Metabolic Syndrome Prevalence among High School First-Year Students: A Cross-Sectional Study in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Metabolic Syndrome and Its Risk Components
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Prevalence of Metabolic Syndrome Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R. Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular disease in Europe: Epidemiological update 2016. Eur. Heart J. 2016, 37, 3232–3245. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Steinberger, J.; Daniels, S.R. Obesity, insulin resistance, diabetes, and cardiovascular risk in children: An American Heart Association scientific statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Circulation 2003, 107, 1448–1453. [Google Scholar]
- Juhola, J.; Magnussen, C.G.; Viikari, J.S.; Kähönen, M.; Hutri-Kähönen, N.; Jula, A.; Lehtimäki, T.; Åkerblom, H.K.; Pietikäinen, M.; Laitinen, T. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: The Cardiovascular Risk in Young Finns Study. J. Pediatrics 2011, 159, 584–590. [Google Scholar] [CrossRef]
- Alberti, G.; Zimmet, P.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The IDF consensus definition of the metabolic syndrome in children and adolescents. Int. Diabetes Fed. 2007, 24, 2–930229. [Google Scholar]
- de Ferranti, S.D.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the metabolic syndrome in American adolescents: Findings from the Third National Health and Nutrition Examination Survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef]
- Perona, J.S.; Schmidt-RioValle, J.; Fernández-Aparicio, Á.; Correa-Rodríguez, M.; Ramírez-Vélez, R.; González-Jiménez, E. Waist circumference and abdominal volume index can predict metabolic syndrome in adolescents, but only when the criteria of the International Diabetes Federation are employed for the diagnosis. Nutrients 2019, 11, 1370. [Google Scholar] [CrossRef]
- Lin, W.-T.; Lee, C.-Y.; Tsai, S.; Huang, H.-L.; Wu, P.-W.; Chin, Y.-T.; Seal, D.W.; Chen, T.; Chao, Y.-Y.; Lee, C.-H. Clustering of metabolic risk components and associated lifestyle factors: A nationwide adolescent study in Taiwan. Nutrients 2019, 11, 584. [Google Scholar] [CrossRef]
- Reisinger, C.; Nkeh-Chungag, B.N.; Fredriksen, P.M.; Goswami, N. The prevalence of pediatric metabolic syndrome—A critical look on the discrepancies between definitions and its clinical importance. Int. J. Obes. 2021, 45, 12–24. [Google Scholar] [CrossRef]
- Chu, N.-F.; Chin, H.-C.; Wang, S.-C. Prevalence and anthropometric risk of metabolic syndrome in Taiwanese adolescents. Int. Sch. Res. Not. 2011, 2011, 743640. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-C. The Study of Academic Achievement and Education Tracking in 12-year Compulsory Education. Sch. Adm. Res. Assoc. 2015, 99, 226–248. [Google Scholar]
- Foley, P. The Socio-Economic Status of Vocational Education and Training Students in Australia; ERIC: Adelaide, Australia, 2007. [Google Scholar]
- Wang, A.; Guo, D. Technical and vocational education in China: Enrolment and socioeconomic status. J. Vocat. Educ. Train. 2019, 71, 538–555. [Google Scholar] [CrossRef]
- Bülbül, T. Socio-Economic Status and School Types as the Determinants of Access to Higher Education. Egit. Bilim 2021, 46, 303–333. [Google Scholar] [CrossRef]
- Destin, M.; Hanselman, P.; Buontempo, J.; Tipton, E.; Yeager, D.S. Do student mindsets differ by socioeconomic status and explain disparities in academic achievement in the United States? AERA Open 2019, 5, 2332858419857706. [Google Scholar] [CrossRef] [PubMed]
- Lepe, A.; de Kroon, M.L.; de Winter, A.F.; Reijneveld, S.A. Alternative pediatric metabolic syndrome definitions impact prevalence estimates and socioeconomic gradients. Pediatric Res. 2021, 90, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Dalle Grave, R.; Calugi, S.; Centis, E.; Marzocchi, R.; El Ghoch, M.; Marchesini, G. Lifestyle modification in the management of the metabolic syndrome: Achievements and challenges. Diabetes Metab. Syndr. Obes. Targets Ther. 2010, 3, 373. [Google Scholar]
- Camhi, S.; Kuo, J.; Young, D. Identifying adolescent metabolic syndrome using body mass index and waist circumference. Prev. Chronic Dis. 2008, 5, 1–9. [Google Scholar]
- WHO. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Lee, J.J.; Ho, C.; Chen, H.-J.; Huang, N.; Yeh, J.C.; de Ferranti, S. Is the 90th percentile adequate? The optimal waist circumference cutoff points for predicting cardiovascular risks in 124,643 15-year-old Taiwanese adolescents. PLoS ONE 2016, 11, e0158818. [Google Scholar]
- Bitew, Z.W.; Alemu, A.; Ayele, E.G.; Tenaw, Z.; Alebel, A.; Worku, T. Metabolic syndrome among children and adolescents in low and middle income countries: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2020, 12, 93. [Google Scholar] [CrossRef]
- DeBoer, M.D. Assessing and managing the metabolic syndrome in children and adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Sanders, R.A. Metabolic syndrome. Pediatrics Rev. 2012, 33, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.-C.; Ebrahim, S.; Barros, H. Alcohol intake, smoking, sleeping hours, physical activity and the metabolic syndrome. Prev. Med. 2007, 44, 328–334. [Google Scholar] [CrossRef]
- Magge, S.N.; Goodman, E.; Armstrong, S.C.; Daniels, S.; Corkins, M.; de Ferranti, S.; Golden, N.H.; Kim, J.H.; Schwarzenberg, S.J.; Sills, I.N. The metabolic syndrome in children and adolescents: Shifting the focus to cardiometabolic risk factor clustering. Pediatrics 2017, 140, e20171603. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014, 311, 806–814. [Google Scholar] [CrossRef]
- Sharma, V.; Coleman, S.; Nixon, J.; Sharples, L.; Hamilton-Shield, J.; Rutter, H.; Bryant, M. A systematic review and meta-analysis estimating the population prevalence of comorbidities in children and adolescents aged 5 to 18 years. Obes. Rev. 2019, 20, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global prevalence of hypertension in children: A systematic review and meta-analysis. JAMA Pediatrics 2019, 173, 1154–1163. [Google Scholar] [CrossRef]
- Kit, B.K.; Kuklina, E.; Carroll, M.D.; Ostchega, Y.; Freedman, D.S.; Ogden, C.L. Prevalence of and trends in dyslipidemia and blood pressure among US children and adolescents, 1999–2012. JAMA Pediatrics 2015, 169, 272–279. [Google Scholar] [CrossRef]
- Kuo, P.; Syu, J.-T.; Tzou, I.L.; Chen, P.-Y.; Su, H.-Y.; Chu, N.-F. Prevalence and trend of dyslipidaemia from 1996 to 2006 among normal and overweight adolescents in Taiwan. BMJ Open 2014, 4, e003800. [Google Scholar] [CrossRef]
- Andes, L.J.; Cheng, Y.J.; Rolka, D.B.; Gregg, E.W.; Imperatore, G. Prevalence of prediabetes among adolescents and young adults in the United States, 2005–2016. JAMA Pediatrics 2020, 174, e194498. [Google Scholar] [CrossRef]
- Li, J.-M.; Hsueh, Y.-C. A Study of Relationship between the Recognition of 12-Year Public Education Policy and the Reason of Choosing Senior High School of Junior High School Students in New Taipei City; Tamkang University: New Taipei City, Taiwan, 2016. [Google Scholar]
- Liu, S.-H.; Lin, Y.-C. Decision Making Process and Influencing Factors for Junior High School Students in their Application for Senior High School Admission. Chin. Annu. Rep. Guid. Couns. 2002, 11, 71–123. [Google Scholar] [CrossRef]
- Liu, C.-H.; Luoh, M.-C. The effect of parents’ gender preference on children’s high school outcomes and choice of field of study in senior and vocational high shcools: Evidence from Taiwan youth project. Acad. Econ. Pap. 2021, 49, 163–200. [Google Scholar]
- Ramírez-Vélez, R.; García-Hermoso, A.; Agostinis-Sobrinho, C.; Mota, J.; Santos, R.; Correa-Bautista, J.E.; Amaya-Tambo, D.C.; Villa-González, E. Cycling to school and body composition, physical fitness, and metabolic syndrome in children and adolescents. J. Pediatrics 2017, 188, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.G.d.; Guedes, D.P. Physical activity, sedentary behavior, cardiorespiratory fitness and metabolic syndrome in adolescents: Systematic review and meta-analysis of observational evidence. PLoS ONE 2016, 11, e0168503. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Loprinzi, P.; Kim, H.; Kang, M. Temporal Trends in the Association between Participation in Physical Education and Physical Activity among US High School Students, 2011–2017. Int. J. Environ. Res. Public Health 2020, 17, 2357. [Google Scholar] [CrossRef] [PubMed]
- Merlo, C.L.; Jones, S.E.; Michael, S.L.; Chen, T.J.; Sliwa, S.A.; Lee, S.H.; Brener, N.D.; Lee, S.M.; Park, S. Dietary and physical activity behaviors among high school students—Youth Risk Behavior Survey, United States, 2019. MMWR Suppl. 2020, 69, 64. [Google Scholar] [CrossRef]
- Tribby, C.P.; Oh, A.; Perna, F.; Berrigan, D. Peer Reviewed: Adolescent Physical Activity at Public Schools, Private Schools, and Homeschools, United States, 2014. Prev. Chronic Dis. 2020, 17, E85. [Google Scholar] [CrossRef]
- Aizawa, S. A comparative sociological study of Japanese and Taiwanese upper secondary education. Educ. Stud. Jpn. 2016, 10, 33–48. [Google Scholar] [CrossRef]
- Sung, Y.-T.; Tseng, F.-L.; Kuo, N.-P.; Chang, T.-Y.; Chiou, J.-M. Evaluating the effects of programs for reducing achievement gaps: A case study in Taiwan. Asia Pac. Educ. Rev. 2014, 15, 99–113. [Google Scholar] [CrossRef]
- Chen, S.-H.; Ho, H.-F.; Yang, C.-C. Change and Dilemma of School Feature Development of Three Junior High Schools in the Remote and Rural Areas of Taiwan. Int. Educ. Stud. 2012, 5, 49–55. [Google Scholar] [CrossRef]
- Yang, J.-C.; Huang, F.-M. The Effect of Part-Time Job on College Entrance and Employment: A Case Study on Secondary Education Student in Northern Taiwan; National Taiwan University: Taipei, Taiwan, 2008. [Google Scholar]
- Iguacel, I.; Börnhorst, C.; Michels, N.; Breidenassel, C.; Dallongeville, J.; González-Gross, M.; Gottrand, F.; Kafatos, A.; Karaglani, E.; Kersting, M. Socioeconomically disadvantaged groups and metabolic syndrome in European adolescents: The HELENA study. J. Adolesc. Health 2021, 68, 146–154. [Google Scholar] [CrossRef] [PubMed]
Required Criteria | Taiwan Pediatric Association (2016) | International Diabetes Federation (2007) | De Ferranti et al. (2004) |
---|---|---|---|
Central Obesity + Two Out of Four * | Central Obesity + Two Out of Four * | Three Out of Five * | |
Central Obesity | BMI > 95th percentile of sex- and age-specific groups 15 (male/female): >25.4/25.2 15.5 (male/female): >25.5/25.3 16 (male/female): >25.6/25.3 16.5 (male/female): >25.6/25.3 | 10–<16 years of age: WC ≥ 90th percentile, ≥16 years of age: WC ≥ 90 cm (Asia male) WC ≥ 80 cm (Asia female) | WC > 75th percentile |
Blood pressure | Systolic ≥ 130 mmHg or Diastolic ≥ 85 mmHg or >95th percentile for sex-age-specific groups | Systolic ≥ 130 mmHg or Diastolic ≥ 85 mmHg | >90th percentile |
HDL-Cholesterol | <40 mg/dL (male) <50 mg/dL (female) | 10–<16 years of age: < 40 mg/dL, ≥16 years of age: <40 mg/dL (male) <50 mg/dL (female) | <50 mg/dL boys aged 15–19: <45 mg/dL |
Triglycerides | ≥150 mg/dL | ≥150 mg/dL | ≥100 mg/dL |
Fasting blood glucose | ≥100 mg/dL or diagnosis of type 2 DM | ≥100 mg/dL or diagnosis of type 2 DM | ≥110 mg/dL |
Variables | Senior High School (n = 81,076) | Vocational High School (n = 68,863) | p-Value |
---|---|---|---|
Sex | |||
Male | 41,037 (50.62%) | 36,089 (52.41%) | <0.001 |
Female | 40,039 (49.38%) | 32,774 (47.59%) | |
Age | 15.68 ± 0.31 | 15.69 ±0.35 | <0.001 |
Age group | |||
15 (years) | 25,623 (31.60%) | 22,979 (33.37%) | <0.001 |
15.5 (years) | 41,734 (51.48%) | 32,651 (47.41%) | |
16 (years) | 13,107 (16.17%) | 11,476 (16.66%) | |
16.5 (years) | 612 (0.75%) | 1757 (2.55%) | |
Height (cm) | 165.35 ± 8.02 | 164.56 ± 8.17 | <0.001 |
Weight (Kg) | 57.86 ± 12.23 | 58.92 ± 14.06 | <0.001 |
BMI (Kg/m2) | 21.07 ± 3.63 | 21.56 ± 4.35 | <0.001 |
WC (cm) | 69.22 ± 9.33 | 70.30 ± 10.94 | <0.001 |
FBG (mg/dL) | 83.88 ± 8.56 | 85.37 ± 10.76 | <0.001 |
TCHO (mg/dL) | 159.80 ± 27.97 | 160.80 ± 28.39 | <0.001 |
TG (mg/dL) | 68.86 ±29.08 | 72.10 ± 32.94 | <0.001 |
HDL-c (mg/dL) | 61.11 ± 12.64 | 59.60 ± 12.84 | <0.001 |
SBP (mmHg) | 113.10 ± 15.09 | 114.00 ± 15.88 | <0.001 |
DBP (mmHg) | 63.26 ± 10.31 | 63.88 ± 10.91 | <0.001 |
School-Type | |||
Public school | 66,587 (82.13%) | 24,103 (35.00%) | <0.001 |
Private school | 14,489 (17.87%) | 44,760 (65.00%) |
Taiwan Pediatric Association | International Diabetes Federation | De Ferranti et al. | |||||||
---|---|---|---|---|---|---|---|---|---|
Numbers of Metabolic Syndrome Risk Factors | Total (n = 149,939) | Senior High School (N = 81,076) | Vocational High School (N = 68,863) | Total (n = 149,939) | Senior High School (N = 81,076) | Vocational High School (N = 68,863) | Total (n = 149,939) | Senior High School (N = 81,076) | Vocational High School (N = 68,863) |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | ||||
0 | 101,096 (67.42) | 56,977 (70.28) | 44,119 (64.07) | 109,133 (72.78) | 61,247 (75.54) | 47,886 (69.54) | 78,841 (52.58) | 44,800 (55.26) | 34,041 (49.43) |
1 | 35,834 (23.90) | 18,565 (22.90) | 17,269 (25.08) | 32,115 (21.42) | 16,250 (20.04) | 15,865 (23.04) | 45,314 (30.22) | 24,386 (30.08) | 20,928 (30.39) |
2 | 10,301 (6.87) | 4502 (5.55) | 5799 (8.42) | 7003 (4.67) | 2955 (3.64) | 4048 (5.88) | 18,117 (12.08) | 8708 (10.74) | 9409 (13.66) |
3 | 2318 (1.55) | 909 (1.12) | 1409 (2.05) | 1434 (0.96) | 543 (0.67) | 891 (1.29) | 6252 (4.17) | 2644 (3.26) | 3608 (5.24) |
4 | 374 (0.25) | 120 (0.15) | 254 (0.37) | 243 (0.16) | 78 (0.10) | 165 (0.24) | 1364 (0.91) | 530 (0.65) | 834 (1.21) |
5 | 16 (0.01) | 3 (< 0.01) | 13 (0.02) | 11 (0.01) | 3 (< 0.01) | 8 (0.01) | 51 (0.03) | 8 (0.01) | 43 (0.06) |
Prevalence | |||||||||
Metabolic syndrome | 2593 (1.73) | 988 (1.22) | 1605 (2.33) | 1528 (1.02) | 563 (0.69) | 965 (1.40) | 7667 (5.11) | 3182 (3.92) | 4485 (6.51) |
Central Obesity | 20,671 (13.79) | 9136 (11.27) | 11,535 (16.75) | 13,412 (8.94) | 5679 (7.00) | 7733 (11.23) | 40,563 (27.05) | 20,083 (24.77) | 20,480 (29.74) |
Increased BP | 24,093 (16.07) | 12,224 (15.08) | 11,869 (17.24) | 24,093 (16.07) | 12,224 (15.08) | 11,869 (17.24) | 26,846 (17.90) | 13,440 (16.58) | 13,406 (19.47) |
Low HDL-c | 11,742 (7.83) | 5676 (7.00) | 6066 (8.81) | 5485 (3.66) | 2458 (3.03) | 3027 (4.40) | 18,395 (12.27) | 8741 (10.78) | 9654 (14.02) |
Elevated TG | 3865 (2.58) | 1690 (2.08) | 2175 (3.16) | 3865 (2.58) | 1690 (2.08) | 2175 (3.16) | 19,354 (12.91) | 9286 (11.45) | 10,068 (14.62) |
High FBG | 4595 (3.06) | 2065 (2.55) | 2530 (3.67) | 4595 (3.06) | 2065 (2.55) | 2530 (3.67) | 857 (0.57) | 344 (0.42) | 513 (0.74) |
Taiwan Pediatric Association | International Diabetes Federation | De Ferranti et al. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | aOR | 95% CI | p-Value | aOR | 95% CI | p-Value | aOR | 95% CI | p-Value | ||||
Sex | Female | reference | - | reference | - | reference | - | ||||||
Male | 1.96 | 1.80 | 2.13 | < 0.001 | 3.18 | 2.82 | 3.58 | <0.001 | 1.49 | 1.42 | 1.56 | <0.001 | |
Age group | 15 | reference | - | reference | - | reference | - | ||||||
15.5 | 0.93 | 0.85 | 1.01 | 0.09 | 0.96 | 0.86 | 1.08 | 0.54 | 0.92 | 0.87 | 0.97 | 0.01 | |
16 | 0.91 | 0.81 | 1.02 | 0.12 | 1.01 | 0.87 | 1.17 | 0.91 | 0.93 | 0.87 | 0.99 | 0.04 | |
16.5 | 0.83 | 0.62 | 1.12 | 0.22 | 1.05 | 0.74 | 1.48 | 0.80 | 0.89 | 0.74 | 1.06 | 0.19 | |
high schools | public senior | reference | - | reference | - | Reference | - | ||||||
private senior | 1.49 | 1.28 | 1.72 | < 0.001 | 1.40 | 1.15 | 1.71 | 0.001 | 1.31 | 1.21 | 1.43 | <0.001 | |
public vocational | 1.72 | 1.54 | 1.93 | < 0.001 | 1.82 | 1.58 | 2.11 | <0.001 | 1.59 | 1.48 | 1.69 | <0.001 | |
private vocational | 2.30 | 2.09 | 2.52 | < 0.001 | 2.33 | 2.06 | 2.64 | <0.001 | 1.91 | 1.80 | 2.01 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-Y.; Fan, K.-Y.; Yu, E.W.-R.; Chiu, T.-F.; Chung, C.-H.; Lee, J.J. Metabolic Syndrome Prevalence among High School First-Year Students: A Cross-Sectional Study in Taiwan. Nutrients 2022, 14, 3626. https://doi.org/10.3390/nu14173626
Ho C-Y, Fan K-Y, Yu EW-R, Chiu T-F, Chung C-H, Lee JJ. Metabolic Syndrome Prevalence among High School First-Year Students: A Cross-Sectional Study in Taiwan. Nutrients. 2022; 14(17):3626. https://doi.org/10.3390/nu14173626
Chicago/Turabian StyleHo, Chin-Yu, Kuan-Yu Fan, Ernest Wen-Ruey Yu, Ting-Fang Chiu, Chi-Hua Chung, and Jason Jiunshiou Lee. 2022. "Metabolic Syndrome Prevalence among High School First-Year Students: A Cross-Sectional Study in Taiwan" Nutrients 14, no. 17: 3626. https://doi.org/10.3390/nu14173626
APA StyleHo, C. -Y., Fan, K. -Y., Yu, E. W. -R., Chiu, T. -F., Chung, C. -H., & Lee, J. J. (2022). Metabolic Syndrome Prevalence among High School First-Year Students: A Cross-Sectional Study in Taiwan. Nutrients, 14(17), 3626. https://doi.org/10.3390/nu14173626