Effectivity of Saffron Extract (Saffr’Activ) on Treatment for Children and Adolescents with Attention Deficit/Hyperactivity Disorder (ADHD): A Clinical Effectivity Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sample
2.3. Interventions
2.4. Measures
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polanczyk, G.; De Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The worldwide prevalence of ADHD: A systematic review and metaregression analysis. Am. J. Psychiatry 2007, 164, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple, R.A.; Maxwell, L.M.; Russell, S.; Duthie, J. NICE guideline review: Attention deficit hyperactivity disorder: Diagnosis and management (NG87). Arch. Dis. Child. Educ. Pract. 2020, 105, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Toomey, S.L.; Sox, C.M.; Rusinak, D.; Finkelstein, J.A. Why do children with ADHD discontinue their medication? Clin. Pediatrics 2012, 51, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Purper-Ouakil, D.; Blasco-Fontecilla, H.; Ros, T.; Acquaviva, E.; Banaschewski, T.; Baumeister, S.; Bousquet, E.; Bussalb, A.; Delhaye, M.; Delorme, R. Personalized at-home neurofeedback compared to long-acting methylphenidate in children with ADHD: NEWROFEED, a European randomized noninferiority trial. J. Child Psychol. Psychiatry 2021, 63, 187–198. [Google Scholar] [CrossRef]
- Rodrigo-Yanguas, M.; Martin-Moratinos, M.; Menendez-Garcia, A.; Gonzalez-Tardon, C.; Sanchez-Sanchez, F.; Royuela, A.; Blasco-Fontecilla, H. A virtual reality serious videogame versus online chess augmentation in patients with attention deficit hyperactivity disorder: A randomized clinical trial. Games Health J. 2021, 10, 283–292. [Google Scholar]
- Rodrigo-Yanguas, M.; González-Tardón, C.; Bella-Fernández, M.; Blasco-Fontecilla, H. Serious Video Games: Angels or Demons in Patients With Attention-Deficit Hyperactivity Disorder? A Quasi-Systematic Review. Front. Psychiatry 2022, 13, 798480. [Google Scholar] [CrossRef]
- Pedersen, P.; Bjerrum, M.; Larsen, P.; Bjerrum, S.; Pedersen, J.; Peters, M. Nutritional interventions to reduce symptoms in children and adults with attention deficit hyperactivity disorder: A scoping review protocol. JBI Evid. Synth. 2017, 15, 2265–2269. [Google Scholar] [CrossRef]
- Granero, R.; Pardo-Garrido, A.; Carpio-Toro, I.L.; Ramírez-Coronel, A.A.; Martínez-Suárez, P.C.; Reivan-Ortiz, G.G. The role of iron and zinc in the treatment of adhd among children and adolescents: A systematic review of randomized clinical trials. Nutrients 2021, 13, 4059. [Google Scholar] [CrossRef]
- Ashktorab, H.; Soleimani, A.; Singh, G.; Amin, A.; Tabtabaei, S.; Latella, G.; Stein, U.; Akhondzadeh, S.; Solanki, N.; Gondré-Lewis, M.C. Saffron: The golden spice with therapeutic properties on digestive diseases. Nutrients 2019, 11, 943. [Google Scholar] [CrossRef]
- Ghaffari, S.; Roshanravan, N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed. Pharmacother. 2019, 109, 21–27. [Google Scholar] [CrossRef]
- Skladnev, N.V.; Johnstone, D.M. Neuroprotective properties of dietary saffron: More than just a chemical scavenger? Neural Regen. Res. 2017, 12, 210. [Google Scholar] [PubMed]
- Moradi, K.; Akhondzadeh, S. Psychotropic Effects of Saffron: A Brief Evidence-based Overview of the Interaction Between a Persian Herb and Mental Health. J. Iran. Med. Counc. 2021, 4, 57–59. [Google Scholar] [CrossRef]
- Avgerinos, K.I.; Vrysis, C.; Chaitidis, N.; Kolotsiou, K.; Myserlis, P.G.; Kapogiannis, D. Effects of saffron (Crocus sativus L.) on cognitive function. A systematic review of RCTs. Neurol. Sci. 2020, 41, 2747–2754. [Google Scholar] [CrossRef] [PubMed]
- El Midaoui, A.; Ghzaiel, I.; Vervandier-Fasseur, D.; Ksila, M.; Zarrouk, A.; Nury, T.; Khallouki, F.; El Hessni, A.; Ibrahimi, S.O.; Latruffe, N. Saffron (Crocus sativus L.): A source of nutrients for health and for the treatment of neuropsychiatric and age-related diseases. Nutrients 2022, 14, 597. [Google Scholar] [CrossRef] [PubMed]
- Berger, F.; Hensel, A.; Nieber, K. Saffron extract and trans-crocetin inhibit glutamatergic synaptic transmission in rat cortical brain slices. Neuroscience 2011, 180, 238–247. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Karimi, G.; Niapoor, M. Antidepressant effect of Crocus sativus L. stigma extracts and their constituents, crocin and safranal, in mice. In Proceedings of the I International Symposium on Saffron Biology and Biotechnology 650, Labacete, Spain, 22–25 October 2003; pp. 435–445. [Google Scholar]
- Broadhead, G.; Chang, A.; Grigg, J.; McCluskey, P. Efficacy and safety of saffron supplementation: Current clinical findings. Crit. Rev. Food Sci. Nutr. 2016, 56, 2767–2776. [Google Scholar] [CrossRef]
- Modaghegh, M.-H.; Shahabian, M.; Esmaeili, H.-A.; Rajbai, O.; Hosseinzadeh, H. Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers. Phytomedicine 2008, 15, 1032–1037. [Google Scholar] [CrossRef]
- Mousavi, B.; Bathaie, S.Z.; Fadai, F.; Ashtari, Z. Safety evaluation of saffron stigma (Crocus sativus L.) aqueous extract and crocin in patients with schizophrenia. Avicenna J. Phytomed. 2015, 5, 413. [Google Scholar]
- Baziar, S.; Aqamolaei, A.; Khadem, E.; Mortazavi, S.H.; Naderi, S.; Sahebolzamani, E.; Mortezaei, A.; Jalilevand, S.; Mohammadi, M.-R.; Shahmirzadi, M. Crocus sativus L. versus methylphenidate in treatment of children with attention-deficit/hyperactivity disorder: A randomized, double-blind pilot study. J. Child Adolesc. Psychopharmacol. 2019, 29, 205–212. [Google Scholar] [CrossRef]
- Khaksarian, M.; Ahangari, N.; Masjedi-Arani, A.; Mirr, I.; Jafari, H.; Kordian, S.; Nooripour, R.; Hassanvandi, S. A Comparison of Methylphenidate (MPH) and Combined Methylphenidate with Crocus sativus (Saffron) in the Treatment of Children and Adolescents with ADHD: A Randomized, Double-Blind, Parallel-Group, Clinical Trial. Iran. J. Psychiatry Behav. Sci. 2021, 15, e108390. [Google Scholar] [CrossRef]
- Pazoki, B.; Zandi, N.; Assaf, Z.; Moghaddam, H.S.; Zeinoddini, A.; Mohammadi, M.R.; Akhondzadeh, S. Efficacy and safety of saffron as adjunctive therapy in adults with attention-deficit/hyperactivity disorder: A randomized, double-blind, placebo-controlled clinical trial. Adv. Integr. Med. 2022, 9, 37–43. [Google Scholar] [CrossRef]
- Lambek, R.; Tannock, R.; Dalsgaard, S.; Trillingsgaard, A.; Damm, D.; Thomsen, P.H. Executive dysfunction in school-age children with ADHD. J. Atten. Disord. 2011, 15, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.P. ADHD and sleep: Recent advances and future directions. Curr. Opin. Psychol. 2020, 34, 50–56. [Google Scholar] [CrossRef]
- Pachikian, B.D.; Copine, S.; Suchareau, M.; Deldicque, L. Effects of saffron extract on sleep quality: A randomized double-blind controlled clinical trial. Nutrients 2021, 13, 1473. [Google Scholar] [CrossRef]
- Grañana, N.; Richaudeau, A.; Gorriti, C.R.; O’Flaherty, M.; Scotti, M.E.; Sixto, L.; Allegri, R.; Fejerman, N. Evaluación de déficit de atención con hiperactividad: La escala SNAP IV adaptada a la Argentina. Rev. Panam. Salud Pública 2011, 29, 344–349. [Google Scholar] [CrossRef]
- Group, M.C. National Institute of Mental Health Multimodal Treatment Study of ADHD follow-up: 24-month outcomes of treatment strategies for attention-deficit/hyperactivity disorder. Pediatrics 2004, 113, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Conners, C.K.; Sitarenios, G.; Parker, J.D.; Epstein, J.N. The revised Conners’ Parent Rating Scale (CPRS-R): Factor structure, reliability, and criterion validity. J. Abnorm. Child Psychol. 1998, 26, 257–268. [Google Scholar] [CrossRef]
- Conners, C.K. Conners’ Abbreviated Symptom Questionnaire; Multi-Health Systems: North Towananda, NY, USA, 1990. [Google Scholar]
- Ullmann, R.K.; Sleator, E.K.; Sprague, R.L. A change of mind: The Conners abbreviated rating scales reconsidered. J. Abnorm. Child Psychol. 1985, 13, 553–565. [Google Scholar] [CrossRef]
- Gioia, G.A.; Isquith, P.K.; Guy, S.C.; Kenworthy, L. BRIEF: Behavior Rating Inventory of Executive Function; Psychological Assessment Resources: Lutz, FL, USA, 2015. [Google Scholar]
- Maldonado Belmonte, M.J.; Fournier del Castillo, M.C.; Martínez Arias, R.; Gioia, G.A. BRIEF2: Evaluación Conductual de la Función Ejecutiva; TEA Ediciones: Madrid, Spain, 2017. [Google Scholar]
- Parhoon, K.; Moradi, A.; Alizadeh, H.; Parhoon, H.; Sadaphal, D.P.; Coolidge, F.L. Psychometric properties of the behavior rating inventory of executive function, (BRIEF2) in a sample of children with ADHD in Iran. Child Neuropsychol. 2022, 28, 427–436. [Google Scholar] [CrossRef]
- Jiménez, A.; Lucas-Molina, B. Dimensional structure and measurement invariance of the BRIEF-2 across gender in a socially vulnerable sample of primary school-aged children. Child Neuropsychol. 2019, 25, 636–647. [Google Scholar] [CrossRef]
- Bruni, O.; Ottaviano, S.; Guidetti, V.; Romoli, M.; Innocenzi, M.; Cortesi, F.; Giannotti, F. The Sleep Disturbance Scale for Children (SDSC) Construct ion and validation of an instrument to evaluate sleep disturbances in childhood and adolescence. J. Sleep Res. 1996, 5, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Mancini, V.O.; Pearcy, B.T. Sensitivity of the child behaviour checklist sleep items and convergent validity with the Sleep Disorders Scale for Children in a paediatric ADHD sample. Sleep Med. X 2021, 3, 100033. [Google Scholar] [CrossRef] [PubMed]
- Conners, C.K. Conners CPT-3: Manual; Multi-Health Systems: New Tawananda, NY, USA, 2014. [Google Scholar]
- Shaked, D.; Faulkner, L.M.; Tolle, K.; Wendell, C.R.; Waldstein, S.R.; Spencer, R.J. Reliability and validity of the Conners’ continuous performance test. Appl. Neuropsychol. Adult 2020, 27, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.A.; Pritchard, A.E.; Koriakin, T.A.; Jones, K.E.; Mahone, E.M. Initial examination of the BRIEF2 in clinically referred children with and without ADHD symptoms. J. Attent. Disord. 2020, 24, 1775–1784. [Google Scholar] [CrossRef]
- Chan, R.C.; Shum, D.; Toulopoulou, T.; Chen, E.Y. Assessment of executive functions: Review of instruments and identification of critical issues. Arch. Clin. Neuropsychol. 2008, 23, 201–216. [Google Scholar] [CrossRef]
- Wu, C.-S.; Shang, C.-Y.; Lin, H.-Y.; Gau, S.S.-F. Differential treatment effects of methylphenidate and atomoxetine on executive functions in children with attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 2021, 31, 187–196. [Google Scholar] [CrossRef]
- Silvestri, R. Sleep and ADHD: A complex and bidirectional relationship. Sleep Med. Rev. 2022, 63, 101643. [Google Scholar] [CrossRef]
- Spencer, R.; Drag, L.; Walker, S.; Bieliauskas, L. Self-reports of cognitive function are not predictive of neuropsychological test performance among returning combat veterans. J. Rehabil. Res. Dev. 2010, 47, 521–530. [Google Scholar] [CrossRef]
- Hazell, P.; Lewin, T.; Sly, K. What is a clinically important level of improvement in symptoms of attention-deficit/hyperactivity disorder? Aust. N. Z. J. Psychiatry 2005, 39, 354–358. [Google Scholar] [CrossRef]
- Sengupta, S.M.; Grizenko, N.; Thakur, G.A.; Bellingham, J.; DeGuzman, R.; Robinson, S.; TerStepanian, M.; Poloskia, A.; Shaheen, S.; Fortier, M.-E. Differential association between the norepinephrine transporter gene and ADHD: Role of sex and subtype. J. Psychiatry Neurosci. 2012, 37, 129–137. [Google Scholar] [CrossRef] [Green Version]
Saffron Group (n = 36) | Methylphenidate Group (n = 27) | Comparison Contrast (Mann–Whitney’s U or Fisher’s Exact Test) | p Value | |
---|---|---|---|---|
Age | 10.57 (3.22) | 11.74 (3.335) | U = 383.5 | 0.203 |
Gender | ||||
Male | 25 (69.4%) | 17 (63%) | N/A | 0.602 |
Female | 11 (30.6%) | 10 (37%) | ||
Nationality | ||||
Spanish | 35 (97.2%) | 26 (96.3%) | N/A | 0.670 |
Russian | 1 (2.8%) | 1 (3.7%) | ||
Previous psychological treatment | ||||
Yes | 9 (25%) | 7 (19.4%) | N/A | 0.554 |
No | 27 (75%) | 20 (80.6%) | ||
Familial psychiatric history | ||||
Yes | 27 (75%) | 19 (70.4%) | N/A | 0.370 |
No | 9 (25%) | 8 (29.6%) |
Saffron Group (n = 36) | Methylphenidate Group (n = 27) | Comparison Contrast (Mann–Whitney’s U or Fisher’s Exact Test) | p Value | |
---|---|---|---|---|
SNAP-IV | ||||
Inattention | 16.81 (5.382) | 16.93 (6.288) | U = 474 | 0.867 |
Hyperactivity | 13.86 (6.766) | 11.15 (6.66) | U = 375.5 | 0.124 |
Total | 30.67 (9.78) | 28.07 (10.366) | U = 419.5 | 0.355 |
CPRS-10 | 15.34 (6.087) | 14.48 (5.80) | U = 441 | 0.654 |
BRIEF-2 | 67.86 (21.354) | 69.46 (20.44) | U = 458 | 0.887 |
CPT-3 | ||||
Response Style | 52.00 (11.130) | 52.68 (7.958) | U = 495 | 0.903 |
Omissions | 58.42 (17.868) | 52.04 (11.286) | U = 451 | 0.472 |
Commissions | 48.03 (8.531) | 51.71 (7.102) | U = 370 | 0.069 |
Perseverance | 57.42 (15.030) | 54.29 (12.915) | U = 467.5 | 0.620 |
Hit RT | 60.67 (13.076) | 54.5 (9.403) | U = 358 | 0.048 |
Standard Deviation Hit RT | 58.56 (16.804) | 53.32 (12.798) | U = 430.5 | 0.320 |
Variability | 54.56 (14.773) | 51.29 (11.476) | U = 398 | 0.458 |
HRT Block change | 55.77 (12.478) | 49.29 (13.302) | U = 335 | 0.032 |
HRT ISI | 55.08 (13.731) | 49.75 (9.819) | U = 424 | 0.278 |
Group Effect | Treatment Effect | Interaction Effect (Group × Treatment) | ||||
---|---|---|---|---|---|---|
F Statistics | p Value | F Statistics | p Value | F Statistics | p Value | |
SNAP-IV | ||||||
Inattention | 0.053 | 0.820 | 16.577 | <0.001 | 2.082 | 0.155 |
Hyperactivity | 0.666 | 0.418 | 0.163 | 0.688 | 2.069 | 0.156 |
Total | 0.660 | 0.420 | 6.960 | 0.011 | <0.001 | 0.994 |
CPRS-10 | 0.596 | 0.443 | 11.754 | 0.001 | 0.124 | 0.726 |
BRIEF-2 | 1.071 | 0.306 | 16.096 | <0.001 | 0.038 | 0.847 |
CPT-3 | ||||||
Response Style | 2.304 | 0.135 | 12.914 | 0.001 | 2.498 | 0.120 |
Omissions | 7.556 | 0.008 | 0.025 | 0.874 | 0.002 | 0.968 |
Commissions | 0.587 | 0.447 | 13.992 | <0.001 | 2.132 | 0.150 |
Perseverance | 5.344 | 0.025 | 2.270 | 0.138 | 0.118 | 0.732 |
Hit RT | 6.381 | <0.001 | 0.672 | 0.416 | 1.327 | 0.254 |
Standard Deviation Hit RT | 7.034 | 0.010 | 0.900 | 0.347 | 0.441 | 0.509 |
Variability | 3.391 | 0.072 | 1.042 | 0.313 | 0.006 | 0.938 |
HRT Block Change | 6.046 | <0.001 | 0.091 | 0.764 | 1.862 | 0.178 |
HRT ISI | 5.077 | 0.028 | 0.731 | 0.396 | 0.392 | 0.534 |
SD | ||||||
Sleep Hours | 1.150 | 0.292 | 1.623 | 0.213 | 0.042 | 0.839 |
Time to Fall Asleep | 0.020 | 0.888 | 0.481 | 0.493 | 0.481 | 0.493 |
Saffron Group (n = 32) | Methylphenidate Group (n = 24) | Mann–Whitney’s U | p Value | |
---|---|---|---|---|
SNAP-IV | ||||
Inattention | −1.97 (5.21) | −4.13 (5.83) | 279.5 | 0.130 |
Hyperactivity | −1.37 (5.62) | 0.77 (5.03) | 298 | 0.340 |
Total | −3.34 (8.91) | −3.36 (9.57) | 337.5 | 0.798 |
CPRS-10 | −2.35 (4.40) | −1.92 (4.81) | 350.5 | 0.714 |
BRIEF-2 | −9.37 (17.50) | −10.32 (17.45) | 316.5 | 0.802 |
CPT-3 | ||||
Response Style | −2.16 (8.55) | −5.54 (7.01) | 284 | 0.097 |
Omissions | −0.25 (17.42) | −0.42 (12.35) | 324.5 | 0.323 |
Commissions | −2.37 (6.84) | −5.42 (8.75) | 303 | 0.179 |
Perseverance | −1.94 (12.58) | −3.08 (12.02) | 347 | 0.539 |
Hit RT | 0.34 (8.86) | −2.04 (5.68) | 335 | 0.416 |
Standard Deviation Hit RT | −0.50 (14.89) | −2.83 (9.92) | 333.5 | 0.403 |
Variability | −1.60 (13.29) | −1.86 (9.32) | 255 | 0.669 |
HRT Block Change | −3.13 (13.36) | 2.00 (14.19) | 278.5 | 0.156 |
HRT ISI | 2.97 (16.61) | 0.46 (12.07) | 327 | 0.345 |
SD | ||||
Sleep Hours | −0.22 (0.65) | −0.31 (1.60) | 107 | 0.668 |
Time to Fall Asleep | −0.25 (0.97) | 0.00 (1.08) | 97.5 | 0.206 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasco-Fontecilla, H.; Moyano-Ramírez, E.; Méndez-González, O.; Rodrigo-Yanguas, M.; Martin-Moratinos, M.; Bella-Fernández, M. Effectivity of Saffron Extract (Saffr’Activ) on Treatment for Children and Adolescents with Attention Deficit/Hyperactivity Disorder (ADHD): A Clinical Effectivity Study. Nutrients 2022, 14, 4046. https://doi.org/10.3390/nu14194046
Blasco-Fontecilla H, Moyano-Ramírez E, Méndez-González O, Rodrigo-Yanguas M, Martin-Moratinos M, Bella-Fernández M. Effectivity of Saffron Extract (Saffr’Activ) on Treatment for Children and Adolescents with Attention Deficit/Hyperactivity Disorder (ADHD): A Clinical Effectivity Study. Nutrients. 2022; 14(19):4046. https://doi.org/10.3390/nu14194046
Chicago/Turabian StyleBlasco-Fontecilla, Hilario, Esther Moyano-Ramírez, Olga Méndez-González, María Rodrigo-Yanguas, Marina Martin-Moratinos, and Marcos Bella-Fernández. 2022. "Effectivity of Saffron Extract (Saffr’Activ) on Treatment for Children and Adolescents with Attention Deficit/Hyperactivity Disorder (ADHD): A Clinical Effectivity Study" Nutrients 14, no. 19: 4046. https://doi.org/10.3390/nu14194046
APA StyleBlasco-Fontecilla, H., Moyano-Ramírez, E., Méndez-González, O., Rodrigo-Yanguas, M., Martin-Moratinos, M., & Bella-Fernández, M. (2022). Effectivity of Saffron Extract (Saffr’Activ) on Treatment for Children and Adolescents with Attention Deficit/Hyperactivity Disorder (ADHD): A Clinical Effectivity Study. Nutrients, 14(19), 4046. https://doi.org/10.3390/nu14194046