Associations between Vitamin D, Omega 6:Omega 3 Ratio, and Biomarkers of Aging in Individuals Living with and without Chronic Pain
Abstract
:1. Background
2. Methods
2.1. Study Population and Design
2.2. Measurements
2.2.1. Serum Vitamin D (ng/mL)
2.2.2. Serum Omega 3 and Omega 6 (ng/mL)
2.2.3. Leukocyte Telomere Length
2.2.4. C-Reactive Protein
2.2.5. Socio-Demographics
2.2.6. Lifestyle Factors
2.2.7. Chronic Pain Status and Total Number of Pain Sites
2.2.8. Depressive Symptoms
2.2.9. Co-Morbidities
2.2.10. Study Site
2.2.11. Non-Steroidal Anti-Inflammatory Drug Use (NSAID)
2.3. Data Analysis
2.3.1. Correlation Analyses
2.3.2. Regression Analyses
2.3.3. Covariate Selections for the Multivariable Regression Models
2.4. Post-Hoc Analyses
3. Results
3.1. Participant Characteristics
3.2. Micronutrients and LTL
3.2.1. Associations between Vitamin D Continuous Variable and LTL
3.2.2. Associations between Vitamin D Clinical Categorical Variable and LTL
3.2.3. Associations between Omega 6:3 Ratio Continuous Variables and LTL
3.2.4. Associations between Omega 6:3 Clinical Categorical Variable and LTL
3.2.5. Associations between Combined Vitamin D and Omega 6:3 Ratio and LTL
3.3. Micronutrients and CRP
3.3.1. Associations between Vitamin D Continuous Variable and CRP
3.3.2. Associations between Vitamin D Clinical Categorical Variable and CRP
3.3.3. Associations between Omega 6:3 Ratio Continuous Variables and CRP
3.3.4. Associations between Omega 6:3 Clinical Categorical Variable and CRP
3.3.5. Associations between Combined Vitamin D and Omega 6:3 Ratio and CRP
3.4. Post-Hoc Micronutrients and LTL Stratified by Pain Status
3.5. Post-Hoc Micronutrients and CRP Stratified by Pain Status
4. Discussion
4.1. Vitamin D, Omega 6:3 Ratio, and LTL
4.2. Vitamin D, Omega 6:3 Ratio, and CRP
4.3. Biological Plausibility of Observed Associations
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, M.; Loeser, R. Aging-related inflammation in osteoarthritis. Osteoarthr. Cartil. 2015, 23, 1966–1971. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.; Niedernhofer, L.J.; Robbins, P.D.; Lee, J.; Sowa, G.; Vo, N. Cellular Senescence in Intervertebral Disc Aging and Degeneration. Curr. Mol. Biol. Rep. 2018, 4, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Campisi, J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhan, Y.; Pedersen, N.; Fang, F.; Hägg, S. Telomere Length and All-Cause Mortality: A Meta-analysis. Ageing Res. Rev. 2018, 48, 11–20. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z.; Su, X.; Da, M.; Yang, Z.; Duan, W.; Mo, X. Association between leucocyte telomere length and cardiovascular disease in a large general population in the United States. Sci. Rep. 2020, 10, 80. [Google Scholar] [CrossRef]
- Fossel, M. Use of Telomere Length as a Biomarker for Aging and Age-Related Disease. Curr. Transl. Geriatr. Exp. Gerontol. Rep. 2012, 1, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 2019, 123, e273–e283. [Google Scholar] [CrossRef]
- Macfarlane, G.J.; McBeth, J.; Silman, A.J.; Crombie, I.K. Widespread body pain and mortality: Prospective population based study Commentary: An interesting finding, but what does it. BMJ 2001, 323, 662. [Google Scholar] [CrossRef] [Green Version]
- McBeth, J.; Symmons, D.; Silman, A.J.; Allison, T.; Webb, R.; Brammah, T.; Macfarlane, G. Musculoskeletal pain is associated with a long-term increased risk of cancer and cardiovascular-related mortality. Rheumatology 2008, 48, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Totsch, S.K.; Sorge, R.E. Immune system involvement in specific pain conditions. Mol. Pain 2017, 13, 1744806917724559. [Google Scholar] [CrossRef] [Green Version]
- Afari, N.; Mostoufi, S.; Noonan, C.; Poeschla, B.; Succop, A.; Chopko, L.; Strachan, E. C-Reactive Protein and Pain Sensitivity: Findings from Female Twins. Ann. Behav. Med. 2011, 42, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Sibille, K.T.; Steingrímsdóttir, Ó.; Fillingim, R.B.; Stubhaug, A.; Schirmer, H.; Chen, H.; McEwen, B.S.; Nielsen, C.S. Investigating the Burden of Chronic Pain: An Inflammatory and Metabolic Composite. Pain Res. Manag. 2016, 2016, 7657329. [Google Scholar] [CrossRef] [Green Version]
- Sibille, K.T.; Chen, H.; Bartley, E.J.; Riley, J.; Glover, T.L.; King, C.D.; Zhang, H.; Cruz-Almeida, Y.; Goodin, B.R.; Sotolongo, A.; et al. Accelerated aging in adults with knee osteoarthritis pain: Consideration for frequency, intensity, time, and total pain sites. Pain Rep. 2017, 2, e591. [Google Scholar] [CrossRef] [PubMed]
- Lahav, Y.; Levy, D.; Ohry, A.; Zeilig, G.; Lahav, M.; Golander, H.; Guber, A.C.; Uziel, O.; Defrin, R. Chronic Pain and Premature Aging—The Moderating Role of Physical Exercise. J. Pain 2020, 22, 209–218. [Google Scholar] [CrossRef]
- Kuszel, L.; Trzeciak, T.; Richter, M.; Czarny-Ratajczak, M. Osteoarthritis and telomere shortening. J. Appl. Genet. 2015, 56, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassett, A.L.; Epel, E.; Clauw, D.J.; Harris, R.E.; Harte, S.E.; Kairys, A.; Buyske, S.; Williams, D.A. Pain Is Associated With Short Leukocyte Telomere Length in Women With Fibromyalgia. J. Pain 2012, 13, 959–969. [Google Scholar] [CrossRef]
- Johnson, A.J.; Terry, E.; Bartley, E.J.; Garvan, C.; Cruz-Almeida, Y.; Goodin, B.; Glover, T.L.; Staud, R.; Bradley, L.; Fillingim, R.B.; et al. Resilience factors may buffer cellular aging in individuals with and without chronic knee pain. Mol. Pain 2019, 15, 1744806919842962. [Google Scholar] [CrossRef] [PubMed]
- Dragan, S.; Șerban, M.-C.; Damian, G.; Buleu, F.; Valcovici, M.; Christodorescu, R. Dietary Patterns and Interventions to Alleviate Chronic Pain. Nutrients 2020, 12, 2510. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Miccono, A.; Naso, M.; Nichetti, M.; Riva, A.; Guerriero, F.; De Gregori, M.; Peroni, G.; Perna, S. Food pyramid for subjects with chronic pain: Foods and dietary constituents as anti-inflammatory and antioxidant agents. Nutr. Res. Rev. 2018, 31, 131–151. [Google Scholar] [CrossRef]
- Perna, S.; Alalwan, T.; Al-Thawadi, S.; Negro, M.; Parimbelli, M.; Cerullo, G.; Gasparri, C.; Guerriero, F.; Infantino, V.; Diana, M.; et al. Evidence-Based Role of Nutrients and Antioxidants for Chronic Pain Management in Musculoskeletal Frailty and Sarcopenia in Aging. Geriatrics 2020, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, M.F.; Agustín-Perez, M.; Cedola, F.; Coras, R.; Narasimhan, R.; Golshan, S.; Guma, M. Design of an anti-inflammatory diet (ITIS diet) for patients with rheumatoid arthritis. Contemp. Clin. Trials Commun. 2020, 17, 100524. [Google Scholar] [CrossRef]
- Wu, Z.; Malihi, Z.; Stewart, A.W.; Lawes, C.M.; Scragg, R. The association between vitamin D concentration and pain: A systematic review and meta-analysis. Public Health Nutr. 2018, 21, 2022–2037. [Google Scholar] [CrossRef]
- Prego-Dominguez, J.; Hadrya, F.; Takkouche, B. Polyunsaturated Fatty Acids and Chronic Pain: A Systematic Review and Meta-analysis. Pain Physician 2016, 19, 521–535. [Google Scholar]
- MacFarlane, L.; Cook, N.; Kim, E.; Lee, I.M.; Iversen, M.D.; Buring, J.; Katz, J.; Manson, J.; Costenbader, K. The Effects of Vitamin D and Marine Omega-3 Fatty Acid Supplementation on Chronic Knee Pain in Older US Adults. Arthritis Rheumatol 2019, 72, 1836–1844. [Google Scholar] [CrossRef]
- Ghai, B.; Bansal, D.; Kanukula, R.; Gudala, K.; Sachdeva, N.; Dhatt, S.S.; Kumar, V. Vitamin D Supplementation in Patients with Chronic Low Back Pain: An Open Label, Single Arm Clinical Trial. Pain Physician 2017, 20, E99–E105. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.C.; Bermejo Lopez, L.M.; Loria, K.V. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: Nutritional recommendations. Nutr. Hosp. 2011, 26, 323–329. [Google Scholar]
- Zarini, G.G.; McLean, M.; Vaccaro, J.; Exebio, J.; Ajabshir, S.; Huffman, F.G. Effect of Vitamin D3 supplementation on telomerase activity in hispanics with type 2 diabetes. FASEB J. 2016, 30, 1156–1161. [Google Scholar]
- Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharm. 2006, 60, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Beilfuss, J.; Camargo, C.A., Jr.; Kamycheva, E. Serum 25-Hydroxyvitamin D Has a Modest Positive Association with Leukocyte Telomere Length in Middle-Aged US Adults. J. Nutr. 2017, 147, 514–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazidi, M.; Michos, E.D.; Banach, M. The association of telomere length and serum 25-hydroxyvitamin D levels in US adults: The National Health and Nutrition Examination Survey. Arch. Med. Sci. 2017, 13, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusceddu, I.; Farrell, C.-J.L.; Di Pierro, A.M.; Jani, E.; Herrmann, W.; Herrmann, M. The role of telomeres and vitamin D in cellular aging and age-related diseases. Clin. Chem. Lab. Med. 2015, 53, 1661–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Guo, D.; Li, K.; Pedersen-White, J.; Stallmann-Jorgensen, I.S.; Huang, Y.; Parikh, S.; Liu, K.; Dong, Y. Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int. J. Obes. 2011, 36, 805–809. [Google Scholar] [CrossRef] [Green Version]
- Guida, F.; Boccella, S.; Belardo, C.; Iannotta, M.; Piscitelli, F.; De Filippis, F.; Paino, S.; Ricciardi, F.; Siniscalco, D.; Marabese, I.; et al. Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain. Brain. Behav. Immun. 2020, 85, 128–141. [Google Scholar] [CrossRef]
- Bellerba, F.; Muzio, V.; Gnagnarella, P.; Facciotti, F.; Chiocca, S.; Bossi, P.; Cortinovis, D.; Chiaradonna, F.; Serrano, D.; Raimondi, S.; et al. The Association between Vitamin D and Gut Microbiota: A Systematic Review of Human Studies. Nutrients 2021, 13, 3378. [Google Scholar] [CrossRef]
- Ramasamy, B.; Magne, F.; Tripathy, S.; Venugopal, G.; Mukherjee, D.; Balamurugan, R. Association of Gut Microbiome and Vitamin D Deficiency in Knee Osteoarthritis Patients: A Pilot Study. Nutrients 2021, 13, 1272. [Google Scholar] [CrossRef]
- Maroon, J.C.; Bost, J.W. Omega-3 fatty acids (fish oil) as an anti-inflammatory: An alternative to nonsteroidal anti-inflammatory drugs for discogenic pain. Surg. Neurol. 2006, 65, 326–331. [Google Scholar] [CrossRef]
- Ye, J.; Ghosh, S. Omega-3 PUFA vs. NSAIDs for Preventing Cardiac Inflammation. Front. Cardiovasc. Med. 2018, 5, 146. [Google Scholar] [CrossRef]
- Goldberg, R.J.; Katz, J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain 2007, 129, 210–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farzaneh-Far, R.; Lin, J.; Epel, E.S.; Harris, W.S.; Blackburn, E.H.; Whooley, M.A. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA 2010, 303, 250–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan, N.; Parletta, N.; Milte, C.; Benassi-Evans, B.; Fenech, M.; Howe, P. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ω-3 fatty acid supplementation: A randomized controlled pilot study. Nutrition 2014, 30, 489–491. [Google Scholar] [CrossRef]
- Kalstad, A.A.; Tveit, S.; Myhre, P.L.; Laake, K.; Opstad, T.B.; Tveit, A.; Schmidt, E.B.; Solheim, S.; Arnesen, H.; Seljeflot, I. Leukocyte telomere length and serum polyunsaturated fatty acids, dietary habits, cardiovascular risk factors and features of myocardial infarction in elderly patients. BMC Geriatr. 2019, 19, 376–379. [Google Scholar] [CrossRef]
- Kang, J.X. Differential effects of omega-6 and omega-3 fatty acids on telomere length. Am. J. Clin. Nutr. 2010, 92, 1276–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiecolt-Glaser, J.K.; Epel, E.S.; Belury, M.A.; Andridge, R.; Lin, J.; Glaser, R.; Malarkey, W.B.; Hwang, B.S.; Blackburn, E. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial. Brain. Behav. Immun. 2013, 28, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Dorajoo, R.; Sun, Y.; Wang, L.; Ong, C.N.; Liu, J.; Khor, C.C.; Yuan, J.-M.; Koh, W.P.; Friedlander, Y.; et al. Effect of plasma polyunsaturated fatty acid levels on leukocyte telomere lengths in the Singaporean Chinese population. Nutr. J. 2020, 19, 1–9. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Rousinou, G.; Toutouza, M.; Stefanadis, C. Unsaturated fatty acids are inversely associated and n-6/n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults. Clin. Chim. Acta 2010, 411, 584–591. [Google Scholar] [CrossRef]
- Sibille, K.T.; King, C.; Garrett, T.J.; Glover, T.L.; Zhang, H.; Chen, H.; Reddy, D.; Goodin, B.R.; Sotolongo, A.; Petrov, M.E.; et al. Omega-6:Omega-3 PUFA Ratio, Pain, Functioning, and Distress in Adults With Knee Pain. Clin. J. Pain 2018, 34, 182–189. [Google Scholar] [CrossRef]
- Goodin, B.R.; Glover, T.L.; Sotolongo, A.; King, C.D.; Sibille, K.T.; Herbert, M.S.; Cruz-Almeida, Y.; Sanden, S.H.; Staud, R.; Redden, D.T.; et al. The Association of Greater Dispositional Optimism With Less Endogenous Pain Facilitation Is Indirectly Transmitted Through Lower Levels of Pain Catastrophizing. J. Pain 2013, 14, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Glover, T.L.; Goodin, B.R.; Horgas, A.L.; Kindler, L.L.; King, C.D.; Sibille, K.T.; Peloquin, C.A.; Riley, J.L.; Staud, R.; Bradley, L.; et al. Vitamin D, race, and experimental pain sensitivity in older adults with knee osteoarthritis. Arthritis Rheum. 2012, 64, 3926–3935. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.; Asch, E.; Bloch, D.; Bole, G.; Borenstein, D.; Brandt, K.; Christy, W.; Cooke, T.D.; Greenwald, R.; Hochberg, M. Development of criteria for the classification and reporting of osteoarthritis, Classification of osteoarthritis of the knee and Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986, 29, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Lin, J.; Epel, E.; Cheon, J.; Kroenke, C.; Sinclair, E.; Bigos, M.; Wolkowitz, O.; Mellon, S.; Blackburn, E. Analyses and comparisons of telomerase activity and telomere length in human T and B cells: Insights for epidemiology of telomere maintenance. J. Immunol. Methods 2010, 352, 71–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Available online: https://apps.who.int/iris/bitstream/handle/10665/44583/9789241501491_eng.pdf?sequence=1 (accessed on 20 June 2021).
- Viniol, A.; Jegan, N.; Leonhardt, C.; Brugger, M.; Strauch, K.; Barth, J.; Baum, E.; Becker, A. Differences between patients with chronic widespread pain and local chronic low back pain in primary care—A comparative cross-sectional analysis. BMC Musculoskelet. Disord. 2013, 14, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickle, A.M.; Garvan, C.; Service, C.; Pop, R.; Marks, J.; Wu, S.; Edberg, J.C.; Staud, R.; Fillingim, R.B.; Bartley, E.J.; et al. Relationships Between Pain, Life Stress, Sociodemographics, and Cortisol: Contributions of Pain Intensity and Financial Satisfaction. Chronic Stress 2020, 4, 2470547020975758. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.R.; Huh, J.; Song, J.; Kang, I.-S.; Park, S.W.; Chang, S.-A.; Yang, J.-H.; Jun, T.-G. The Center for Epidemiologic Studies Depression Scale is an adequate screening instrument for depression and anxiety disorder in adults with congential heart disease. Health Qual. Life Outcomes 2017, 15, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borras, M.; Panizo, S.; Sarró, F.; Valdivielso, J.M.; Fernandez, E. Assessment of the Potential Role of Active Vitamin D Treatment in Telomere Length: A Case–Control Study in Hemodialysis Patients. Clin. Ther. 2012, 34, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.B.; Valdes, A.; Gardner, J.P.; Paximadas, D.; Kimura, M.; Nessa, A.; Lu, X.; Surdulescu, G.L.; Swaminathan, R.; Spector, T.D.; et al. Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am. J. Clin. Nutr. 2007, 86, 1420–1425. [Google Scholar] [CrossRef]
- Liu, J.J.; Prescott, J.; Giovannucci, E.; Hankinson, S.E.; Rosner, B.; Han, J.; De Vivo, I. Plasma Vitamin D Biomarkers and Leukocyte Telomere Length. Am. J. Epidemiol. 2013, 177, 1411–1417. [Google Scholar] [CrossRef]
- Vetter, V.M.; Spira, D.; Banszerus, V.L.; DeMuth, I. Epigenetic Clock and Leukocyte Telomere Length Are Associated with Vitamin D Status but not with Functional Assessments and Frailty in the Berlin Aging Study II. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 2056–2063. [Google Scholar] [CrossRef] [PubMed]
- Julin, B.; Shui, I.M.; Prescott, J.; Giovannucci, E.L.; De Vivo, I. Plasma vitamin D biomarkers and leukocyte telomere length in men. Eur. J. Nutr. 2017, 56, 501–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöttker, B.; Hagen, L.; Zhang, Y.; Gào, X.; Holleczek, B.; Gao, X.; Brenner, H. Serum 25-Hydroxyvitamin D Levels as an Aging Marker: Strong Associations With Age and All-Cause Mortality Independent From Telomere Length, Epigenetic Age Acceleration, and 8-Isoprostane Levels. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 121–128. [Google Scholar] [CrossRef]
- Williams, D.M.; Palaniswamy, S.; Sebert, S.; Buxton, J.L.; Blakemore, A.I.F.; Hypponen, E.; Jarvelin, M.-R. 25-Hydroxyvitamin D Concentration and Leukocyte Telomere Length in Young Adults: Findings From the Northern Finland Birth Cohort 1966. Am. J. Epidemiol. 2016, 183, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.J.; Cahoon, E.K.; Linet, M.S.; Little, M.P.; Dagnall, C.L.; Higson, H.; Savage, S.A.; Freedman, D.M. Relationship between plasma 25-hydroxyvitamin D and leucocyte telomere length by sex and race in a US study. Br. J. Nutr. 2016, 116, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Mikhailidis, D.P.; Banach, M.; Dehghan, A. Impact of serum 25-hydroxyvitamin D 25(OH) on telomere attrition: A Mendelian Randomization study. Clin. Nutr. 2019, 39, 2730–2733. [Google Scholar] [CrossRef]
- Yang, F.; Sun, M.; Sun, C.; Li, J.; Yang, X.; Bi, C.; Wang, M.; Pu, L.; Wang, J.; Wang, C.; et al. Associations of C-reactive Protein with 25-hydroxyvitamin D in 24 Specific Diseases: A Cross-sectional Study from NHANES. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kruit, A.; Zanen, P. The association between vitamin D and C-reactive protein levels in patients with inflammatory and non-inflammatory diseases. Clin. Biochem. 2016, 49, 534–537. [Google Scholar] [CrossRef]
- Calton, E.K.; Keane, K.N.; Newsholme, P.; Soares, M.J. The Impact of Vitamin D Levels on Inflammatory Status: A Systematic Review of Immune Cell Studies. PLoS ONE 2015, 10, e0141770. [Google Scholar] [CrossRef]
- Wöbke, T.K.; Sorg, B.L.; Steinhilber, D. Vitamin D in inflammatory diseases. Front. Physiol. 2014, 5, 244. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Helde-Frankling, M.; Björkhem-Bergman, L. Vitamin D in Pain Management. Int. J. Mol. Sci. 2017, 18, 2170. [Google Scholar] [CrossRef] [Green Version]
- Omoigui, S. The biochemical origin of pain: The origin of all pain is inflammation and the inflammatory response. Part 2 of 3—Inflammatory profile of pain syndromes. Med. Hypotheses 2007, 69, 1169–1178. [Google Scholar] [CrossRef] [Green Version]
- Long, W.; Fatehi, M.; Soni, S.; Panigrahi, R.; Philippaert, K.; Yu, Y.; Kelly, R.; Boonen, B.; Barr, A.; Golec, D.; et al. Vitamin D is an endogenous partial agonist of the transient receptor potential vanilloid 1 channel. J. Physiol. 2020, 598, 4321–4338. [Google Scholar] [CrossRef]
- Mcdade, T.W.; Tallman, P.S.; Madimenos, F.C.; Liebert, M.A.; Cepon, T.J.; Sugiyama, L.S.; Snodgrass, J.J. Analysis of variability of high sensitivity C-reactive protein in lowland ecuador reveals no evidence of chronic low-grade inflammation. Am. J. Hum. Biol. 2012, 24, 675–681. [Google Scholar] [CrossRef]
- Villegas, R.; Xiang, Y.-B.; Cai, H.; Elasy, T.; Cai, Q.; Zhang, X.; Fazio, S.; Linton, M.; Li, H.; Xu, W.H.; et al. Lifestyle determinants of c-reactive protein in middle-aged, urban Chinese men. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, L.M.; Wiers, C.E.; Manza, P.; Sun, H.; Schwandt, M.; Wang, G.-J.; Grassi-Oliveira, R.; Godard, A.L.B.; Volkow, N.D. Effect of alcohol use disorder on cellular aging. Psychopharmacology 2019, 236, 3245–3255. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Whooley, M.A.; Vittinghoff, E.; Roberts, J.D.; Heckbert, S.R.; Fitzpatrick, A.L.; Lin, J.; Leung, C.; Mukamal, K.J.; Marcus, G.M. Alcohol consumption and leukocyte telomere length. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Tardelli, V.S.; Lago, M.P.P.D.; da Silveira, D.X.; Fidalgo, T.M. Vitamin D and alcohol: A review of the current literature. Psychiatry Res. 2017, 248, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Vatsalya, V.; Song, M.; Schwandt, M.L.; Cave, M.C.; Barve, S.S.; George, D.T.; Ramchandani, V.A.; McClain, C.J. Effects of Sex, Drinking History, and Omega-3 and Omega-6 Fatty Acids Dysregulation on the Onset of Liver Injury in Very Heavy Drinking Alcohol-Dependent Patients. Alcohol. Clin. Exp. Res. 2016, 40, 2085–2093. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Tsujiguchi, H.; Miyagi, S.; Nguyen, T.T.T.; Hara, A.; Nakamura, H.; Shimizu, Y.; Hayashi, K.; Yamada, Y.; Nguyen, P.M.; et al. Association Between Serum 25-Hydroxyvitamin D Concentrations and Chronic Pain: Effects of Drinking Habits. J. Pain Res. 2020, 13, 2987–2996. [Google Scholar] [CrossRef]
- Oliveira, A.; Rodríguez-Artalejo, F.; Lopes, C. Alcohol Intake and Systemic Markers of Inflammation—Shape of the Association According to Sex and Body Mass Index. Alcohol Alcohol. 2010, 45, 119–125. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, B.; Han, W.; Zhu, Z.; Wang, X.; Jin, X.; Antony, B.; Cicuttini, F.; Wluka, A.; Winzenberg, T.; et al. Vitamin D supplementation and inflammatory and metabolic biomarkers in patients with knee osteoarthritis: Post hoc analysis of a randomised controlled trial. Br. J. Nutr. 2018, 120, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Krasowska, K.; Skrobot, W.; Liedtke, E.; Sawicki, P.; Flis, D.J.; Dzik, K.; Libionka, W.; Kloc, W.; Kaczor, J.J. The Preoperative Supplementation With Vitamin D Attenuated Pain Intensity and Reduced the Level of Pro-inflammatory Markers in Patients After Posterior Lumbar Interbody Fusion. Front. Pharmacol. 2019, 10, 527. [Google Scholar] [CrossRef] [PubMed]
Characteristics | N (%) | |
---|---|---|
Sex | Women | 255 (63.4) |
Men | 147 (36.6) | |
Ethnicity/Race | Non-Hispanic-white | 209 (52.0) |
Non-Hispanic-black | 193 (48.0) | |
Education | ≤High school | 168 (41.8) |
>High school | 234 (58.2) | |
Income ($) | 0–19,999 | 121 (30.6) |
20,000–49,999 | 142 (35.9) | |
50,000–79,999 | 64 (16.2) | |
≥80,000 | 69 (17.4) | |
Study Site | University of Florida | 251 (62.4) |
University of Alabama | 151 (37.6) | |
Waist Hip Ratio (WHR) 1 | Low | 166 (41.3) |
Moderate | 93 (23.1) | |
High | 143 (35.6) | |
Physical Activity/Week | <1/week | 113 (28.4) |
1–3/week | 181 (45.5) | |
≥4/week | 104 (26.1) | |
Tobacco Smoking Status | Never smoker | 204 (51.3) |
Former smoker | 110 (27.6) | |
Current smoker | 84 (21.1) | |
Number of Comorbidities | <1 | 186 (46.3) |
1 | 118 (29.4) | |
≥2 | 98 (24.4) | |
Depressive symptoms 2 | No depression | 257 (63.9) |
Mild | 75 (18.7) | |
Moderate-severe | 70 (17.4) | |
Chronic Pain Status | No chronic pain | 82 (20.5) |
Chronic pain | 318 (79.5) |
Unadjusted | Adjusted | |||
---|---|---|---|---|
N | β (95% CI) | N | β (95% CI) | |
Vitamin D | 209 | <−0.01 (<−0.01, <0.01) | 206 | <0.01 (<−0.01, <0.01) |
Omega 6:3 ratio | 127 | −0.01 (−0.03, 0.01) | 126 | <−0.01 (−0.02, 0.02) |
Combined model | ||||
Vitamin D | 127 | <−0.01 (<−0.01, <0.01) | 127 | <0.01 (<−0.01, 0.01) |
Omega 6:3 ratio | 127 | −0.01 (−0.03, 0.02) | 127 | <0.01 (−0.02, 0.02) |
Unadjusted | Adjusted | |||
---|---|---|---|---|
N | β (95% CI) | N | β (95% CI) | |
Vitamin D | 211 | −0.04 (−0.05, −0.02) | 203 | −0.02 (−0.04, <0.01) |
Omega 6:3 ratio | 163 | 0.10 (−0.01, 0.20) | 157 | 0.11 (0.01, 0.21) |
Combined model | ||||
Vitamin D | 163 | −0.03 (−0.05, −0.01) | 157 | −0.01 (−0.03, 0.01) |
Omega 6:3 ratio | 163 | 0.06 (−0.05, 0.17) | 157 | 0.10 (−0.01, 0.21) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijayabahu, A.T.; Mickle, A.M.; Mai, V.; Garvan, C.; Glover, T.L.; Cook, R.L.; Zhao, J.; Baum, M.K.; Fillingim, R.B.; Sibille, K.T. Associations between Vitamin D, Omega 6:Omega 3 Ratio, and Biomarkers of Aging in Individuals Living with and without Chronic Pain. Nutrients 2022, 14, 266. https://doi.org/10.3390/nu14020266
Wijayabahu AT, Mickle AM, Mai V, Garvan C, Glover TL, Cook RL, Zhao J, Baum MK, Fillingim RB, Sibille KT. Associations between Vitamin D, Omega 6:Omega 3 Ratio, and Biomarkers of Aging in Individuals Living with and without Chronic Pain. Nutrients. 2022; 14(2):266. https://doi.org/10.3390/nu14020266
Chicago/Turabian StyleWijayabahu, Akemi T., Angela M. Mickle, Volker Mai, Cynthia Garvan, Toni L. Glover, Robert L. Cook, Jinying Zhao, Marianna K. Baum, Roger B. Fillingim, and Kimberly T. Sibille. 2022. "Associations between Vitamin D, Omega 6:Omega 3 Ratio, and Biomarkers of Aging in Individuals Living with and without Chronic Pain" Nutrients 14, no. 2: 266. https://doi.org/10.3390/nu14020266
APA StyleWijayabahu, A. T., Mickle, A. M., Mai, V., Garvan, C., Glover, T. L., Cook, R. L., Zhao, J., Baum, M. K., Fillingim, R. B., & Sibille, K. T. (2022). Associations between Vitamin D, Omega 6:Omega 3 Ratio, and Biomarkers of Aging in Individuals Living with and without Chronic Pain. Nutrients, 14(2), 266. https://doi.org/10.3390/nu14020266