The Potential Benefits and Controversies of Probiotics Use in Patients at Different Stages of Chronic Kidney Disease
Abstract
:1. Introduction
2. Overview of Probiotics Used in CKD
2.1. Type, Dose, and Intervention Duration of Probiotics
2.2. Dietary Interventions other Than Probiotics
3. Effect of Probiotics in Early Stage of CKD (Stage 1–2)
4. Effect of Probiotics in Advanced Stage of CKD (Stage 3–5ND)
5. Effect of Probiotics in Dialysis Patients (Stage 5D)
5.1. HD
5.2. PD
6. Limitations of the Studies Reviewed
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.-H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Mafra, D.; Lobo, J.C.; Barros, A.F.; Koppe, L.; Vaziri, N.D.; Fouque, D. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol. 2014, 9, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Szeto, C.C.; McIntyre, C.W.; Li, P.K.-T. Circulating Bacterial Fragments as Cardiovascular Risk Factors in CKD. J. Am. Soc. Nephrol. 2018, 29, 1601–1608. [Google Scholar] [CrossRef]
- Luo, D.; Zhao, W.; Lin, Z.; Wu, J.; Lin, H.; Li, Y.; Song, J.; Zhang, J.; Peng, H. The Effects of Hemodialysis and Peritoneal Dialysis on the Gut Microbiota of End-Stage Renal Disease Patients, and the Relationship Between Gut Microbiota and Patient Prognoses. Front. Cell. Infect. Microbiol. 2021, 11, 579386. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Noda, H.; Akasaka, N.; Ohsugi, M. Biotin production by bifidobacteria. J. Nutr. Sci. Vitaminol. 1994, 40, 181–188. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, S.; Wu, S.; Ren, Z.; Liu, G.; Wu, J. Bacillus subtilis on Intestinal Epithelial Barrier Dysfunction in Caco-2 Cell Model and Mice Model of Lipopolysaccharide Stimulation. Front. Immunol. 2021, 12, 696148. [Google Scholar] [CrossRef]
- Shi, C.-Z.; Chen, H.-Q.; Liang, Y.; Xia, Y.; Yang, Y.-Z.; Yang, J.; Zhang, J.-D.; Wang, S.-H.; Liu, J.; Qin, H.-L. Combined probiotic bacteria promotes intestinal epithelial barrier function in interleukin-10-gene-deficient mice. World J. Gastroenterol. 2014, 20, 4636–4647. [Google Scholar] [CrossRef]
- Kailasapathy, K.; Chin, J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 2000, 78, 80–88. [Google Scholar] [CrossRef]
- Saarela, M.; Mogensen, G.; Fonden, R.; Matto, J.; Mattila-Sandholm, T. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 2000, 84, 197–215. [Google Scholar] [CrossRef]
- Zhu, H.; Cao, C.; Wu, Z.; Zhang, Z.; Wang, M.; Xu, H.; Zhao, Z.; Wang, Y.; Pei, G.; Yang, Q.; et al. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease. Cell Metab. 2021, 33, 2091–2093. [Google Scholar] [CrossRef]
- Natarajan, R.; Pechenyak, B.; Vyas, U.; Ranganathan, P.; Weinberg, A.; Liang, P.; Mallappallil, M.C.; Norin, A.J.; Friedman, E.A.; Saggi, S. Randomized Controlled Trial of Strain-Specific Probiotic Formulation (Renadyl) in Dialysis Patients. Biomed Res. Int. 2014, 2014, 568571. [Google Scholar] [CrossRef]
- Cosola, C.; Rocchetti, M.T.; di Bari, I.; Acquaviva, P.M.; Maranzano, V.; Corciulo, S.; di Ciaula, A.; di Palo, D.M.; la Forgia, F.M.; Fontana, S.; et al. An Innovative Synbiotic Formulation Decreases Free Serum Indoxyl Sulfate, Small Intestine Permeability and Ameliorates Gastrointestinal Symptoms in a Randomized Pilot Trial in Stage IIIb-IV CKD Patients. Toxins 2021, 13, 334. [Google Scholar] [CrossRef] [PubMed]
- Taki, K.; Takayama, F.; Niwa, T. Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J. Ren. Nutr. 2005, 15, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Haring, B.; Selvin, E.; Liang, M.; Coresh, J.; Grams, M.E.; Natalia, P.I.; Steffen, L.M.; Rebholz, C.M. Dietary Protein Sources and Risk for Incident Chronic Kidney Disease: Results from the Atherosclerosis Risk in Communities (ARIC) Study. J. Ren. Nutr. 2017, 27, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.T.; Palmer, S.C.; Wai, S.N.; Ruospo, M.; Carrero, J.-J.; Campbell, K.L.; Strippoli, G.F.M. Healthy Dietary Patterns and Risk of Mortality and ESRD in CKD: A Meta-Analysis of Cohort Studies. Clin. J. Am. Soc. Nephrol. 2017, 12, 272–279. [Google Scholar] [CrossRef]
- Lew, Q.J.; Jafar, T.H.; Koh, H.W.; Jin, A.; Chow, K.Y.; Yuan, J.M.; Koh, W.P. Red Meat Intake and Risk of ESRD. J. Am. Soc. Nephrol. 2017, 28, 304–312. [Google Scholar] [CrossRef]
- De Preter, V.; Vanhoutte, T.; Huys, G.; Swings, J.; De-Vuyst, L.; Rutgeerts, P.; Verbeke, K. Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans. Am. J. Physiol. -Gastrointest. Liver Physiol. 2007, 292, G358–G368. [Google Scholar] [CrossRef]
- Patel, K.P.; Luo, F.J.; Plummer, N.S.; Hostetter, T.H.; Meyer, T.W. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 2012, 7, 982–988. [Google Scholar] [CrossRef]
- Wagner, S.; Merkling, T.; Metzger, M.; Koppe, L.; Laville, M.; Boutron-Ruault, M.C.; Frimat, L.; Combe, C.; Massy, Z.A.; Stengel, B.; et al. Probiotic Intake and Inflammation in Patients with Chronic Kidney Disease: An Analysis of the CKD-REIN Cohort. Front. Nutr. 2022, 9, 772596. [Google Scholar] [CrossRef]
- Armani, R.G.; Ramezani, A.; Yasir, A.; Sharama, S.; Canziani, M.E.F.; Raj, D.S. Gut Microbiome in Chronic Kidney Disease. Curr. Hypertens Rep. 2017, 19, 29. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Montemurno, E.; Piccolo, M.; Vannini, L.; Lauriero, G.; Maranzano, V.; Gozzi, G.; Serrazanetti, D.; Dalfino, G.; Gobbetti, M.; et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS ONE 2014, 9, e99006. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.P.; Urbina, A.R.; Gomez, E.C.; Espinosa, C.M.L. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr. Hosp. 2014, 29, 582–590. [Google Scholar]
- Jiang, S.; Xie, S.; Lv, D.; Zhang, Y.; Deng, J.; Zeng, L.; Chen, Y. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie Van Leeuwenhoek 2016, 109, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Miraghajani, M.; Zaghian, N.; Mirlohi, M.; Awat, F.; Reza, G. The Impact of Probiotic Soy Milk Consumption on Oxidative Stress Among Type 2 Diabetic Kidney Disease Patients: A Randomized Controlled Clinical Trial. J. Ren. Nutr. 2017, 27, 317–324. [Google Scholar] [CrossRef]
- Rusu, I.G.; Suharoschi, R.; Vodnar, D.C.; Pop, C.R.; Socaci, S.A.; Vulturar, R.; Istrati, M.; Moroșan, I.; Fărcaș, A.C.; Kerezsi, A.D.; et al. Iron Supplementation Influence on the Gut Microbiota and Probiotic Intake Effect in Iron Deficiency—A Literature-Based Review. Nutrients 2020, 12, 1993. [Google Scholar] [CrossRef] [PubMed]
- Poesen, R.; Evenepoel, P.; de Loor, H.; Delcour, J.A.; Courtin, C.M.; Kuypers, D.; Augustijns, P.; Verbeke, K.; Meijers, B. The Influence of Prebiotic Arabinoxylan Oligosaccharides on Microbiota Derived Uremic Retention Solutes in Patients with Chronic Kidney Disease: A Randomized Controlled Trial. PLoS ONE 2016, 11, e0153893. [Google Scholar] [CrossRef]
- De Mauri, A.; Carrera, D.; Bagnati, M.; Rolla, R.; Vidali, M.; Chiarinotti, D.; Pane, M.; Amoruso, A.; del Piano, M. Probiotics-Supplemented Low-Protein Diet for Microbiota Modulation in Patients with Advanced Chronic Kidney Disease (ProLowCKD): Results from a Placebo-Controlled Randomized Trial. Nutrients 2022, 14, 1637. [Google Scholar] [CrossRef]
- Rossi, M.; Johnson, D.W.; Morrison, M.; Pascoe, E.M.; Coombes, J.S.; Forbes, J.M.; Szeto, C.-C.; McWhinney, B.C.; Ungerer, J.P.J.; Campbell, K.L. Synbiotics Easing Renal Failure by Improving Gut Microbiology (SYNERGY): A Randomized Trial. Clin. J. Am. Soc. Nephrol. 2016, 11, 223–231. [Google Scholar] [CrossRef]
- Ranganathan, N.; Ranganathan, P.; Friedman, E.A.; Joseph, A.; Delano, B.; Goldfarb, D.S.; Tam, P.; Rao, A.V.; Anteyi, E.; Musso, C.G. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv. Ther. 2010, 27, 634–647. [Google Scholar] [CrossRef]
- Guida, B.; Germano, R.; Trio, R.; Russo, D.; Memoli, B.; Grumetto, L.; Barbato, F.; Cataldi, M. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: A randomized clinical trial. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Simeoni, M.; Citraro, M.L.; Cerantonio, A.; Deodato, F.; Provenzano, M.; Cianfrone, P.; Capria, M.; Corrado, S.; Libri, E.; Comi, A. An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD). Eur. J. Nutr. 2019, 58, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Tayebi-Khosroshahi, H.; Habibzadeh, A.; Niknafs, B.; Ghotaslou, R.; Yeganeh, S.F.; Ghojazadeh, M.; Moghaddaszadeh, M.; Parkhide, S. The effect of lactulose supplementation on fecal microflora of patients with chronic kidney disease; a randomized clinical trial. J. Ren. Inj. Prev. 2016, 5, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.-K.; Yen, T.-H.; Hsieh, P.-S.; Ho, H.-H.; Kuo, Y.-W.; Huang, Y.-Y.; Kuo, Y.-L.; Li, C.-Y.; Lin, H.-C.; Wang, J.-Y. Effect of a Probiotic Combination in an Experimental Mouse Model and Clinical Patients with Chronic Kidney Disease: A Pilot Study. Front. Nutr. 2021, 8, e661794. [Google Scholar] [CrossRef] [PubMed]
- Pavan, M. Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease. Minerva Urol. E Nefrol. 2016, 68, 222–226. [Google Scholar]
- Yang, C.-Y.; Chen, T.-W.; Lu, W.-L.; Liang, S.-S.; Huang, H.-D.; Tseng, C.-P.; Tarng, D.-C. Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease. Cells 2021, 10, 114. [Google Scholar] [CrossRef]
- Jia, L.; Jia, Q.; Yang, J.; Jia, R.; Zhang, H. Efficacy of Probiotics Supplementation on Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Kidney Blood Press Res. 2018, 43, 1623–1635. [Google Scholar] [CrossRef]
- Zheng, H.J.; Guo, J.; Wang, Q.; Wang, L.; Wang, Y.; Zhang, F.; Huang, W.-J.; Zhang, W.; Liu, W.J.; Wang, Y. Probiotics, prebiotics, and synbiotics for the improvement of metabolic profiles in patients with chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2021, 61, 577–598. [Google Scholar] [CrossRef]
- Wang, I.K.; Wu, Y.Y.; Yang, Y.F.; Ting, I.W.; Lin, C.C.; Yen, T.H.; Chen, J.-H.; Wang, C.-H.; Huang, C.-C.; Lin, H.-C. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: A randomised, double-blind, placebo-controlled trial. Benef. Microbes 2015, 6, 423–430. [Google Scholar] [CrossRef]
- Choi, E.; Yang, J.; Ji, G.; Park, M.S.; Seong, Y.; Oh, S.W.; Kim, M.G.; Cho, W.Y.; Jo, S.K. The effect of probiotic supplementation on systemic inflammation in dialysis patients. Kidney Res. Clin. Pract. 2022, 41, 89–101. [Google Scholar] [CrossRef]
- Wang, P.; Peng, Y.; Guo, Y.; Zhao, Y. The efficacy of probiotic preparations on inflammatory cytokines in patients with chronic kidney disease. Medicine 2022, 41, 89–101. [Google Scholar] [CrossRef] [PubMed]
- de Faria Barros, A.; Borges, N.A.; Nakao, L.S. Effects of probiotic supplementation on inflammatory biomarkers and uremic toxins in non-dialysis chronic kidney patients: A double-blind, randomized, placebo-controlled trial. J. Funct. Foods 2018, 46, 378–383. [Google Scholar] [CrossRef]
- McFarlane, C.; Krishnasamy, R.; Stanton, T.; Savill, E.; Snelson, M.; Mihala, G.; Kelly, J.T.; Morrison, M.; Johnson, D.W.; Campbell, K.L. Synbiotics Easing Renal Failure by Improving Gut Microbiology II (SYNERGY II): A Feasibility Randomized Controlled Trial. Nutrients 2021, 13, 4481. [Google Scholar] [CrossRef]
- Hu, J.; Zhong, X.; Yan, J.; Zhou, D.; Qin, D.; Xiao, X.; Zheng, Y.; Liu, Y. High-throughput sequencing analysis of intestinal flora changes in ESRD and CKD patients. BMC Nephrol. 2020, 21, 12. [Google Scholar] [CrossRef]
- Viramontes-Hörner, D.; Márquez-Sandoval, F.; Martín-del-Campo, F.; Vizmanos-Lamotte, B.; Sandoval-Rodriguez, A.; Armendariz-Borunda, J.; García-Bejarano, H.; Renoirte-López, K.; García-García, G. Effect of a Symbiotic Gel (Lactobacillus acidophilus + Bifidobacterium lactis + Inulin) on Presence and Severity of Gastrointestinal Symptoms in Hemodialysis Patients. J. Ren. Nutr. 2015, 25, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Eidi, F.; Poor Reza Gholi, F.; Ostadrahimi, A.; Dalili, N.; Samadian, F.; Barzegari, A. Effect of Lactobacillus Rhamnosus on serum uremic toxins (phenol and P-Cresol) in hemodialysis patients: A double blind randomized clinical trial. Clin. Nutr. ESPEN 2018, 28, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Mora, J.; Martinez-Hernandez, N.E.; Martin, D.C.F.; Viramontes-Horner, D.; Vizmanos-Lamotte, B.; Munoz-Valle, J.F.; García-García, G.; Parra-Rojas, I.; Castro-Alarcón, N. Effects of a symbiotic on gut microbiota in Mexican patients with end-stage renal disease. J. Ren. Nutr. 2014, 24, 330–335. [Google Scholar] [CrossRef]
- Borges, N.A.; Carmo, F.L.; Stockler-Pinto, M.B.; de Brito, J.S.; Dolenga, C.J.; Ferreira, D.C.; Nakao, L.S.; Rosado, A.; Fouque, D.; Mafra, D. Probiotic Supplementation in Chronic Kidney Disease: A Double-blind, Randomized, Placebo-controlled Trial. J. Ren. Nutr. 2018, 28, 28–36. [Google Scholar] [CrossRef]
- Soleimani, A.; Zarrati, M.M.; Bahmani, F.; Taghizadeh, M.; Ramezani, M.; Tajabadi-Ebrahimi, M.; Jafari, P.; Esmaillzadeh, A.; Asemi, Z. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects. Kidney Int. 2017, 91, 435–442. [Google Scholar] [CrossRef]
- Shariaty, Z.; Mahmoodi Shan, G.M.; Farajollahi, M.; Amerian, M.; Pour, N. The effects of probiotic supplement on hemoglobin in chronic renal failure patients under hemodialysis: A randomized clinical trial. J. Res. Med. Sci. 2017, 22, 74. [Google Scholar]
- Pan, Y.; Yang, L.; Dai, B.; Lin, B.; Lin, S.; Lin, E. Effects of Probiotics on Malnutrition and Health-Related Quality of Life in Patients Undergoing Peritoneal Dialysis: A Randomized Controlled Trial. J. Ren. Nutr. 2021, 31, 199–205. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Xiong, Q.; Tian, C.; Li, L.; Zhao, J.; Lin, X.; Guo, X.; He, Y.; Liang, W.; Zuo, X.; et al. Inulin-type prebiotics reduce serum uric acid levels via gut microbiota modulation: A randomized, controlled crossover trial in peritoneal dialysis patients. Eur. J. Nutr. 2022, 61, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Hida, M.; Aiba, Y.; Sawamura, S.; Suzuki, N.; Satoh, T.; Koga, Y. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 1996, 74, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.K.; De Preter, V.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. P-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol. Dial. Transplant. 2010, 25, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Sirich, T.L.; Plummer, N.S.; Gardner, C.D.; Hostetter, T.H.; Meyer, T.W. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1603–1610. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.; Beaumont, M.; Pallister, T.; Villar, J.; Goodrich, J.K.; Clark, A.; Pascual, J.; Ley, R.E.; Spector, T.D.; Bell, J.T.; et al. Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. PLoS ONE 2015, 10, e0134311. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015, 116, 448–455. [Google Scholar] [CrossRef]
- Kaminski, T.W.; Pawlak, K.; Karbowska, M.; Mysliwiec, M.; Pawlak, D. Indoxyl sulfate-the uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrol. 2017, 18, 35. [Google Scholar] [CrossRef]
- Li, L.; Xiong, Q.; Zhao, J.; Lin, X.; He, S.; Wu, N.; Yao, Y.; Liang, W.; Zuo, X.; Ying, C. Inulin-type fructan intervention restricts the increase in gut microbiome–generated indole in patients with peritoneal dialysis: A randomized crossover study. Am. J. Clin. Nutr. 2020, 111, 1087–1099. [Google Scholar] [CrossRef]
- Gao, B.; Alonzo-Palma, N.; Brooks, B.; Jose, A.; Barupal, D.; Jagadeesan, M.; Nobakht, E.; Collins, A.; Ramezani, A.; Omar, B.; et al. A Pilot Study on the Effect of Prebiotic on Host-Microbial Co-metabolism in Peritoneal Dialysis Patients. Kidney Int. Rep. 2020, 5, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Population | Country/Region | Type of Study | Sample Size | Endpoint Observed | Probiotic Type and Intervention Duration | Remarks | |
---|---|---|---|---|---|---|---|---|
Andreana De Mauri et al. [28] | eGFR < 25 mL/min/1.73 m2, non-dialysis | Italy | A single-centre, double-blind, placebo-controlled, randomized trial | 60 patients | Uremic toxins, nutritional status, quality of life, the progression to end stage renal disease and dialysis initiation | a New formulation of probiotics (Bifidobacterium longum and Lactobacillus reuteri) 3 months | Probiotics to LPD may have an additional beneficial effect on the control and modulation of microbiota-derived and proatherogenic toxins in CKD patients | |
I-Kuan Wang et al. [39] | CKD—Animal Model and CKD 3–5 patients | Taiwan | Animal studies and patients with stage 3–5 CKD and not on dialysis | C57BL/6 mice, 53 patients | In vitro indole assay for the probiotics treatment of CKD, clinical symptoms and pathological findings of mice with CKD; clinical outcomes of the human: the rate of decline of the eGFR, serum levels of endotoxin and proinflammatory cytokines, stool form and gastrointestinal symptoms | Lactobacillus acidophilus (TYCA06), Bifidobacterium longum subspecies infantis (BLI-02), and B. bifidum (VDD088) 6 months | A combination of probiotics might attenuate renal function deterioration in CKD mice and human patients | |
Sandra Wagner et al. [20] | CKD patients with stage 3–5 | France | Cross-sectional study | 888 patients | Association between inflammation and the frequency of yoghurt/probiotic intake | Probiotics from yoghurts or dietary supplements 5 years | Consumption of yoghurts and probiotics is associated with a lower risk of inflammation in patients with CKD | |
Catherine McFarlane et al. [43] | CKD patients with stage 3–4 | Australia | A feasibility, double-blind, placebo-controlled, randomized trial | 68 patients | Recruitment and retention rates as well as acceptability of the intervention | Synbiotic combined Bifidobacterium and Blautia spp for 12 months | Long-term synbiotic and probiotics supplementation was feasible and acceptable to patients with CKD, and it modified the gastrointestinal microbiome | |
Carmela Cosola et al. [13] | Stage IIIb-IV CKD Patients | Italy | A randomized, single-blind, placebo-controlled, pilot trial | 50 N = 23 CKD N = 27 healthy volunteers | Serum levels of microbiota-derived uremic toxins | Lactobacilli and Bifidobacteria species 2 months | The synbiotic NATUREN G ® is effective in reducing serum free IS, small intestine permeability, abdominal pain and constipation syndromes in stage IIIb-IV CKD patients | |
Mariadelina Simeoni et al. [32] | Stage 3a of CKD | Italy | An open-label, randomized, placebo-controlled study | 28 patients | The impact of probiotic CKD administration protocol on fecal Lactobacillales and Bifidobacteria concentrations | Lactobacillales and Bifidobacteria 3 months | High-quality probiotics can effectively correct inflammatory indices, iron status and iPTH stabilization | |
Paola Vanessa Miranda Alatriste et al. [23] | CKD stage 3 and stage 4 | Mexico | A simple randomized, controlled clinical trial | 30 patients | Change in the blood urea concentrations for patients treated with the 16 × 10 9 dose lactobacillus casei shirota (LcS) | Lactobacillus casei shirota (LcS) 8 weeks | There was a >10% decrease in the serum urea concentrations with LcS in patients with stage 3 and 4 CRF | |
B. Guida et al. [31] | CKD 3–4 stages | Italy | A double-blind, randomized placebo-controlled trial | 30 patients | Total plasma p-cresol median concentra- tions and gastrointestinal symptoms | Synbiotic probinul-neutro 4 weeks | Probinul-neutro lowered total plasma p-cresol concentrations but did not ameliorate gastrointestinal symptoms in non-dialyzed CKD patients | |
Amanda de Faria Barros et al. [42] | Non-dialysis CKD patients (stages 3–5) | Brazil | A randomized, double-blind, placebo-controlled trial | 30 patients | Uremic toxins (cresyl sulfate, urea and TMAO) and inflammatory markers (IL-6 level and CRP) | Streptococcus thermophilus, Lactobacillus acidophilus and Bifidobacteria for 3 months | Probiotic supplementation did not result in expected benefits for non-dialysis CKD patients | |
Natarajan Ranganathan et al. [12] | CKD stages 3 and 4 | USA | A prospective, randomized, double-blind, placebo controlled crossover trial | 46 patients | Biochemical parameters: blood urea nitrogen (BUN), serum creatinine, and uric acid and quality of life (QOL) | A mix of L. acidophilus KB27, B. longum KB31, and S. thermophilus KB19, for a total of 1.5 × 10 10 CFU 3 months | Supporting the use of the chosen probiotic formulation for bowel-based toxic solute extraction; QOL and BUN levels showed statistically significant differences in outcome between placebo and probiotic treatment | |
Megan Rossi et al. [29] | CKD stages 4 and 5 not on dialysis | Australia | A randomized, double-blind, placebo-controlled, crossover trial | 37 patients | p-cresyl sulfate (PCS) and indoxyl sulfate (IS); secondary outcomes include inflammatory markers and stool microbiota profile | Synbiotic therapy combined with Lactobacillus, Bifidobacteria, and Streptococcus 6 weeks | In patients with CKD, probiotics combined synbiotics did not significantly reduce serum IS but did decrease serum PCS and favorably modified the stool microbiome | |
Ruben Poesen et al. [27] | CKD 3b-4 stages | Belgium | A randomized, placebo-controlled, double-blind, cross-over study | 40 patients | Primary outcome on serum levels of microbial metabolites and secondary outcome on 24 h urinary excretion of microbial metabolites and HOMA-IR | Prebiotic arabinoxylan oligosaccharides (AXOS) (10 g twice daily) and maltodextrin for 4 weeks | Could not demonstrate an influence of prebiotic AXOS on microbiota derived uremic retention solutes and insulin resistance in patients with CKD not yet on dialysis |
Reference | Study Population | Country/ Region | Type of Study | Sample Size | Endpoint Observed | Probiotic Type and Intervention Duration | Remarks |
---|---|---|---|---|---|---|---|
Chih-Yu Yang et al. [36] | Hemodialysis patients | Taiwan | A single-centre, double-blind, placebo-controlled, randomized trial | Animal model and 40 CKD patients and 22 healthy controls | The plasma levels of indoxyl sulfate and p-cresol sulfate in different groups, the relationship between gut microbiota, fecal indole content, and blood indoxyl sulfate level | Synbiotic and probiotics combination of Lactobacillus sp., Bifidobacterium sp., and Streptococcus sp. 5 weeks | Gut dysbiosis and renal function impairment could be ameliorated by synbiotic and probiotics treatment |
Daniela Viramontes-Horner et al. [45] | Hemodialysis patients | Mexico | A double-blinded, placebo-controlled, randomized, clinical trial | 22 | Gastrointestinal symptoms (GISs) severity between intervention with control group | A mix of probiotics (Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07) 2 months | Administration of a symbiotic and probiotics gel is a safe and simple way to improve common GIS in dialysis patients |
Farzad Eidi et al. [46] | Hemodialysis patients | Iran | A randomized controlled double-blind clinical trial | 42 | Uremic toxins between groups before and after Lactobacillus Rhamnosus use: total phenol and p-cresol | Lactobacillus Rhamnosus 4 weeks | Probiotics in hemodialysis patients can decrease serum phenolic uremic toxins. |
Jose Cruz-Mora et al. [47] | Hemodialysis patients | Mexico | A randomized, double-blinded, placebo-controlled clinical trial | 18 | Bifidobacterial and lactobacilli counts, gastro intestinal symptoms scores in two groups | Probiotics (Lactobacillus acidophilus and Bifidobacterium bifidum) 2 months | Short-term symbiotic treatment in patients with ESRD can lead to the increase in Bifidobacterium counts, maintaining the intestinal microbial balance |
Natalia A. Borges et al. [48] | Hemodialysis patients | Brazil | A randomized, double-blind, placebo-controlled study | 46 | Inflammatory markers (C-reactive protein and interleukin-6), uremic toxins plasma levels (indoxyl sulfate, p-cresyl sulfate, and indole-3-acetic acid), fecal pH, and gut microbiota profile | Streptococcus thermophilus, Lactobacillus acidophilus and Bifidobacteria longum 3 months | Probiotic supplementation failed to reduce uremic toxins and inflammatory markers |
Alireza Soleimani et al. [49] | Hemodialysis patients | Iran | A parallel randomized double-blind placebo-controlled clinical trial | 55 | Fasting plasma glucose, serum insulin, homeostasis model of assessment-estimated insulin resistance, homeostasis model of assessment-estimated beta-cell function and HbA1c, and quantitative insulin sensitivity check index | Probiotics Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium bifidum 12 weeks | Probiotic supplementation for 12 weeks among diabetic hemodialysis patients had beneficial effects on parameters of glucose homeostasis, and some biomarkers of inflammation and oxidative stress |
Ranganathan Natarajan et al. [12] | Hemodialysis patients | USA | A randomized, double-blind, placebo-controlled crossover study | 22 | Decline in WBC count and reductions in levels of C-reactive protein, and total indoxyl glucuronide, and QOL | Probiotic formulation—30 billion CFU of S; Thermophilus KB 19, L. acidophilus KB 27, and B. longum KB 31 6 months | Renadyl (strain-specific probiotic formulation) appeared to be safe to administer to ESRD patients on hemodialysis with stability in QOL assessment |
Eunho Choi et al. [40] | Hemodialysis patients | Korea | A randomized, double-blind, placebo-controlled study | 22 | Various inflammatory parameters in hemodialysis (HD) patients | Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI 3 months | Probiotic supplementation reduced systemic inflammatory responses in HD patients with an increase in Tregs and a decrease in proinflammatory monocytes |
Zahra Shariaty et al. [50] | Hemodialysis patients | Iran | A randomized parallel clinical trial | 36 | Hemoglobin (Hb) and serum C-reactive protein before and after intervention in probiotic and placebo groups | Lactobacillus acidophilus, Bifidobacterium and Streptococcus thermophilus 3 months | Probiotic supplementation decreased Hb fluctuations in hemodialysis patients but did not result in a significant increase in Hb levels. |
Yangbin Pan et al. [51] | Peritoneal dialysis patients | China | A randomized controlled trial | 116 | High-sensitivity C-reactive protein and interleukin-6, serum albumin levels, upper arm circumference, and triceps skinfold thickness, scores on the SF-36 in different groups | Bifidobacterium longum, Lactobacillus bulgaricus, and Streptococcus thermophilus 2 months | Malnutrition and health-related quality of life partially improved after probiotic supplementation in patients undergoing PD |
Shuiqing He et al. [52] | Peritoneal dialysis patients | China | A randomized, double-blind, placebo controlled crossover trial | 16 | Serum uric acid (UA) levels, fecal UA degradation capability, fecal metagenomic analysis to assess microbial composition and function | Inulin-type prebiotics was composed of a mixture of inulin and oligofructose 12 weeks | Inulin-type prebiotics can reduce serum UA levels in renal failure patients, and this urate-lowering effect could possibly be attributed to intestinal microbial degradation of UA |
I.K. Wang et al. [34] | Peritoneal dialysis patients | Taiwan | A randomized, double-blind, placebo-controlled trial | 39 | The change in serum TNF-α, interferon gamma, IL-5, IL-6, IL-10, IL-17, and endotoxin levels before and six months after intervention | Bifobacterium bifidum A218, Bifidobacterium catenulatum A302, Bifidobacterium longum A101, and Lactobacillus plantarum A87 6 months | Probiotics could significantly reduce the serum levels of endotoxin, pro-inflammatory cytokines (TNF-α and IL-6), IL-5, increase the serum levels of anti-inflammatory cytokine (IL-10), and preserve residual renal function in PD patients. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, N.; Li, L.; Ng, J.K.-C.; Li, P.K.-T. The Potential Benefits and Controversies of Probiotics Use in Patients at Different Stages of Chronic Kidney Disease. Nutrients 2022, 14, 4044. https://doi.org/10.3390/nu14194044
Tian N, Li L, Ng JK-C, Li PK-T. The Potential Benefits and Controversies of Probiotics Use in Patients at Different Stages of Chronic Kidney Disease. Nutrients. 2022; 14(19):4044. https://doi.org/10.3390/nu14194044
Chicago/Turabian StyleTian, Na, Lu Li, Jack Kit-Chung Ng, and Philip Kam-Tao Li. 2022. "The Potential Benefits and Controversies of Probiotics Use in Patients at Different Stages of Chronic Kidney Disease" Nutrients 14, no. 19: 4044. https://doi.org/10.3390/nu14194044
APA StyleTian, N., Li, L., Ng, J. K. -C., & Li, P. K. -T. (2022). The Potential Benefits and Controversies of Probiotics Use in Patients at Different Stages of Chronic Kidney Disease. Nutrients, 14(19), 4044. https://doi.org/10.3390/nu14194044