Vitamin D-Binding Protein, Bioavailable, and Free 25(OH)D, and Mortality: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Eligibility
2.3. Data Extraction and Quality Assessment
2.4. Data Synthesis
3. Results
3.1. Literature Search
3.2. Study Characteristics
3.3. Vitamin D Biomarkers and Mortality
3.4. Meta-Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schöttker, B.; Jorde, R.; Peasey, A.; Thorand, B.; Jansen, E.H.J.M.; de Groot, L.; Streppel, M.; Gardiner, J.; Ordóñez-Mena, J.M.; Perna, L.P.; et al. Vitamin D and mortality: Meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ 2014, 348, g3656. [Google Scholar] [CrossRef] [PubMed]
- Gaksch, M.; Jorde, R.; Grimnes, G.; Joakimsen, R.; Schirmer, H.; Wilsgaard, T.; Mathiesen, E.B.; Njølstad, I.; Løchen, M.-L.; März, W.; et al. Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS ONE 2017, 12, e0170791. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration/EPIC-CVD/Vitamin D Studies Collaboration. Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: Observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol. 2021, 9, 837–846. [Google Scholar] [CrossRef]
- Bikle, D.D.; Schwartz, J. Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Front. Endocrinol. 2019, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.; Bouillon, R.; Thadhani, R.; Schoenmakers, I. Vitamin D metabolites in captivity? Should we measure free or total 25 (OH) D to assess vitamin D status? J. Steroid Biochem. Mol. Biol. 2017, 173, 105–116. [Google Scholar] [CrossRef]
- Tsuprykov, O.; Chen, X.; Hocher, C.-F.; Skoblo, R.; Yin, L.; Hocher, B. Why should we measure free 25 (OH) vitamin D? J. Steroid Biochem. Mol. Biol. 2018, 180, 87–104. [Google Scholar] [CrossRef]
- Bikle, D.D.; Malmstroem, S.; Schwartz, J. Current Controversies: Are Free Vitamin Metabolite Levels a More Accurate Assessment of Vitamin D Status than Total Levels? Endocrinol. Metab. Clin. N. Am. 2017, 46, 901–918. [Google Scholar] [CrossRef]
- Powe, C.E.; Evans, M.K.; Wenger, J.; Zonderman, A.B.; Berg, A.H.; Nalls, M.; Tamez, H.; Zhang, D.; Bhan, I.; Karumanchi, S.A. Vitamin D–binding protein and vitamin D status of black Americans and white Americans. N. Engl. J. Med. 2013, 369, 1991–2000. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 10 June 2022).
- Dejaeger, M.; Antonio, L.; Bouillon, R.; Moors, H.; Wu, F.C.W.; O’Neill, T.W.; Huhtaniemi, I.T.; Rastrelli, G.; Forti, G.; Maggi, M.; et al. Ageing men with insufficient vitamin D have a higher mortality risk: No added value of its free fractions or active form. J. Clin. Endocrinol. Metab. 2021, 107, e1212–e1220. [Google Scholar] [CrossRef]
- Zhu, A.; Kuznia, S.; Niedermaier, T.; Holleczek, B.; Schöttker, B.; Brenner, H. Vitamin D-binding protein, total, “nonbioavailable,” bioavailable, and free 25-hydroxyvitamin D, and mortality in a large population-based cohort of older adults. J. Intern. Med. 2022, 292, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, H.; Zhao, M.; Peng, P. Prognostic value of circulating vitamin D binding protein, total, free and bioavailable 25-hydroxy vitamin D in patients with colorectal cancer. Oncotarget 2017, 8, 40214–40221. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Song, M.; Zhang, Y.; Wolpin, B.M.; Meyerhardt, J.A.; Ogino, S.; Hollis, B.W.; Chan, A.T.; Fuchs, C.S.; Wu, K.; et al. Prediagnostic Circulating Concentrations of Vitamin D Binding Protein and Survival among Patients with Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2323–2331. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.-P.; Long, J.-A.; Zhang, Y.-J.; Liu, Z.-Y.; Li, Q.-J.; Zhang, D.-M.; Luo, Y.; Zhong, R.-H.; Zhou, Z.-G.; Xu, Y.-J.; et al. Serum Bioavailable, Rather Than Total, 25-hydroxyvitamin D Levels Are Associated With Hepatocellular Carcinoma Survival. Hepatology 2020, 72, 169–182. [Google Scholar] [CrossRef]
- Turner, A.M.; McGowan, L.; Millen, A.; Rajesh, P.; Webster, C.; Langman, G.; Rock, G.; Tachibana, I.; Tomlinson, M.G.; Berditchevski, F.; et al. Circulating DBP level and prognosis in operated lung cancer: An exploration of pathophysiology. Eur. Respir. J. 2013, 41, 410–416. [Google Scholar] [CrossRef]
- Anic, G.M.; Weinstein, S.J.; Mondul, A.M.; Mannisto, S.; Albanes, D. Serum vitamin D, vitamin D binding protein, and lung cancer survival. Lung Cancer 2014, 86, 297–303. [Google Scholar] [CrossRef]
- Peng, S.M.; Yu, N.; Che, J.; Xu, J.Y.; Chen, G.C.; Li, D.P.; Zhang, Y.S.; Qin, L.Q. Total, bioavailable and free 25-hydroxyvitamin D are associated with the prognosis of patients with non-small cell lung cancer. Cancer Causes Control CCC 2022, 33, 983–993. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Y.; Duan, X.; Li, J.; Zhao, W.; Wang, H. Bioavailable 25(OH)D level is associated with clinical outcomes of patients with diffuse large B-cell lymphoma: An exploratory study. Clin. Nutr. 2020, 40, 157–165. [Google Scholar] [CrossRef]
- Yu, C.; Xue, H.; Wang, L.; Chen, Q.; Chen, X.; Zhang, Y.; Hu, G.; Ling, W. Serum Bioavailable and Free 25-Hydroxyvitamin D Levels, but Not Its Total Level, Are Associated with the Risk of Mortality in Patients with Coronary Artery Disease. Circ. Res. 2018, 123, 996–1007. [Google Scholar] [CrossRef]
- Persson, L.J.; Aanerud, M.; Hiemstra, P.S.; Michelsen, A.E.; Ueland, T.; Hardie, J.A.; Aukrust, P.; Bakke, P.S.; Eagan, T.M. Vitamin D, vitamin D binding protein, and longitudinal outcomes in COPD. PLoS ONE 2015, 10, e0121622. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, S.; Rhodes, J.M.; Taylor, J.M.; Milan, A.M.; Lane, S.; Hewison, M.; Chun, R.F.; Jorgensen, A.; Richardson, P.; Nitchingham, D.; et al. Vitamin D, vitamin D-binding protein, free vitamin D and COVID-19 mortality in hospitalized patients. Am. J. Clin. Nutr. 2022, 115, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Kuznia, S.; Niedermaier, T.; Holleczek, B.; Schöttker, B.; Brenner, H. Distribution and Determinants of Vitamin D-Binding Protein, Total, “Non-Bioavailable”, Bioavailable, and Free 25-Hydroxyvitamin D Concentrations among Older Adults. Nutrients 2021, 13, 3982. [Google Scholar] [CrossRef] [PubMed]
- Oleröd, G.; Hultén, L.M.; Hammarsten, O.; Klingberg, E. The variation in free 25-hydroxy vitamin D and vitamin D-binding protein with season and vitamin D status. Endocr. Connect. 2017, 6, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Heath, A.K.; Kim, I.Y.; Hodge, A.M.; English, D.R.; Muller, D.C. Vitamin D Status and Mortality: A Systematic Review of Observational Studies. Int. J. Environ. Res. Public Health 2019, 16, 383. [Google Scholar] [CrossRef] [Green Version]
Participants | First Author, Year | Country | Sample Size (Deaths/Total) | Age (Years) | Sex (% Fem) | Follow-Up (Years) | Predictor | Covariates Adjusted for | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Range | Mean | VDBP | 25(OH)D | Age | Sex | BMI | SMK | TIME | OTH | ||||||||
Total | BIO | Free | |||||||||||||||
General population | Dejaeger 2021 [11] | Europe | 469/1915 | NA | 60.1 | 0 | 12.3 a | √ | √ | √ | √ | √ | √ | √ | d | ||
Zhu 2022 [12] | Germany | 1739/5899 | 49–75 | 62.3 | 56.1 | 17.1 a | √ | √ | √ | √ | √ | √ | √ | √ | √ | e | |
Cancer patients | |||||||||||||||||
Colorectal | Yang 2017 [13] | China | 87/206 | 30–85 | 63.0 c | 36.4 | 3.8 a | √ | √ | √ | √ | √ | √ | √ | f | ||
Colorectal | Yuan 2020 [14] | US | 328/603 | 30–75 | 71.3 | 59.2 | 12.4 a | √ | √ | √ | √ | √ | √ | √ | g | ||
Liver | Fang 2020 [15] | China | 430/1031 | NA | 53.0 | 11.8 | 2.0 a | √ | √ | √ * | √ | √ | √ | √ | h | ||
Lung | Turner 2013 [16] | UK | 26/148 | NA | 66.8 | 41.4 | 4.1 b | √ | √ | √ | √ | i | |||||
Lung | Anic 2014 [17] | Finland | 428/500 | 50–69 | 68.4 | 0 | 20.0 c | √ | √ | √ | √ | √ | √ | √ | j | ||
Lung | Peng 2022 [18] | China | 179/395 | NA | 63.0 | 36.2 | 2.7 a | √ | √ | √ | √ * | √ | √ | √ | √ | k | |
DLBCL | Chen 2020 [19] | China | NA/332 | >60 years: 39.8% | 46.7 | 2.9 a | √ | √ | √ | l | |||||||
Other patients | |||||||||||||||||
CAD | Yu 2018 [20] | China | 205/1387 | 40–85 | 63.2 | 34.9 | 6.7 a | √ | √ | √ * | √ | √ | √ | √ | √ | m | |
COPD | Persson 2015 [21] | Norway | 69/426 | 40–76 | 63.5 | 39.9 | 5.0 b | √ | √ | √ | √ | √ | √ | n | |||
COVID-19 | Subramanian 2022 [22] | UK | 112/472 | 19–98 | 66.9 | 43.2 | NA | √ | √ | √ | √ | √ | √ | o |
Study | Cause of Mortality | VDBP | Total 25(OH)D | Bioavailable 25(OH)D | Free 25(OH)D | ||||
---|---|---|---|---|---|---|---|---|---|
(μg/mL) | HR (95% CI) | (ng/mL) | HR (95% CI) | (ng/mL) | HR (95% CI) | (pg/mL) | HR (95% CI) | ||
Dejaeger 2021 [11] | All-cause | 293.6 (36.7) a | Qi1: Ref b | 16.8 (8.9) a | Qi1: Ref b | NA | NA | 4.3 (2.3) a | Qi1: Ref b |
Qi2: 0.99 (0.70, 1.40) | Qi2: 0.77 (0.53, 1.12) | Qi2: 0.94 (0.61, 1.47) | |||||||
Qi3: 0.94 (0.67, 1.33) | Qi3: 0.82 (0.56, 1.19) | Qi3: 0.93 (0.60, 1.45) | |||||||
Qi4: 0.94 (0.67, 1.33) | Qi4: 0.56 (0.38, 0.81) | Qi4: 0.65 (0.42, 1.01) | |||||||
Qi5: 1.23 (0.88, 1.75) | Qi5: 0.49 (0.34, 0.72) | Qi5: 0.48 (0.31, 0.75) | |||||||
Zhu 2022 [12] | All-cause | Q1: 37.8–283.9 Q2: 283.9–314.3 Q3: 314.4–349.6 Q4: 349.7–600.0 | Q1: Ref | Q1: 2.8–13.4 Q2: 13.4–17.8 Q3: 17.8–24.0 Q4: 24.0–50.0 | Q1: Ref | Q1: 0.3–1.6 Q2: 1.6–2.2 Q3: 2.2–3.1 Q4: 3.1–7.0 | Q1: Ref | Q1: 0.6–3.6 Q2: 3.6–4.9 Q3: 4.9–6.9 Q4: 6.9–14.0 | Q1: Ref |
Q2: 0.90 (0.79, 1.02) | Q2: 0.80 (0.70, 0.90) | Q2: 0.87 (0.76, 0.99) | Q2: 0.86 (0.76, 0.98) | ||||||
Q3: 0.90 (0.79, 1.03) | Q3: 0.72 (0.63, 0.82) | Q3: 0.74 (0.64, 0.84) | Q3: 0.74 (0.65, 0.85) | ||||||
Q4: 0.95 (0.83, 1.09) | Q4: 0.64 (0.55, 0.73) | Q4: 0.67 (0.58, 0.77) | Q4: 0.70 (0.60, 0.80) | ||||||
CVD | Q1: Ref | Q1: Ref | Q1: Ref | Q1: Ref | |||||
Q2: 0.84 (0.67, 1.06) | Q2: 0.90 (0.72, 1.12) | Q2: 0.91 (0.73, 1.14) | Q2: 0.99 (0.79, 1.24) | ||||||
Q3: 0.94 (0.75, 1.18) | Q3: 0.77 (0.61, 0.97) | Q3: 0.80 (0.63, 1.01) | Q3: 0.84 (0.66, 1.06) | ||||||
Q4: 0.92 (0.73, 1.17) | Q4: 0.64 (0.50, 0.83) | Q4: 0.64 (0.49, 0.82) | Q4: 0.71 (0.55, 0.91) | ||||||
Cancer | Q1: Ref | Q1: Ref | Q1: Ref | Q1: Ref | |||||
Q2: 0.85 (0.68, 1.07) | Q2: 0.76 (0.61, 0.96) | Q2: 0.76 (0.60, 0.96) | Q2: 0.71 (0.56, 0.90) | ||||||
Q3: 0.89 (0.70, 1.11) | Q3: 0.82 (0.65, 1.03) | Q3: 0.72 (0.57, 0.91) | Q3: 0.67 (0.53, 0.85) | ||||||
Q4: 0.99 (0.79, 1.24) | Q4: 0.76 (0.60, 0.97) | Q4: 0.80 (0.63, 1.02) | Q4: 0.81 (0.64, 1.02) | ||||||
Respiratory disease | Q1: Ref | Q1: Ref | Q1: Ref | Q1: Ref | |||||
Q2: 0.73 (0.41, 1.30) | Q2: 0.60 (0.35, 1.04) | Q2: 0.60 (0.34, 1.04) | Q2: 0.61 (0.35, 1.07) | ||||||
Q3: 0.67 (0.37, 1.22) | Q3: 0.53 (0.29, 0.94) | Q3: 0.49 (0.28, 0.87) | Q3: 0.54 (0.31, 0.96) | ||||||
Q4: 1.08 (0.62, 1.86) | Q4: 0.39 (0.20, 0.74) | Q4: 0.35 (0.18, 0.67) | Q4: 0.37 (0.19, 0.70) |
Study | Cause of Mortality | VDBP | Total 25(OH)D | Bioavailable 25(OH)D | Free 25(OH)D | ||||
---|---|---|---|---|---|---|---|---|---|
(μg/mL) | HR (95% CI) | (ng/mL) | HR (95% CI) | (ng/mL) | HR (95% CI) | (pg/mL) | HR (95% CI) | ||
Patients with colorectal cancer | |||||||||
Yang 2017 [13] | CRC | L: <159 | L: Ref | L: <6.2 | L: Ref | L: <0.58 | L: Ref | L: <0.01 | L: Ref |
M: 159–310 | M: 1.46 (0.81, 2.66) | M: 6.2–29.9 | M: 1.18 (0.72, 1.94) | M: 0.58–1.03 | M: 0.81 (0.33, 1.99) | M: 0.01–0.02 | M: 0.24 (0.12, 0.50) | ||
H: >310 | H: 2.01 (0.92, 4.42) | H: >29.9 | H: 1.79 (0.90, 3.56) | H: >1.03 | H: 0.40 (0.082, 1.93) | H:>0.02 | H: 0.44 (0.24, 0.82) | ||
Yuan 2020 [14] | All-cause | Q1: 125.2 Q2: 213.5 Q3: 274.6 Q4: 383.5 a | Q1: Ref | Q1: 15.6 Q2: 23.7 Q3: 29.4 Q4: 40.5 a | Q1: Ref | Q1: 1.8 Q2: 2.9 Q3: 3.9 Q4: 6.5 a | Q1: Ref | Q1: 4.5 Q2: 7.0 Q3: 9.4 Q4: 15.8 a | Q1: Ref |
Q2: 0.77 (0.57, 1.06) | Q2: 1.18 (0.84, 1.65) | Q2: 1.11 (0.78, 1.59) | Q2: 1.18 (0.82, 1.69) | ||||||
Q3: 0.69 (0.50, 0.96) | Q3: 1.13 (0.80, 1.59) | Q3: 1.12 (0.78, 1.61) | Q3: 1.11 (0.77, 1.59) | ||||||
Q4: 0.58 (0.41, 0.80) | Q4: 0.72 (0.49, 1.05) | Q4: 1.19 (0.82, 1.73) | Q4: 1.36 (0.94, 1.95) | ||||||
CRC | Q1: Ref | Q1: Ref | Q1: Ref | Q1: Ref | |||||
Q2: 0.76 (0.50, 1.15) | Q2: 1.22 (0.77, 1.93) | Q2: 1.07 (0.66, 1.71) | Q2: 1.18 (0.73, 1.90) | ||||||
Q3: 0.73 (0.48, 1.11) | Q3: 1.45 (0.92, 2.30) | Q3: 1.01 (0.61, 1.65) | Q3: 1.05 (0.64, 1.70) | ||||||
Q4: 0.58 (0.37, 0.91) | Q4: 0.57 (0.34, 0.97) | Q4: 1.26 (0.77, 2.06) | Q4: 1.35 (0.83, 2.18) | ||||||
5-year overall survival | Q1: Ref | Q1: Ref | Q1: Ref | Q1: Ref | |||||
Q2: 0.74 (0.50, 1.10) | Q2: 0.92 (0.60, 1.40) | Q2: 1.07 (0.68, 1.69) | Q2: 1.03 (0.65, 1.64) | ||||||
Q3: 0.68 (0.46, 1.01) | Q3: 1.05 (0.69, 1.59) | Q3: 1.03 (0.65, 1.63) | Q3: 0.97 (0.61, 1.53) | ||||||
Q4: 0.50 (0.32, 0.76) | Q4: 0.48 (0.30, 0.78) | Q4: 1.14 (0.71, 1.82) | Q4: 1.29 (0.82, 2.02) | ||||||
Patients with liver cancer | |||||||||
Fang 2020 [15] | All-cause | NA | NA | Q1: ≤27.3 Q2: 27.3–34.6 Q3: 34.6–43.6 Q4: >43.6 | Q1: Ref | Q1: ≤1.73 Q2: 1.73–2.12 Q3: 2.12–2.56 Q4: >2.56 b | Q1: Ref | Q1: ≤4.62 Q2: 4.62–5.58 Q3: 5.58–6.71 Q4: >6.71 b | Q1: Ref |
Q2: 0.88 (0.66, 1.18) | Q2: 0.85 (0.66, 1.11) | Q2: 0.83 (0.63, 1.09) | |||||||
Q3: 0.97 (0.73, 1.29) | Q3: 0.77 (0.59, 1.00) | Q3: 0.83 (0.63, 1.09) | |||||||
Q4: 0.95 (0.72, 1.26) | Q4: 0.71 (0.53, 0.94) | Q4: 0.89 (0.68, 1.18) | |||||||
Liver cancer | NA | Q1: Ref | Q1: Ref | Q1: Ref | |||||
Q2: 0.90 (0.66, 1.22) | Q2: 0.80 (0.61, 1.05) | Q2: 0.83 (0.63, 1.10) | |||||||
Q3: 0.99 (0.73, 1.32) | Q3: 0.75 (0.57, 0.98) | Q3: 0.79 (0.59, 1.05) | |||||||
Q4: 0.97 (0.72, 1.31) | Q4: 0.69 (0.51, 0.93) | Q4: 0.90 (0.68, 1.20) | |||||||
Patients with lung cancer | |||||||||
Turner 2013 [16] | Lung cancer | Q1: <199 | Q1: Ref c | NA | NA | NA | NA | NA | NA |
Q2: 199–332 | Q2: 0.55 (0.046, 5.60) | ||||||||
Q3: 332–430 | Q3: 0.53 (0.044, 5.33) | ||||||||
Q4: ≥430 | Q4: 0.096 (0.0080, 0.97) | ||||||||
Anic 2014 [17] | Lung cancer | Q1: <274 | Q1: Ref | Season specific quartiles d | Q1: Ref | NA | NA | NA | NA |
Q2: 274–342 | Q2: 0.79 (0.59, 1.06) | Q2: 1.08 (0.81, 1.43) | |||||||
Q3: 342–417 | Q3: 1.02 (0.76, 1.35) | Q3: 0.97 (0.72, 1.29) | |||||||
Q4: ≥417 | Q4: 0.95 (0.71, 1.26) | Q4: 1.18 (0.89, 1.56) | |||||||
Peng 2022 [18] | All-cause | T1: ≤181.5 T2: 181.5–222.7 T3: >222.7 | T1: Ref | T1: ≤ 16.4 T2: 16.4–23.9 T3: >23.9 | T1: Ref | T1: ≤2.21 T2: 2.22–3.40 T3: >3.41 | T1: Ref | T1: ≤6.04 T2: 6.05–9.12 T3: >9.13 | T1: Ref |
T2: 0.67 (0.46, 0.99) | T2: 0.83 (0.57, 1.21) | T2: 0.63 (0.43, 0.92) | T2: 0.68 (0.47, 1.00) | ||||||
T3: 0.74 (0.51, 1.08) | T3: 0.58 (0.40, 0.87) | T3: 0.45 (0.30, 0.67) | T3: 0.49 (0.33, 0.73) | ||||||
PFS | T1: Ref | T1: Ref | T1: Ref | T1: Ref | |||||
T2: 0.73 (0.52, 1.02) | T2: 0.69 (0.49, 0.98) | T2: 0.79 (0.56, 1.10) | T2: 0.74 (0.52, 1.05) | ||||||
T3: 0.84 (0.60, 1.17) | T3: 0.61 (0.43, 0.86) | T3: 0.56 (0.40, 0.80) | T3: 0.60 (0.42, 0.85) | ||||||
Patients with diffuse large B-cell lymphoma | |||||||||
Chen 2020 [19] | All-cause | T1: <371 T2: 371–534 T3: >534 | T1: Ref e | T1: 0.3–11.4 T2: 11.5–18.6 T3: 18.7–37.8 | T1: Ref | T1: 0.094–0.66 T2: 0.66–1.11 T3: 1.11–3.44 | T1: Ref | NA | NA |
T2: 0.79 (0.37, 1.66) | T2: 0.90 (0.40, 2.03) | T2: 0.89 (0.39, 2.02) | |||||||
T3: 0.69 (0.33, 1.46) | T3: 0.40 (0.16, 1.03) | T3: 0.21 (0.07, 0.65) | |||||||
PFS | T1: Ref e | T1: Ref | T1: Ref | NA | |||||
T2: 0.75 (0.44, 1.29) | T2: 0.61 (0.34, 1.11) | T2: 0.72 (0.38, 1.35) | |||||||
T3: 0.51 (0.28, 0.91) | T3: 0.27 (0.13, 0.57) | T3: 0.39 (0.20, 0.79) |
Study | Cause of Mortality | VDBP | Total 25(OH)D | Bioavailable 25(OH)D | Free 25(OH)D | ||||
---|---|---|---|---|---|---|---|---|---|
(μg/mL) | HR (95% CI) | (ng/mL) | HR (95% CI) | (ng/mL) | HR (95% CI) | (pg/mL) | HR (95% CI) | ||
Patients with coronary artery disease | |||||||||
Yu 2018 [20] | All-cause | Q1: 285 Q2: 210 Q3: 139 Q4: 77 a | NA | Q1: 16.8 Q2: 20.4 Q3: 21.3 Q4: 23.2 a | Q1: Ref b | Q1: ≤2.11 Q2: 2.12–3.17 Q3: 3.18–4.87 Q4: ≥4.88 | Q1: Ref b | Q1: 3.17 Q2: 4.19 Q3: 5.14 Q4: 7.41 a | Q1: Ref b |
Q2: 0.67 (0.43, 1.04) | Q2: 0.76 (0.50, 1.15) | Q2: 0.82 (0.54, 1.26) | |||||||
Q3: 0.73 (0.47, 1.13) | Q3: 0.76 (0.50, 1.16) | Q3: 0.75 (0.49, 1.14) | |||||||
Q4: 0.74 (0.47, 1.14) | Q4: 0.56 (0.37, 0.85) | Q4: 0.61 (0.40, 0.93) | |||||||
CAD | NA | Q1: Ref b | Q1: Ref b | Q1: Ref b | |||||
Q2: 0.56 (0.33, 0.97) | Q2: 0.72 (0.41, 1.26) | Q2: 0.81 (0.48, 1.38) | |||||||
Q3: 0.66 (0.38, 1.13) | Q3: 0.67 (0.38, 1.18) | Q3: 0.71 (0.42, 1.22) | |||||||
Q4: 0.67 (0.39, 1.15) | Q4: 0.39 (0.22, 0.68) | Q4: 0.51 (0.30, 0.87) | |||||||
Patients with chronic obstructive pulmonary disease | |||||||||
Persson 2015 [21] | All-cause | L: <200 | L: Ref | Per 10 ng/mL decrease | 0.95 (0.71, 1.26) | NA | NA | NA | NA |
M: 200–299 | M: 1.03 (0.60, 1.75) | ||||||||
H: ≥300 | H: 0.76 (0.28, 2.02) | ||||||||
Patients with coronavirus disease 2019 | |||||||||
Subramanian 2022 [22] | COVID-19 | Per 100 μg/mL increase | 1.00 (0.97, 1.04) | Qi1: <10 | Qi1: Ref b | Qi1: <0.18 | Qi1: Ref b | Qi1: <0.62 | Qi1: Ref b |
Qi2: 10–19.6 | Qi2: 0.79 (0.39, 1.59) | Qi2: 0.18–0.32 | Qi2: 0.40 (0.18, 0.86) | Qi2: 0.62–1.08 | Qi2: 0.59 (0.28, 1.24) | ||||
Qi3: 20–29.6 | Qi3: 0.42 (0.21, 0.85) | Qi3: 0.32–0.52 | Qi3: 0.91 (0.42, 1.98) | Qi3: 1.08–1.65 | Qi3: 0.87 (0.41, 1.83) | ||||
Qi4: 30–39.6 | Qi4: 0.92 (0.46, 1.86) | Qi4: 0.52–0.81 | Qi4: 0.59 (0.27, 1.27) | Qi4: 1.65–2.46 | Qi4: 0.78 (0.37, 1.63) | ||||
Qi5: ≥40 | Qi5: 1.95 (0.98, 3.95) | Qi5: >0.81 | Qi5: 0.78 (0.36, 1.69) | Qi5: >2.46 | Qi5: 1.16 (0.55, 2.44) |
Participants | Study | VDBP | Total 25(OH)D | Bioavailable 25(OH)D | Free 25(OH)D |
---|---|---|---|---|---|
HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | ||
General population | Dejaeger 2021 [11] | 1.23 (0.87, 1.73) | 0.49 (0.34, 0.71) | - | 0.48 (0.31, 0.75) |
Zhu 2022 [12] | 0.95 (0.83, 1.09) | 0.64 (0.56, 0.74) | 0.67 (0.58, 0.77) | 0.70 (0.61, 0.81) | |
Subtotal | 1.03 (0.81, 1.30) | 0.59 (0.47, 0.75) | - | 0.62 (0.43, 0.87) | |
Cancer patients | |||||
Colorectal | Yuan 2020 [14] | 0.58 (0.42, 0.81) | 0.72 (0.49, 1.05) | 1.19 (0.82, 1.73) | 1.36 (0.94, 1.96) |
Liver | Fang 2020 [15] | - | 0.95 (0.72, 1.26) | 0.71 (0.53, 0.95) | 0.89 (0.68, 1.17) |
Lung | Peng 2022 [18] | 0.74 (0.51, 1.08) | 0.58 (0.39, 0.86) | 0.45 (0.30, 0.67) | 0.49 (0.33, 0.73) |
DLBCL | Chen 2020 [19] | 0.69 (0.33, 1.45) | 0.40 (0.16, 1.01) | 0.21 (0.07, 0.64) | - |
Subtotal | 0.65 (0.51, 0.82) | 0.71 (0.53, 0.96) | 0.60 (0.33, 1.10) | 0.84 (0.48, 1.49) | |
Other patients | |||||
CAD | Yu 2018 [20] | - | 0.74 (0.48, 1.15) | 0.56 (0.37, 0.85) | 0.61 (0.40, 0.93) |
COPD | Persson 2015 [21] | 0.76 (0.28, 2.04) | - | - | - |
Subtotal | - | - | - | - | |
All studies | 0.83 (0.65, 1.07) | 0.67 (0.56, 0.80) | 0.63 (0.46, 0.87) | 0.71 (0.53, 0.97) |
Participants | Study | VDBP | Total 25(OH)D | Bioavailable 25(OH)D | Free 25(OH)D |
---|---|---|---|---|---|
HR (95% CI) | HR (95% CI) | HR (95% CI) | HR (95% CI) | ||
General population | Zhu 2022 [12] | 0.99 (0.79, 1.24) | 0.76 (0.60, 0.97) | 0.80 (0.63, 1.02) | 0.81 (0.64, 1.02) |
Cancer patients | |||||
Colorectal | Yang 2017 [13] | 2.01 (0.92, 4.41) | 1.79 (0.90, 3.56) | 0.40 (0.08, 1.94) | 0.44 (0.24, 0.81) |
Colorectal | Yuan 2020 [14] | 0.58 (0.37, 0.91) | 0.57 (0.34, 0.96) | 1.26 (0.77, 2.06) | 0.90 (0.68, 1.20) |
Liver | Fang 2020 [15] | - | 0.97 (0.72, 1.31) | 0.69 (0.51, 0.93) | 1.35 (0.83, 2.19) |
Lung | Turner 2013 [16] | 0.10 (0.01, 1.06) | - | - | - |
Lung | Anic 2014 [17] | 0.95 (0.71, 1.27) | 1.18 (0.89, 1.56) | - | - |
Subtotal | 0.84 (0.42, 1.67) | 1.02 (0.70, 1.48) | 0.83 (0.49, 1.41) | 0.84 (0.46, 1.51) | |
Other patients | |||||
All studies | 0.90 (0.63, 1.30) | 0.94 (0.70, 1.26) | 0.81 (0.63, 1.05) | 0.84 (0.59, 1.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, A.; Kuznia, S.; Boakye, D.; Schöttker, B.; Brenner, H. Vitamin D-Binding Protein, Bioavailable, and Free 25(OH)D, and Mortality: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3894. https://doi.org/10.3390/nu14193894
Zhu A, Kuznia S, Boakye D, Schöttker B, Brenner H. Vitamin D-Binding Protein, Bioavailable, and Free 25(OH)D, and Mortality: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(19):3894. https://doi.org/10.3390/nu14193894
Chicago/Turabian StyleZhu, Anna, Sabine Kuznia, Daniel Boakye, Ben Schöttker, and Hermann Brenner. 2022. "Vitamin D-Binding Protein, Bioavailable, and Free 25(OH)D, and Mortality: A Systematic Review and Meta-Analysis" Nutrients 14, no. 19: 3894. https://doi.org/10.3390/nu14193894
APA StyleZhu, A., Kuznia, S., Boakye, D., Schöttker, B., & Brenner, H. (2022). Vitamin D-Binding Protein, Bioavailable, and Free 25(OH)D, and Mortality: A Systematic Review and Meta-Analysis. Nutrients, 14(19), 3894. https://doi.org/10.3390/nu14193894