.; Horta, B.L.; Menezes, A.M.B. Uric acid is independent and inversely associated to glomerular filtration rate in young adult brazilian individuals. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, G.; Wang, G.; Liu, Y.; Zhang, L.; Wang, W.; Chen, N. Association of serum uric acid levels with the incident of kidney disease and rapid eGFR decline in Chinese individuals with eGFR >60 mL/min/1.73 m2 and negative proteinuria. Clin. Exp. Nephrol. 2019, 23, 871–879. [Google Scholar] [CrossRef] [PubMed]
- León-Pedroza, J.I.; Escobedo, G.; González-Chávez, A. Relationship of hyperuricemia with low density lipoprotein, liver function tests and markers of systemic inflammation in patients with morbid obesity. Gac. Med. Mex. 2017, 153, S42–S50. [Google Scholar] [PubMed]
- Liu, L.; Jiang, S.; Liu, X.; Tang, Q.; Chen, Y.; Qu, J.; Wang, L.; Wang, Q.; Wang, Y.; Wang, J.; et al. Inflammatory response and oxidative stress as mechanism of reducing hyperuricemia of gardenia jasminoides-poria cocos with network pharmacology. Oxidative Med. Cell. Longev. 2021, 2021, 8031319. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Kihara, Y.; Higashi, Y. Bilirubin and endothelial function. J. Atheroscler. Thromb. 2019, 26, 688–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin is an antioxidant of possible physiological importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef]
Characteristics | Participants with New-Onset Hyperuricemia (n = 1804) | Participants without New-Onset Hyperuricemia (n = 19,226) | p Value | All Participants (n = 21,030) |
---|---|---|---|---|
Age (year) | 52 ± 10 | 51 ± 10 | <0.001 | 51 ± 10 |
Male sex (%) | 40 | 29 | <0.001 | 30 |
Diabetes mellitus (%) | 7.3 | 4.4 | <0.001 | 4.7 |
Hypertension (%) | 17.5 | 9.6 | <0.001 | 10.3 |
Systolic blood pressure (mmHg) | 122 ± 18 | 115 ± 17 | <0.001 | 116 ± 17 |
Diastolic blood pressure (mmHg) | 75 ± 11 | 71 ± 11 | <0.001 | 71 ± 11 |
Heart rate (beat/min) | 69.2 ± 9.6 | 69.4 ± 8.9 | 0.201 | 69.4 ± 9.0 |
Body mass index (kg/m2) | 25.1 ± 3.4 | 23.3 ± 3.2 | <0.001 | 23.5 ± 3.3 |
Fasting glucose (g/dL) | 99 ± 25 | 95 ± 20 | <0.001 | 95 ± 20 |
Total cholesterol (mg/dL) | 197 ± 35 | 194 ± 35 | 0.001 | 194 ± 35 |
Triglyceride (mg/dL) | 129 ± 81 | 101 ± 72 | <0.001 | 104 ± 73 |
Hemoglobin (g/dL) | 13.9 ± 1.5 | 13.5 ± 1.5 | <0.001 | 13.6 ± 1.5 |
eGFR (mL/min/1.73 m2) | 105 ± 24 | 114 ± 25 | <0.001 | 113 ± 25 |
Uric acid (mg/dL) | 5.8 ± 0.8 | 4.9 ± 1.0 | <0.001 | 5.0 ± 1.0 |
Liver-related parameters | ||||
AST (μ/L) | 25.0 ± 12.2 | 23.8 ± 11.0 | <0.001 | 23.9 ± 11.1 |
ALT (μ/L) | 24.7 ± 17.50 | 21.6 ± 17.6 | <0.001 | 21.9 ± 17.6 |
Albumin (g/dL) | 4.56 ± 0.23 | 4.54 ± 0.23 | <0.001 | 4.54 ± 0.23 |
Total bilirubin (mg/dL) | 0.64 ± 0.28 | 0.66 ± 0.27 | 0.001 | 0.66 ± 0.27 |
GGT (μ/L) | 26 ± 26 | 21 ± 24 | <0.001 | 21 ± 24 |
Parameter | Univariable | Multivariable | ||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Age (per 1 year) | 1.02 (1.01–1.02) | <0.001 | 1.00 (0.99–1.01) | 0.66 |
Male (vs. female) | 1.61 (1.46–1.78) | <0.001 | 4.41 (3.71–5.24) | <0.001 |
Diabetes mellitus | 1.70 (1.41–2.06) | <0.001 | 1.11 (0.87–1.42) | 0.39 |
Hypertension | 1.99 (1.75–2.27) | <0.001 | 1.13 (0.97–1.32) | 0.12 |
Systolic blood pressure (per 1 mmHg) | 1.02 (1.02–1.02) | <0.001 | 1.01 (1.00–1.01) | 0.01 |
Diastolic blood pressure (per 1 mmHg) | 1.03 (1.03–1.04) | <0.001 | 1.00 (1.00–1.01) | 0.50 |
Heart rate (per 1 beat/min) | 1.00 (0.99–1.00) | 0.20 | ||
Body mass index (per 1 kg/m2) | 1.16 (1.14–1.17) | <0.001 | 1.06 (1.05–1.08) | <0.001 |
Fasting glucose (per 1 g/dL) | 1.01 (1.01–1.01) | <0.001 | 1.01 (1.00–1.01) | <0.001 |
Total cholesterol (per 1 mg/dL) | 1.00 (1.00–1.00) | 0.001 | 1.00 (1.00–1.00) | 0.06 |
Triglyceride (per 1 mg/dL) | 1.00 (1.00–1.00) | <0.001 | 1.00 (1.00–1.00) | 0.01 |
Hemoglobin (per 1 g/dL) | 1.18 (1.15–1.22) | <0.001 | 0.98 (0.94–1.03) | 0.49 |
Uric acid (per 1 mg/dL) | 3.04 (2.86–3.23) | <0.001 | 5.12 (4.64–5.65) | <0.001 |
eGFR (per 1 mL/min/1.73 m2) | 0.98 (0.98–0.99) | <0.001 | 1.00 (0.99–1.00) | <0.001 |
Liver-related parameters | ||||
AST (per 1 μ/L) | 1.01 (1.00–1.01) | <0.001 | 1.01 (1.00–1.01) | 0.27 |
ALT (per 1 μ/L) | 1.01 (1.01–1.01) | <0.001 | 0.99 (0.99–1.00) | 0.06 |
Albumin (per 1 g/dL) | 1.53 (1.23–1.90) | <0.001 | 1.08 (0.84–1.39) | 0.55 |
Total bilirubin (per 1 mg/dL) | 0.73 (0.60–0.88) | 0.01 | 0.62 (0.50–0.76) | <0.001 |
GGT (per 1 μ/L) | 1.01 (1.00–1.01) | <0.001 | 1.00 (1.0–1.00) | 0.50 |
Parameter | Univariable | Multivariable | ||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Age (per 1 year) | 1.02 (1.01–1.02) | <0.001 | 1.00 (1.00–1.01) | 0.48 |
Male (vs. female) | 1.64 (1.48–1.81) | <0.001 | 4.27 (3.59–5.08) | <0.001 |
Diabetes mellitus | 1.73 (1.42–2.09) | <0.001 | 1.13 (0.88–1.44) | 0.34 |
Hypertension | 2.03 (1.77–2.31) | <0.001 | 1.15 (0.99–1.35) | 0.07 |
Systolic blood pressure (per 1 mmHg) | 1.02 (1.02–1.02) | <0.001 | 1.01 (1.00–1.01) | 0.03 |
Diastolic blood pressure (per 1 mmHg) | 1.03 (1.03–1.04) | <0.001 | 1.00 (1.00–1.01) | 0.27 |
Heart rate (per 1 beat/min) | 1.00 (0.99–1.00) | 0.255 | ||
Body mass index (per 1 kg/m2) | 1.16 (1.14–1.17) | <0.001 | 1.06 (1.05–1.08) | <0.001 |
Fasting glucose (per 1 g/dL) | 1.01 (1.01–1.01) | <0.001 | 1.01 (1.00–1.01) | 0.01 |
Total cholesterol (per 1 mg/dL) | 1.00 (1.00–1.00) | 0.001 | 1.00 (1.00–1.00) | 0.09 |
Triglyceride (per 1 mg/dL) | 1.00 (1.00–1.00) | <0.001 | 1.00 (1.00–1.00) | 0.01 |
Hemoglobin (per 1 g/dL) | 1.19 (1.15–1.23) | <0.001 | 0.98 (0.94–1.03) | 0.50 |
Uric acid (per 1 mg/dL) | 3.06 (2.87–3.25) | <0.001 | 5.02 (4.55–5.54) | <0.001 |
eGFR (per 1 mL/min/1.73 m2) | 0.98 (0.98–0.99) | <0.001 | 1.00 (0.99–1.00) | <0.001 |
Liver-related parameters | ||||
AST (per 1 μ/L) | 1.01 (1.01–1.01) | <0.001 | 1.00 (0.99–1.01) | 0.53 |
ALT (per 1 μ/L) | 1.01 (1.01–1.01) | <0.001 | 1.00 (0.99–1.00) | 0.15 |
Albumin (per 1 g/dL) | 1.54 (1.24–1.92) | <0.001 | 1.10 (0.85–1.42) | 0.48 |
Total bilirubin (per 1 mg/dL) | 0.63 (0.50–0.81) | <0.001 | 0.51 (0.39–0.67) | <0.001 |
GGT (per 1 μ/L) | 1.01 (1.01–1.01) | <0.001 | 1.00 (1.00–1.00) | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.-C.; Liu, Y.-H.; Lee, W.-H.; Chen, S.-C.; Su, H.-M. Associations of Liver Function Parameters with New-Onset Hyperuricemia in a Large Taiwanese Population Study. Nutrients 2022, 14, 4672. https://doi.org/10.3390/nu14214672
Lu C-C, Liu Y-H, Lee W-H, Chen S-C, Su H-M. Associations of Liver Function Parameters with New-Onset Hyperuricemia in a Large Taiwanese Population Study. Nutrients. 2022; 14(21):4672. https://doi.org/10.3390/nu14214672
Chicago/Turabian StyleLu, Chun-Chi, Yi-Hsueh Liu, Wen-Hsien Lee, Szu-Chia Chen, and Ho-Ming Su. 2022. "Associations of Liver Function Parameters with New-Onset Hyperuricemia in a Large Taiwanese Population Study" Nutrients 14, no. 21: 4672. https://doi.org/10.3390/nu14214672
APA StyleLu, C. -C., Liu, Y. -H., Lee, W. -H., Chen, S. -C., & Su, H. -M. (2022). Associations of Liver Function Parameters with New-Onset Hyperuricemia in a Large Taiwanese Population Study. Nutrients, 14(21), 4672. https://doi.org/10.3390/nu14214672