Impact of Body Composition Parameters on Lung Function in Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric and Body Composition Measurements
2.3. Spirometry
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Population
3.2. Unadjusted Linear Regression and Correlations
3.3. Multivariable Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heymseld, S.L.T.; Wang, Z.; Going, S. Human Body Composition, 2nd ed.; Human Kinetics: Leeds, UK, 2005. [Google Scholar]
- Silva, A.M. Structural and functional body components in athletic health and performance phenotypes. Eur. J. Clin. Nutr. 2019, 73, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.; Raymond-Pope, C.J. New Frontiers of Body Composition in Sport. Int. J. Sports Med. 2021, 42, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Muller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Gobbo, L.A.; Stagi, S.; Cyrino, L.T.; Toselli, S.; Marini, E.; Coratella, G. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur. J. Appl. Physiol. 2022, 122, 561–589. [Google Scholar] [CrossRef]
- Ishikawa, C.; Barbieri, M.A.; Bettiol, H.; Bazo, G.; Ferraro, A.A.; Vianna, E.O. Comparison of body composition parameters in the study of the association between body composition and pulmonary function. BMC Pulm. Med. 2021, 21, 178. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhou, J.B.; Cai, Y.H.; Shu, L.P.; Yang, J.; Wei, W.; Lecube, A. Non-linear association of anthropometric measurements and pulmonary function. Sci. Rep. 2021, 11, 14596. [Google Scholar] [CrossRef]
- Hancox, R.J.; Rasmussen, F. Does physical fitness enhance lung function in children and young adults? Eur. Respir. J. 2018, 51, 1701374. [Google Scholar] [CrossRef]
- Hagberg, J.M.; Yerg, J.E., 2nd; Seals, D.R. Pulmonary function in young and older athletes and untrained men. J. Appl. Physiol. 1988, 65, 101–105. [Google Scholar] [CrossRef]
- HajGhanbari, B.; Yamabayashi, C.; Buna, T.R.; Coelho, J.D.; Freedman, K.D.; Morton, T.A.; Palmer, S.A.; Toy, M.A.; Walsh, C.; Sheel, A.W.; et al. Effects of respiratory muscle training on performance in athletes: A systematic review with meta-analyses. J. Strength Cond. Res. 2013, 27, 1643–1663. [Google Scholar] [CrossRef]
- Mazic, S.; Lazovic, B.; Djelic, M.; Suzic-Lazic, J.; Djordjevic-Saranovic, S.; Durmic, T.; Soldatovic, I.; Zikic, D.; Gluvic, Z.; Zugic, V. Respiratory parameters in elite athletes--does sport have an influence? Rev. Port. Pneumol. 2015, 21, 192–197. [Google Scholar] [CrossRef]
- Babb, T.G.; Long, K.A.; Rodarte, J.R. The relationship between maximal expiratory flow and increases of maximal exercise capacity with exercise training. Am. J. Respir. Crit. Care Med. 1997, 156, 116–121. [Google Scholar] [CrossRef]
- Irewall, T.; Soderstrom, L.; Lindberg, A.; Stenfors, N. High incidence rate of asthma among elite endurance athletes: A prospective 4-year survey. J. Asthma 2021, 58, 735–741. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Back, M.; Borjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Mitchell, J.H.; Haskell, W.; Snell, P.; Van Camp, S.P. Task Force 8: Classification of sports. J. Am. Coll. Cardiol. 2005, 45, 1364–1367. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetetics Publishing: Champaign, IL, USA, 1988. [Google Scholar]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef]
- Standardization of spirometry, 1994 update. American Thoracic Society. Am. J. Respir. Crit. Care. Med. 1995, 152, 1107–1136. [CrossRef]
- LoMauro, A.; Aliverti, A. Sex differences in respiratory function. Breathe 2018, 14, 131–140. [Google Scholar] [CrossRef]
- Bredella, M.A. Sex Differences in Body Composition. Adv. Exp. Med. Biol. 2017, 1043, 9–27. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Macera, C.A.; Addy, C.L.; Sy, F.S.; Wieland, D.; Blair, S.N. Effects of physical activity on exercise tests and respiratory function. Br. J. Sports Med. 2003, 37, 521–528. [Google Scholar] [CrossRef]
- Lazovic-Popovic, B.; Zlatkovic-Svenda, M.; Durmic, T.; Djelic, M.; Djordjevic Saranovic, S.; Zugic, V. Superior lung capacity in swimmers: Some questions, more answers! Rev. Port. Pneumol. 2016, 22, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Shorrocks, A.F. Decomposition procedures for distributional analysis: A unified framework based on the Shapley value. J. Econ. Inequal. 2013, 11, 99–126. [Google Scholar] [CrossRef]
- Kutner, M.; Nachtsheim, C.; Neter, J. Applied Linear Regression Models, 4th ed.; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Engelen, M.P.; Schols, A.M.; Baken, W.C.; Wesseling, G.J.; Wouters, E.F. Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD. Eur. Respir. J. 1994, 7, 1793–1797. [Google Scholar] [CrossRef] [PubMed]
- Rochat, T.; Slosman, D.O.; Pichard, C.; Belli, D.C. Body composition analysis by dual-energy x-ray absorptiometry in adults with cystic fibrosis. Chest 1994, 106, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Santana, H.; Zoico, E.; Turcato, E.; Tosoni, P.; Bissoli, L.; Olivieri, M.; Bosello, O.; Zamboni, M. Relation between body composition, fat distribution, and lung function in elderly men. Am. J. Clin. Nutr. 2001, 73, 827–831. [Google Scholar] [CrossRef]
- Mohamed, E.I.; Maiolo, C.; Iacopino, L.; Pepe, M.; Di Daniele, N.; De Lorenzo, A. The impact of body-weight components on forced spirometry in healthy italians. Lung 2002, 180, 149–159. [Google Scholar] [CrossRef]
- Peralta, G.P.; Marcon, A.; Carsin, A.E.; Abramson, M.J.; Accordini, S.; Amaral, A.F.; Anto, J.M.; Bowatte, G.; Burney, P.; Corsico, A.; et al. Body mass index and weight change are associated with adult lung function trajectories: The prospective ECRHS study. Thorax 2020, 75, 313–320. [Google Scholar] [CrossRef]
- Galanis, N.; Farmakiotis, D.; Kouraki, K.; Fachadidou, A. Forced expiratory volume in one second and peak expiratory flow rate values in non-professional male tennis players. J. Sports Med. Phys. Fit. 2006, 46, 128–131. [Google Scholar]
- Durmic, T.; Lazovic Popovic, B.; Zlatkovic Svenda, M.; Djelic, M.; Zugic, V.; Gavrilovic, T.; Mihailovic, Z.; Zdravkovic, M.; Leischik, R. The training type influence on male elite athletes’ ventilatory function. BMJ Open Sport Exerc. Med. 2017, 3, e000240. [Google Scholar] [CrossRef]
- Smith, M.P.; Standl, M.; Berdel, D.; von Berg, A.; Bauer, C.P.; Schikowski, T.; Koletzko, S.; Lehmann, I.; Kramer, U.; Heinrich, J.; et al. Handgrip strength is associated with improved spirometry in adolescents. PLoS ONE 2018, 13, e0194560. [Google Scholar] [CrossRef]
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Winwood, K.; Onambele-Pearson, G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 2016, 17, 467–483. [Google Scholar] [CrossRef]
- Benson, A.C.; Torode, M.E.; Singh, M.A. Muscular strength and cardiorespiratory fitness is associated with higher insulin sensitivity in children and adolescents. Int. J. Pediatr. Obes. 2006, 1, 222–231. [Google Scholar] [CrossRef]
- Jackson, A.S.; Stanforth, P.R.; Gagnon, J.; Rankinen, T.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Bouchard, C.; Wilmore, J.H. The effect of sex, age and race on estimating percentage body fat from body mass index: The Heritage Family Study. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 789–796. [Google Scholar] [CrossRef]
- He, X.; Li, Z.; Tang, X.; Zhang, L.; Wang, L.; He, Y.; Jin, T.; Yuan, D. Age- and sex-related differences in body composition in healthy subjects aged 18 to 82 years. Medicine 2018, 97, e11152. [Google Scholar] [CrossRef]
- Climstein, M.; Walsh, J.; Debeliso, M.; Heazlewood, T.; Sevene, T.; Adams, K. Cardiovascular risk profiles of world masters games participants. J. Sports Med. Phys. Fit. 2018, 58, 489–496. [Google Scholar] [CrossRef]
- Walsh, J.; Climstein, M.; Heazlewood, I.T.; Kettunen, J.; Burke, S.; Debeliso, M.; Adams, K.J. Body mass index for athletes participating in swimming at the World Masters Games. J. Sports Med. Phys. Fit. 2013, 53, 162–168. [Google Scholar]
- Gervasi, M.; Sisti, D.; Amatori, S.; Andreazza, M.; Benelli, P.; Sestili, P.; Rocchi, M.B.L.; Calavalle, A.R. Muscular viscoelastic characteristics of athletes participating in the European Master Indoor Athletics Championship. Eur. J. Appl. Physiol. 2017, 117, 1739–1746. [Google Scholar] [CrossRef]
- Piper, A.J.; Grunstein, R.R. Big breathing: The complex interaction of obesity, hypoventilation, weight loss, and respiratory function. J. Appl. Physiol. 2010, 108, 199–205. [Google Scholar] [CrossRef]
- Wehrmeister, F.C.; Menezes, A.M.; Muniz, L.C.; Martinez-Mesa, J.; Domingues, M.R.; Horta, B.L. Waist circumference and pulmonary function: A systematic review and meta-analysis. Syst. Rev. 2012, 1, 55. [Google Scholar] [CrossRef]
- Chen, Y.; Rennie, D.; Cormier, Y.F.; Dosman, J. Waist circumference is associated with pulmonary function in normal-weight, overweight, and obese subjects. Am. J. Clin. Nutr. 2007, 85, 35–39. [Google Scholar] [CrossRef]
- Byberg, K.K.; Mikalsen, I.B.; Eide, G.E.; Forman, M.R.; Juliusson, P.B.; Oymar, K. The associations between weight-related anthropometrics during childhood and lung function in late childhood: A retrospective cohort study. BMC Pulm. Med. 2018, 18, 10. [Google Scholar] [CrossRef]
- Molina-Luque, R.; Romero-Saldana, M.; Alvarez-Fernandez, C.; Rodriguez-Guerrero, E.; Hernandez-Reyes, A.; Molina-Recio, G. Waist to Height Ratio and Metabolic Syndrome as lung dysfunction predictors. Sci. Rep. 2020, 10, 7212. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Stewart, A.D.; Olds, T.; Duncan, M.J. A new waist-to-height ratio predicts abdominal adiposity in adults. Res. Sports Med. 2020, 28, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Clark, M.H.; Walsh, S.J.; Kleppinger, A.; Judge, J.O.; Kuchel, G.A.; Kenny, A.M. Gender differences in anthropometric predictors of physical performance in older adults. Gend. Med. 2012, 9, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Price, O.J.; Sewry, N.; Schwellnus, M.; Backer, V.; Reier-Nilsen, T.; Bougault, V.; Pedersen, L.; Chenuel, B.; Larsson, K.; Hull, J.H. Prevalence of lower airway dysfunction in athletes: A systematic review and meta-analysis by a subgroup of the IOC consensus group on ‘acute respiratory illness in the athlete’. Br. J. Sports Med. 2022, 56, 213–222. [Google Scholar] [CrossRef]
- Brechue, W.F.; Abe, T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur. J. Appl. Physiol. 2002, 86, 327–336. [Google Scholar] [CrossRef]
- Takai, Y.; Kai, T.; Horio, K.; Nakatani, M.; Haramura, M.; Aoki, T.; Kanehisa, H. Lean body mass index is an indicator of body composition for screening prospective young adult soccer players. Footb. Sci. 2017, 14, 8–14. [Google Scholar]
- Milanese, C.; Cavedon, V.; Corradini, G.; De Vita, F.; Zancanaro, C. Seasonal DXA-measured body composition changes in professional male soccer players. J. Sports Sci. 2015, 33, 1219–1228. [Google Scholar] [CrossRef]
- Silvestre, R.; Kraemer, W.J.; West, C.; Judelson, D.A.; Spiering, B.A.; Vingren, J.L.; Hatfield, D.L.; Anderson, J.M.; Maresh, C.M. Body composition and physical performance during a National Collegiate Athletic Association Division I men’s soccer season. J. Strength Cond. Res. 2006, 20, 962–970. [Google Scholar] [CrossRef]
- Hackett, D.A. Lung Function and Respiratory Muscle Adaptations of Endurance- and Strength-Trained Males. Sports 2020, 8, 160. [Google Scholar] [CrossRef]
- Peralta, G.P.; Fuertes, E.; Granell, R.; Mahmoud, O.; Roda, C.; Serra, I.; Jarvis, D.; Henderson, J.; Garcia-Aymerich, J. Childhood Body Composition Trajectories and Adolescent Lung Function. Findings from the ALSPAC study. Am. J. Respir. Crit. Care Med. 2019, 200, 75–83. [Google Scholar] [CrossRef]
- Park, C.H.; Yi, Y.; Do, J.G.; Lee, Y.T.; Yoon, K.J. Relationship between skeletal muscle mass and lung function in Korean adults without clinically apparent lung disease. Medicine 2018, 97, e12281. [Google Scholar] [CrossRef]
Characteristics | Male (n= 335) | Female (n = 100) | p-Value |
---|---|---|---|
Age, mean SD | 37.3 ± 16.9 | 34.8 ±14.4 | 0.181 |
Weight kg, mean SD | 74.9 ± 8.7 | 59.4 ± 7.7 | ≤0.0001 |
Height m, mean SD | 1.75 ± 0.07 | 1.63 ± 0.06 | ≤0.0001 |
BMI kg/m2, mean SD | 24.4 ± 2.5 | 22.5 ± 2.9 | ≤0.0001 |
WC cm, mean SD | 85.6 ± 7.6 | 74.6 ± 7.9 | ≤0.0001 |
WHR, mean SD | 0.49 ± 0.05 | 0.46 ± 0.05 | ≤0.0001 |
ABSI, mean SD | 0.077 ± 0.005 | 0.073 ± 0.005 | ≤0.0001 |
Smoking n (%) | 35 (10.4) | 18 (18) | 0.054 |
DM n (%) | 6 (1.8) | 0 | 0.178 |
Dyslipidemia n (%) | 32 (9.5) | 12 (12) | 0.455 |
Hypertension n (%) | 24 (7.1) | 3 (3) | 0.160 |
Arrythmias n (%) | 14 (4.2) | 4 (4) | 0.384 |
Familiarity CV n (%) | 42 (12.5) | 17 (17) | 0.248 |
FFM kg, mean SD | 59.9 ± 11.7 | 43.4 ± 6.0 | ≤0.0001 |
FFM %, mean SD | 80.3 ± 14.3 | 73.6 ± 10.2 | ≤0.0001 |
FM kg, mean SD | 13.4 ± 7.3 | 15.4 ± 6.1 | 0.01 |
FM %, mean SD | 17.6 ± 8.4 | 25.3 ± 7.1 | ≤0.0001 |
MM kg, mean SD | 58.5 ± 6.9 | 41.9 ± 4.5 | ≤0.0001 |
MM %, mean SD | 78.7 ± 6.3 | 70.7 ± 7.4 | ≤0.0001 |
FEV1 L, mean SD | 4.2 ± 0.7 | 3.2 ± 0.5 | ≤0.0001 |
FVC L, mean SD | 4.9 ± 0.9 | 3.6 ± 0.6 | ≤0.0001 |
FEV1/FVC % mean SD | 84.1 ± 9.3 | 87.7 ± 8.4 | 0.01 |
Power sport n (%) | 33 (9.8) | 23 (23) | 0.001 |
Mixed sport n (%) | 93 (27.7) | 8 (8) | ≤0.0001 |
Endurance sport n (%) | 209 (62.4) | 69 (69) | 0.238 |
Variable | Coefficient | 95% CI | p-Value | R2 |
---|---|---|---|---|
FEV1 | ||||
BMI | −0.14 | −0.23–−0.05 | 0.002 | 0.029 |
FFM | 0.24 | 0.15–0.33 | ≤0.0001 | 0.08 |
FFM% | 0.11 | 0.04–0.19 | 0.004 | 0.02 |
FM | −0.11 | −0.19–−0.04 | 0.004 | 0.02 |
FM% | −0.19 | −0.27–−0.11 | ≤0.0001 | 0.06 |
MM | 0.5 | 0.40–0.60 | ≤0.0001 | 0.21 |
MM% | 0.3 | 0.18–0.36 | ≤0.0001 | 0.09 |
WC | −0.11 | −0.21–−0.02 | 0.019 | 0.02 |
WHR | −0.29 | −0.37–−0.21 | ≤0.0001 | 0.13 |
ABSI | −0.12 | −0.21–−0.04 | 0.003 | 0.03 |
FVC | ||||
BMI | −0.08 | −0.18–0.03 | 0.138 | 0.006 |
FFM | 0.33 | 0.23–0.45 | ≤0.0001 | 0.11 |
FFM% | 0.12 | 0.04–0.22 | 0.006 | 0.02 |
FM | −0.07 | −0.17–0.17 | 0.111 | 0.008 |
FM% | −0.17 | −0.27–−0.07 | 0.001 | 0.03 |
MM | 0.7 | 0.56–0.79 | ≤0.0001 | 0.28 |
MM% | 0.3 | 0.15–0.37 | ≤0.0001 | 0.06 |
WC | −0.001 | −0.11–0.11 | 0.984 | - |
WHR | −0.25 | −0.34–−0.14 | ≤0.0001 | 0.07 |
ABSI | −0.09 | −0.19–−0.004 | 0.062 | 0.01 |
FEV1/FVC | ||||
BMI | −1.273 | −2.26–−0.27 | 0.012 | 0.018 |
FFM | −0.679 | −1.675–0.316 | 0.180 | 0.0054 |
FFM% | −0.058 | −1.058–0.941 | 0.908 | 0.0001 |
FM | −1.089 | −2.083–−0.095 | 0.032 | 0.013 |
FM% | −0.98 | −1.983–0.006 | 0.052 | 0.011 |
MM | −0.458 | −1.455–0.538 | 0.366 | 0.0024 |
MM% | 1.175 | 0.182–2.168 | 0.021 | 0.016 |
WC | −0.13 | −0.25–0.015 | 0.027 | 0.018 |
WHR | −1.78 | −2.766–−0.797 | ≤0.0001 | 0.036 |
ABSI | −0.891 | −1.82–0.039 | 0.060 | 0.010 |
Variables | Coefficient | 95% CI | p-Value | R2 |
---|---|---|---|---|
FEV1 | ||||
BMI | −0.04 | −0.14–0.006 | 0.460 | 0.006 |
FFM | 0.52 | 0.30–0.70 | ≤0.0001 | 0.18 |
FFM% | 0.16 | 0.013–0.031 | 0.034 | 0.04 |
FM | −0.02 | −0.16–0.11 | 0.71 | 0.001 |
FM% | −0.11 | −0.25–0.025 | 0.108 | 0.03 |
MM | 0.49 | 0.26–0.71 | ≤0.0001 | 0.16 |
MM% | 0.07 | −0.04–0.19 | 0.187 | 0.017 |
WC | 0.04 | −0.09–0.16 | 0.573 | 0.003 |
WHR | −0.07 | −0.18–0.04 | 0.186 | 0.017 |
ABSI | 0.024 | −0.09–0.138 | 0.684 | 0.002 |
FVC | ||||
BMI | 0.006 | −0.10–0.11 | 0.900 | 0.0002 |
FFM | 0.414 | 0.306–0.522 | ≤0.0001 | 0.31 |
FFM% | 0.15 | −0.0004–0.311 | 0.051 | 0.038 |
FM | −0.173 | −0.300–−0.047 | 0.008 | 0.055 |
FM% | −0.09 | −0.24–0.045 | 0.177 | 0.018 |
MM | 0.383 | 0.271–0.494 | ≤0.0001 | 0.268 |
MM% | 0.05 | −0.06–0.169 | 0.374 | 0.008 |
WC | −0.116 | −0.245–0.121 | 0.075 | 0.025 |
WHR | −0.045 | −0.15–0.067 | 0.428 | 0.006 |
ABSI | −0.002 | −0.11–−0.11 | 0.973 | - |
FEV1/FVC | ||||
BMI | −1.39 | −2.91–0.13 | 0.072 | 0.032 |
FFM | 0.68 | −2.89–4.26 | 0.706 | 0.0015 |
FFM% | 1.42 | −0.83–3.68 | 0.213 | 0.015 |
FM | −1.18 | −3.12–0.755 | 0.229 | 0.014 |
FM% | −1.45 | −3.51–0.60 | 0.163 | 0.019 |
MM | 0.72 | −2.82–4.26 | 0.687 | 0.0017 |
MM% | 1.31 | −0.35–2.97 | 0.121 | 0.024 |
WC | −0.46 | −2.35–1.42 | 0.626 | 0.002 |
WHR | −0.89 | −2.5–0.72 | 0.277 | 0.012 |
ABSI | 0.91 | −0.75–2.58 | 0.280 | 0.011 |
Variable | Coefficient | p-Value | R2 | R2(f)% | VIF | VIF Mean |
---|---|---|---|---|---|---|
FEV1 | ||||||
FFM | 0.17 | ≤0.0001 | 0.35 | 17.2 | 1.05 | 1.1 |
FFM% | 0.02 | 0.52 | 0.31 | - | - | - |
FM | −0.001 | 0.97 | 0.31 | - | - | - |
FM% | −0.07 | 0.09 | 0.32 | - | - | - |
MM | 0.44 | ≤0.0001 | 0.45 | 46.4 | 1.23 | 1.2 |
MM% | 0.13 | 0.019 | 0.32 | 7.1 | 1.9 | 1.4 |
WC | −0.06 | 0.21 | 0.47 | - | - | - |
WHR | −0.16 | 0.003 | 0.33 | 9.1 | 2.1 | 1.5 |
ABSI | −0.02 | 0.60 | 0.31 | - | - | - |
FVC | ||||||
FFM | 0.27 | ≤0.0001 | 0.22 | 39.3 | 1.05 | 1.1 |
FFM% | 0.07 | 0.120 | 0.15 | - | - | - |
FM% | −0.11 | 0.07 | 0.15 | - | - | - |
MM | 0.67 | ≤0.0001 | 0.38 | 67.7 | 1.23 | 1.2 |
MM% | 0.22 | ≤0.0001 | 0.17 | 17.7 | 1.9 | 1.4 |
WHR | −0.19 | 0.006 | 0.17 | 15.2 | 2.1 | 1.48 |
FEV1/FVC | ||||||
FM | −0.12 | 0.83 | 0.20 | - | - | - |
MM% | −0.6 | 0.43 | 0.12 | - | - | - |
WC | −0.9 | 0.21 | 0.13 | - | ||
WHR | 0.13 | 0.85 | 0.13 | - | - | - |
Variable | Coefficient | p-Value | R2 | R2(f)% | VIF | VIF Mean |
---|---|---|---|---|---|---|
FEV1 | ||||||
FFM | 0.31 | 0.011 | 0.35 | 18.8 | 1.39 | 1.24 |
FFM% | −0.03 | 0.759 | 0.31 | - | - | - |
MM | 0.37 | 0.002 | 0.37 | 25.7 | 1.39 | 1.25 |
FVC | ||||||
FFM | 0.52 | ≤0.0001 | 0.25 | 55.2 | 1.37 | 1.27 |
FM | 0.059 | 0.660 | 0.15 | - | - | - |
MM | 0.50 | ≤0.0001 | 0.26 | 51.7 | 1.38 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komici, K.; D’Amico, F.; Verderosa, S.; Piomboni, I.; D’Addona, C.; Picerno, V.; Bianco, A.; Caiazzo, A.; Bencivenga, L.; Rengo, G.; et al. Impact of Body Composition Parameters on Lung Function in Athletes. Nutrients 2022, 14, 3844. https://doi.org/10.3390/nu14183844
Komici K, D’Amico F, Verderosa S, Piomboni I, D’Addona C, Picerno V, Bianco A, Caiazzo A, Bencivenga L, Rengo G, et al. Impact of Body Composition Parameters on Lung Function in Athletes. Nutrients. 2022; 14(18):3844. https://doi.org/10.3390/nu14183844
Chicago/Turabian StyleKomici, Klara, Fabio D’Amico, Sofia Verderosa, Iacopo Piomboni, Carmine D’Addona, Vito Picerno, Antonio Bianco, Andrea Caiazzo, Leonardo Bencivenga, Giuseppe Rengo, and et al. 2022. "Impact of Body Composition Parameters on Lung Function in Athletes" Nutrients 14, no. 18: 3844. https://doi.org/10.3390/nu14183844
APA StyleKomici, K., D’Amico, F., Verderosa, S., Piomboni, I., D’Addona, C., Picerno, V., Bianco, A., Caiazzo, A., Bencivenga, L., Rengo, G., & Guerra, G. (2022). Impact of Body Composition Parameters on Lung Function in Athletes. Nutrients, 14(18), 3844. https://doi.org/10.3390/nu14183844