Supplementation with Folic Acid and Cardiovascular Outcomes in End-Stage Kidney Disease: A Multi-Institution Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Study Population and Patient Selection
2.3. Folic Acid Usage
2.4. Covariates
2.5. Outcomes
2.6. Statistical Analysis
3. Results
3.1. Basic Characteristics of the Study Patients
3.2. Clinical Events
3.3. Laboratory Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soohoo, M.; Ahmadi, S.F.; Qader, H.; Streja, E.; Obi, Y.; Moradi, H.; Rhee, C.M.; Kim, T.H.; Kovesdy, C.P.; Kalantar-Zadeh, K. Association of serum vitamin B12 and folate with mortality in incident hemodialysis patients. Nephrol. Dial. Transplant. 2017, 32, 1024–1032. [Google Scholar] [CrossRef] [Green Version]
- Fairfield, K.M.; Fletcher, R.H. Vitamins for chronic disease prevention in adults: Scientific review. JAMA 2002, 287, 3116–3126. [Google Scholar] [CrossRef]
- Fletcher, R.H.; Fairfield, K.M. Vitamins for chronic disease prevention in adults: Clinical applications. JAMA 2002, 287, 3127–3129. [Google Scholar] [CrossRef] [Green Version]
- Clase, C.M.; Ki, V.; Holden, R.M. Water-soluble vitamins in people with low glomerular filtration rate or on dialysis: A review. Semin. Dial. 2013, 26, 546–567. [Google Scholar] [CrossRef] [Green Version]
- Chien, S.C.; Li, S.Y.; Chen, Y.T.; Tsai, L.W.; Chen, T.J.; Chen, T.W.; Lin, Y.C. Folic acid supplementation in end-stage renal disease patients reduces total mortality rate. J. Nephrol. 2013, 26, 1097–1104. [Google Scholar] [CrossRef]
- Qin, X.; Huo, Y.; Langman, C.B.; Hou, F.; Chen, Y.; Matossian, D.; Xu, X.; Wang, X. Folic acid therapy and cardiovascular disease in ESRD or advanced chronic kidney disease: A meta-analysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Koefoed, M.; Kromann, C.B.; Hvidtfeldt, D.; Juliussen, S.R.; Andersen, J.R.; Marckmann, P. Historical Study (1986–2014): Improvements in Nutritional Status of Dialysis Patients. J. Ren. Nutr. 2016, 26, 320–324. [Google Scholar] [CrossRef]
- Tsai, M.S.; Lin, M.H.; Lee, C.P.; Yang, Y.H.; Chen, W.C.; Chang, G.H.; Tsai, Y.T.; Chen, P.C.; Tsai, Y.H. Chang Gung Research Database: A multi-institutional database consisting of original medical records. Biomed. J. 2017, 40, 263–269. [Google Scholar] [CrossRef]
- Shao, S.C.; Chan, Y.Y.; Kao Yang, Y.H.; Lin, S.J.; Hung, M.J.; Chien, R.N.; Lai, C.C.; Lai, E.C. The Chang Gung Research Database-A multi-institutional electronic medical records database for real-world epidemiological studies in Taiwan. Pharmacoepidemiol. Drug Saf. 2019, 28, 593–600. [Google Scholar] [CrossRef]
- Teschner, M.; Kosch, M.; Schaefer, R.M. Folate metabolism in renal failure. Nephrol. Dial. Transplant. 2002, 17 (Suppl. 5), 24–27. [Google Scholar]
- Rolland, P.H.; Friggi, A.; Barlatier, A.; Piquet, P.; Latrille, V.; Faye, M.M.; Guillou, J.; Charpiot, P.; Bodard, H.; Ghiringhelli, O.; et al. Hyperhomocysteinemia-induced vascular damage in the minipig. Captopril-hydrochlorothiazide combination prevents elastic alterations. Circulation 1995, 91, 1161–1174. [Google Scholar] [CrossRef]
- Poddar, R.; Sivasubramanian, N.; DiBello, P.M.; Robinson, K.; Jacobsen, D.W. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: Implications for vascular disease. Circulation 2001, 103, 2717–2723. [Google Scholar] [CrossRef] [Green Version]
- Majors, A.; Ehrhart, L.A.; Pezacka, E.H. Homocysteine as a risk factor for vascular disease. Enhanced collagen production and accumulation by smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 2074–2081. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaidi, M.K.; Philippou, H.; Stubbs, P.J.; Adami, A.; Amersey, R.; Noble, M.M.; Lane, D.A. Relationships between homocysteine, factor VIIa, and thrombin generation in acute coronary syndromes. Circulation 2000, 101, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Guldener, C.; Stehouwer, C.D. Hyperhomocysteinaemia and vascular disease--a role for DNA hypomethylation? Lancet 2003, 361, 1668–1669. [Google Scholar] [CrossRef]
- Heinz, J.; Kropf, S.; Luley, C.; Dierkes, J. Homocysteine as a risk factor for cardiovascular disease in patients treated by dialysis: A meta-analysis. Am. J. Kidney Dis. 2009, 54, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Ito, A.; Yamamoto, J.; NiSchnyder, G.; Roffi, M.; Pin, R.; Flammer, Y.; Lange, H.; Eberli, F.R.; Meier, B.; et al. Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N. Engl. J. Med. 2001, 345, 1593–1600. [Google Scholar]
- shio, T.; Kajikuri, J.; Dohi, Y.; Ohte, N.; Sano, A.; Nakamura, H.; Kumagai, H.; Itoh, T. Randomized controlled trial of the effect of short-term coadministration of methylcobalamin and folate on serum ADMA concentration in patients receiving long-term hemodialysis. Am. J. Kidney Dis. 2010, 55, 1069–1078. [Google Scholar]
- Brattström, L.; Israelsson, B.; Norrving, B.; Bergqvist, D.; Thörne, J.; Hultberg, B.; Hamfelt, A. Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease. Effects of pyridoxine and folic acid treatment. Atherosclerosis 1990, 81, 51–60. [Google Scholar] [CrossRef]
- Thambyrajah, J.; Landray, M.J.; Jones, H.J.; McGlynn, F.J.; Wheeler, D.C.; Townend, J.N. A randomized double-blind placebo-controlled trial of the effect of homocysteine-lowering therapy with folic acid on endothelial function in patients with coronary artery disease. J. Am. Coll. Cardiol. 2001, 37, 1858–1863. [Google Scholar] [CrossRef]
- Willems, F.F.; Aengevaeren, W.R.; Boers, G.H.; Blom, H.J.; Verheugt, F.W. Coronary endothelial function in hyperhomocysteinemia: Improvement after treatment with folic acid and cobalamin in patients with coronary artery disease. J. Am. Coll. Cardiol. 2002, 40, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Schnyder, G.; Roffi, M.; Flammer, Y.; Pin, R.; Hess, O.M. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: The Swiss Heart study: A randomized controlled trial. JAMA 2002, 288, 973–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garibotto, G.; Sofia, A.; Valli, A.; Tarroni, A.; Di Martino, M.; Cappelli, V.; Aloisi, F.; Procopio, V. Causes of hyperhomocysteinemia in patients with chronic kidney diseases. Semin. Nephrol. 2006, 26, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Jamison, R.L.; Hartigan, P.; Kaufman, J.S.; Goldfarb, D.S.; Warren, S.R.; Guarino, P.D.; Gaziano, J.M. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: A randomized controlled trial. JAMA 2007, 298, 1163–1170. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.J.; Li, Z.F.; Chang, Y.W.; Liu, S.Y.; Wang, W.H. Effects of folic acid combined with vitamin B12 on DVT in patients with homocysteine cerebral infarction. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2538–2544. [Google Scholar]
- Capelli, I.; Cianciolo, G.; Gasperoni, L.; Zappulo, F.; Tondolo, F.; Cappuccilli, M.; La Manna, G. Folic Acid and Vitamin B12 Administration in CKD, Why Not? Nutrients 2019, 11, 383. [Google Scholar] [CrossRef]
Variable | Available Number | Before Imputation and IPTW | After Imputation and IPTW | ||||
---|---|---|---|---|---|---|---|
Daily Folic Acid (n = 2081) | Weekly Folic Acid (n = 954) | STD | Daily Folic Acid | Weekly Folic Acid | STD | ||
Demographics | |||||||
Age, years | 3035 | 61.8 ± 14.1 | 61.1 ± 13.1 | 0.06 | 61.6 ± 13.8 | 61.6 ± 13.7 | <0.01 |
Male, n (%) | 3035 | 1143 (54.9) | 529 (55.5) | −0.01 | 55.1% | 55.4% | −0.01 |
Body mass index, kg/m2 | 1953 | 25.0 ± 5.1 | 25.4 ± 5.2 | −0.09 | 24.8 ± 4.5 | 24.8 ± 4.1 | <0.01 |
Number of OPD visits in the previous year | 3035 | ||||||
0 | 139 (6.7) | 65 (6.8) | −0.01 | 6.7% | 6.7% | <0.01 | |
1–5 | 443 (21.3) | 190 (19.9) | 0.03 | 20.9% | 21.2% | −0.01 | |
6–15 | 634 (30.5) | 299 (31.3) | −0.02 | 30.7% | 30.5% | <0.01 | |
≥16 | 865 (41.6) | 400 (41.9) | −0.01 | 41.8% | 41.6% | <0.01 | |
Hospitalization in the previous year | 3035 | 1428 (68.6) | 606 (63.5) | 0.11 | 66.9% | 66.5% | 0.01 |
Primary renal disease | 3035 | ||||||
Interstitial nephritis | 15 (0.7) | 8 (0.8) | −0.01 | 0.7% | 0.8% | −0.01 | |
Obstructive nephritis | 457 (22.0) | 163 (17.1) | 0.12 | 20.4% | 20.3% | <0.01 | |
Polycystic kidney disease | 30 (1.4) | 18 (1.9) | −0.03 | 1.5% | 2.0% | −0.03 | |
Hypertension nephropathy | 798 (38.3) | 352 (36.9) | 0.03 | 38.0% | 38.6% | −0.01 | |
Diabetes nephropathy | 218 (10.5) | 119 (12.5) | −0.06 | 10.9% | 11.1% | <0.01 | |
Chronic glomerulonephritis | 492 (23.6) | 253 (26.5) | −0.07 | 24.8% | 23.6% | 0.03 | |
Others (e.g., lupus) | 71 (3.4) | 41 (4.3) | −0.05 | 3.6% | 3.8% | −0.01 | |
Charlson’s comorbidity index score | 3035 | 4.4 ± 2.3 | 4.3 ± 2.2 | 0.05 | 4.4 ± 2.3 | 4.4 ± 2.2 | <0.01 |
Comorbidity | |||||||
Hypertension | 3035 | 1753 (84.2) | 786 (82.4) | 0.05 | 83.8% | 83.7% | <0.01 |
Diabetes mellitus | 3035 | 1162 (55.8) | 519 (54.4) | 0.03 | 55.3% | 54.8% | 0.01 |
Dyslipidemia | 3035 | 873 (42.0) | 380 (39.8) | 0.04 | 41.3% | 40.7% | 0.01 |
Coronary artery disease | 3035 | 409 (19.7) | 177 (18.6) | 0.03 | 19.4% | 19.2% | 0.01 |
Myocardial ischemia | 3035 | 103 (4.9) | 43 (4.5) | 0.02 | 4.8% | 4.7% | 0.01 |
Ischemic stroke | 3035 | 156 (7.5) | 63 (6.6) | 0.03 | 7.3% | 7.5% | −0.01 |
Hemorrhagic stroke | 3035 | 36 (1.7) | 13 (1.4) | 0.03 | 1.6% | 1.6% | <0.01 |
Peripheral vascular disease | 3035 | 121 (5.8) | 44 (4.6) | 0.05 | 5.4% | 4.8% | 0.02 |
Venous thrombosis | 3035 | 31 (1.5) | 8 (0.8) | 0.06 | 1.3% | 1.3% | <0.01 |
Atrial fibrillation | 3035 | 75 (3.6) | 35 (3.7) | <0.01 | 3.5% | 3.5% | 0.01 |
Heart failure hospitalization | 3035 | 262 (12.6) | 125 (13.1) | −0.02 | 12.6% | 11.8% | 0.02 |
Chronic obstructive pulmonary disease | 3035 | 201 (9.7) | 89 (9.3) | 0.01 | 9.7% | 9.9% | −0.01 |
Liver cirrhosis | 3035 | 63 (3.0) | 28 (2.9) | 0.01 | 3.0% | 3.1% | <0.01 |
Peptic ulcer disease | 3035 | 363 (17.4) | 180 (18.9) | −0.04 | 17.9% | 18.2% | −0.01 |
Gouty arthritis | 3035 | 478 (23.0) | 198 (20.8) | 0.05 | 22.5% | 22.3% | <0.01 |
Laboratory data at baseline | |||||||
Hemoglobin, g/dL | 2733 | 8.3 ± 1.2 | 8.3 ± 1.3 | 0.04 | 8.3 ± 1.2 | 8.3 ± 1.2 | <0.01 |
Platelet count, ×103 | 2694 | 208.0 ± 70.7 | 199.9 ± 74.5 | 0.11 | 205.6 ± 66.4 | 207.0 ± 72.8 | −0.02 |
Albumin, g/dL | 2731 | 3.9 ± 0.4 | 3.9 ± 0.4 | −0.04 | 3.9 ± 0.4 | 3.9 ± 0.4 | −0.01 |
Blood urea nitrogen, mg/dL | 2734 | 90.7 ± 30.6 | 95.5 ± 33.0 | −0.15 | 92.1 ± 29.9 | 91.8 ± 29.8 | 0.01 |
Creatinine, mg/dL | 2734 | 10.2 ± 3.3 | 10.7 ± 3.4 | −0.14 | 10.4 ± 3.3 | 10.4 ± 3.3 | −0.01 |
Potassium, mEq/L | 2736 | 5.1 ± 0.8 | 5.2 ± 0.8 | −0.07 | 5.1 ± 0.8 | 5.1 ± 0.8 | −0.01 |
Sodium, mEq/L | 2673 | 138.4 ± 3.4 | 138.4 ± 3.5 | −0.01 | 138.4 ± 3.2 | 138.4 ± 3.3 | −0.01 |
Medication at baseline | |||||||
Antiplatelet | 3035 | 713 (34.3) | 303 (31.8) | 0.05 | 33.6% | 33.9% | −0.01 |
Anticoagulation | 3035 | 34 (1.6) | 14 (1.5) | 0.01 | 1.6% | 1.5% | 0.01 |
ACEi/ARB | 3035 | 1234 (59.3) | 576 (60.4) | −0.02 | 59.9% | 60.1% | <0.01 |
Beta blockers | 3035 | 675 (32.4) | 277 (29.0) | 0.07 | 31.4% | 31.1% | 0.01 |
Calcium channel blocker | 3035 | 1562 (75.1) | 678 (71.1) | 0.09 | 74.0% | 74.2% | <0.01 |
Loops diuretics | 3035 | 1429 (68.7) | 652 (68.3) | 0.01 | 68.7% | 68.5% | <0.01 |
Nitrates | 3035 | 653 (31.4) | 298 (31.2) | <0.01 | 31.3% | 30.6% | 0.02 |
Vasodilator | 3035 | 462 (22.2) | 200 (21.0) | 0.03 | 21.8% | 21.4% | 0.01 |
Oral hypoglycemic agents | 3035 | 813 (39.1) | 346 (36.3) | 0.06 | 38.2% | 38.4% | <0.01 |
Insulin | 3035 | 736 (35.4) | 331 (34.7) | 0.01 | 35.0% | 34.4% | 0.01 |
Statin | 3035 | 691 (33.2) | 301 (31.6) | 0.04 | 32.7% | 32.1% | 0.01 |
Vitamin D therapy | 3035 | 134 (6.4) | 93 (9.7) | −0.12 | 7.5% | 7.4% | 0.01 |
Vitamin B therapy | 3035 | 1490 (71.6) | 563 (59.0) | 0.27 | 67.7% | 68.1% | −0.01 |
Proton pump inhibitor | 3035 | 545 (26.2) | 226 (23.7) | 0.06 | 25.6% | 26.0% | −0.01 |
Steroid | 3035 | 463 (22.2) | 172 (18.0) | 0.11 | 20.9% | 20.5% | 0.01 |
Follow-up year | 3035 | 5.7 ± 4.2 | 5.9 ± 4.3 | −0.06 | 5.8 ± 4.2 | 5.7 ± 4.2 | 0.01 |
Variable | Daily | Weekly | HR or SHR (95% CI) for Daily | p Value |
---|---|---|---|---|
Primary outcome | ||||
All-cause mortality | 49.2% | 51.7% | 0.95 (0.85–1.06) | 0.335 |
Cardiovascular death | 30.9% | 30.4% | 1.01 (0.87–1.17) | 0.893 |
Infection death | 23.3% | 23.9% | 0.97 (0.82–1.14) | 0.673 |
Secondary outcome | ||||
Sepsis | 44.7% | 44.4% | 1.01 (0.94–1.09) | 0.743 |
Major cardiovascular cardiac event * | 42.4% | 42.1% | 0.99 (0.87–1.12) | 0.836 |
Acute myocardial infarction | 13.9% | 14.1% | 0.98 (0.86–1.12) | 0.731 |
Acute ischemic stroke | 13.1% | 14.2% | 0.92 (0.80–1.05) | 0.215 |
Heart failure hospitalization | 22.1% | 22.3% | 0.99 (0.89–1.10) | 0.837 |
Intracranial hemorrhage | 3.9% | 3.9% | 0.99 (0.77–1.28) | 0.961 |
New diagnosis of peripheral vascular disease | 11.9% | 12.2% | 0.98 (0.84–1.13) | 0.729 |
Arteriovenous access thrombosis (fistula or graft) | 17.0% | 23.6% | 0.69 (0.61–0.77) | <0.001 |
New diagnosis of malignancy | 11.1% | 11.3% | 0.98 (0.84–1.14) | 0.773 |
Side-effect-related outcome | ||||
Gastrointestinal side effects of drugs | 71.0% | 69.1% | 1.04 (0.98–1.11) | 0.162 |
Use of oral form proton pump inhibitors | 62.0% | 60.3% | 1.05 (0.98–1.12) | 0.150 |
Insomnia with use of relevant drugs | 21.5% | 22.2% | 0.96 (0.86–1.06) | 0.399 |
Variable | Daily Folic Acid | Weekly Folic Acid | p for | ||||
---|---|---|---|---|---|---|---|
Baseline | 12th Month | Change | Baseline | 12th Month | Change | Interaction | |
Hemoglobin, g/dL | 8.3 ± 1.3 | 10.3 ± 1.2 | 1.95 ± 1.55 * | 8.3 ± 1.3 | 10.3 ± 1.4 | 2.07 ± 1.66 * | 0.103 |
Potassium, mEq/L | 5.1 ± 0.8 | 4.7 ± 0.8 | −0.42 ± 0.94 * | 5.2 ± 0.9 | 4.7 ± 0.8 | −0.46 ± 1.01 * | 0.339 |
iPTH, pg/mL | 325.8 ± 317.0 | 221.7 ± 250.8 | −104.1 ± 286.7 * | 356.5 ± 334.2 | 263.7 ± 319.3 | −92.8 ± 302.0 * | 0.511 |
Albumin, g/dL | 3.85 ± 0.41 | 3.86 ± 0.47 | 0.01 ± 0.45 | 3.87 ± 0.39 | 3.84 ± 0.49 | −0.02 ± 0.44 | 0.083 |
hsCRP, mg/dL | 7.5 ± 12.0 | 7.8 ± 13.8 | 0.24 ± 15.89 | 6.5 ± 10.9 | 9.0 ± 17.1 | 2.54 ± 18.21 * | 0.027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Y.-R.; Tu, K.-H.; Lee, C.-C.; Fan, P.-C.; Yen, C.-L.; Wu, V.C.-C.; Fang, J.-T.; Chen, Y.-C.; Chu, P.-H.; Chang, C.-H. Supplementation with Folic Acid and Cardiovascular Outcomes in End-Stage Kidney Disease: A Multi-Institution Cohort Study. Nutrients 2022, 14, 4162. https://doi.org/10.3390/nu14194162
Tu Y-R, Tu K-H, Lee C-C, Fan P-C, Yen C-L, Wu VC-C, Fang J-T, Chen Y-C, Chu P-H, Chang C-H. Supplementation with Folic Acid and Cardiovascular Outcomes in End-Stage Kidney Disease: A Multi-Institution Cohort Study. Nutrients. 2022; 14(19):4162. https://doi.org/10.3390/nu14194162
Chicago/Turabian StyleTu, Yi-Ran, Kun-Hua Tu, Cheng-Chia Lee, Pei-Chun Fan, Chieh-Li Yen, Victor Chien-Chia Wu, Ji-Tseng Fang, Yung-Chang Chen, Pao-Hsien Chu, and Chih-Hsiang Chang. 2022. "Supplementation with Folic Acid and Cardiovascular Outcomes in End-Stage Kidney Disease: A Multi-Institution Cohort Study" Nutrients 14, no. 19: 4162. https://doi.org/10.3390/nu14194162
APA StyleTu, Y. -R., Tu, K. -H., Lee, C. -C., Fan, P. -C., Yen, C. -L., Wu, V. C. -C., Fang, J. -T., Chen, Y. -C., Chu, P. -H., & Chang, C. -H. (2022). Supplementation with Folic Acid and Cardiovascular Outcomes in End-Stage Kidney Disease: A Multi-Institution Cohort Study. Nutrients, 14(19), 4162. https://doi.org/10.3390/nu14194162