Processed Dietary Patterns during Pregnancy Are Associated with Low Birth Weight at Term among Women of Advanced and Non-Advanced Age
Abstract
:1. Introduction
2. Participants, Ethics, and Method
2.1. Sample Size Estimation
2.2. Design and Participants
2.3. Measurements
2.4. Data Analysis
2.4.1. Dietary Patterns
2.4.2. Characteristics of the Women in the Two Age Groups
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sievert, K.; Lawrence, M.; Naika, A.; Baker, P. Processed food and nutrition Transition in the Pacific: Regional trends, patterns and food system drivers. Nutrient 2019, 11, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Mota Santana, J.; De Oliveira Queiroz, V.A.; Pereira, M.; Paixão, E.S.; Brito, S.M.; Dos Santos, D.B.; Oliveira, A.M. Associations between maternal dietary patterns and infant birth weight in the NISAMI cohort: A structural equation modeling analysis. Nutrients 2021, 13, 4054. [Google Scholar] [CrossRef] [PubMed]
- Department of Statistics, Ministry of the Interior (Taiwan). Population by Marital Status. Available online: https://ws.moi.gov.tw/001/Upload/400/relfile/0/4405/48349492-6f8c-453b-a9d1-4a8f0593b979/year/year.html (accessed on 28 May 2022).
- World Health Organization (WHO). Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 29 April 2020).
- Abubakari, A.; Jahn, A. Maternal dietary patterns and practices and birth weight in northern Ghana. PLoS ONE 2016, 11, e0162285. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and micronutrient intake during pregnancy: An overview of recent evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef] [Green Version]
- Ługowska, K.; Kolanowski, W. The nutritional behaviour of pregnant women in Poland. Int. J. Environ. Res. Public Health 2019, 16, 4357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, A.R.; Chen, L.W.; Lai, J.S.; Wong, C.H.; Neelakantan, N.; Van Dam, R.M.; Chong, M.F.F. Maternal dietary patterns and birth outcomes: A systematic review and meta-analysis. Adv. Nutr. 2019, 10, 685–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Bazer, F.W.; Cudd, T.A.; Meininger, C.J.; Spencer, T.E. Maternal nutrition and fetal development. J. Nutr. 2004, 134, 2169–2172. [Google Scholar] [CrossRef]
- Ancira-Moreno, M.; O’Neill, M.S.; Rivera-Dommarco, J.Á.; Batis, C.; Rodríguez Ramírez, S.; Sánchez, B.N.; Vadillo-Ortega, F. Dietary patterns and diet quality during pregnancy and low birthweight: The PRINCESA cohort. Matern Child Nutr. 2020, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.S.; Chen, Q.Z.; He, J.R.; Wei, X.L.; Lu, J.H.; Li, S.H.; Qiu, X. Maternal dietary patterns and fetal growth: A large prospective cohort study in China. Nutrients 2016, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Sun, Z. Too educated to be married? An investigation into the relationship between education and marriage in China. J. Fam. Stud. 2021, 1, 1–19. [Google Scholar] [CrossRef]
- Mayo, J.A.; Lu, Y.; Stevenson, D.K.; Shaw, G.M.; Eisenberg, M.L. Parental age and stillbirth: A population-based cohort of nearly 10 million California deliveries from 1991 to 2011. Ann. Epidemiol. 2019, 31, 32–37. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Low Birthweight. 2019. Available online: https://data.unicef.org/topic/nutrition/low-birthweight/ (accessed on 25 January 2022).
- Lean, S.C.; Heazell, A.E.; Dilworth, M.R.; Mills, T.A.; Jones, R.L. Placental dysfunction underlies increased risk of fetal growth restriction and stillbirth in advanced maternal age women. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef]
- Wang, S.; Yang, L.; Shang, L.; Yang, W.; Qi, C.; Huang, L.; Chung, M.C. Changing trends of birth weight with maternal age: A cross-sectional study in Xi’an city of Northwestern China. BMC Pregnancy Childbirth 2020, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Fu, Y.; Han, Q.; Yan, J.; Chen, R.; Zhang, H. Gestational weight management and pregnancy outcomes among women of advanced maternal age. Exp. Ther. Med. 2019, 18, 1723–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polit, D.F.; Beck, C.T. Nursing Research: Generating and Assessing Evidence for Nursing Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; pp. 605–610. [Google Scholar]
- Taiwan Health Promotion Administration. Maternal Health Booklet; Taiwan Ministry of Health and Welfare: Taipei, Taiwan, 2021. Available online: https://www.hpa.gov.tw/File/Attach/7667/File_16058.pdf (accessed on 2 January 2022).
- Hollingshead, A.B. Two Factor Index of Social Position; Yale University Press: New Haven, CT, USA, 1957; pp. 1–22. [Google Scholar]
- Lindsay, P.; Parelius, R.J.; Parelius, A.P. The sociology of education. Teach. Sociol. 1988, 16, 215. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention (CDC). Weight Gain During Pregnancy. 2016. Available online: http://www.cdc.gov/reproductivehealth/maternalinfanthealth/ (accessed on 22 March 2022).
- Institute of Medicine & National Research Council Committee to Reexamine I.O.M. Pregnancy Weight Guidelines. The National Academies Collection: Reports funded by National Institutes of Health. In Weight Gain during Pregnancy: Reexamining the Guidelines; Rasmussen, K.M., Yaktine, A.L., Eds.; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems: Alphabetical Index; WHO: Geneva, Switzerland, 2004; Volume 3. [Google Scholar]
- Block, G.; Hartman, A.M.; Dresser, C.M.; Carroll, M.D.; Gannon, J.; Gardner, L. A data-based approach to diet questionnaire design and testing. Am. J. Epidemiol. 1986, 124, 453–469. [Google Scholar] [CrossRef]
- Athanasiadou, E.; Kyrkou, C.; Fotiou, M.; Tsakoumaki, F.; Dimitropoulou, A.; Polychroniadou, E.; Michaelidou, A.M. Development and validation of Mediterranean oriented culture-specific semi-quantitative food frequency questionnaire. Nutrients 2016, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr. J. 2021, 20, 1–18. [Google Scholar] [CrossRef]
- Knudsen, V.; Orozova-Bekkevold, I.; Mikkelsen, T.; Wolff, S.; Olsen, S. Major dietary patterns in pregnancy and fetal growth. Eur. J. Nutr. 2008, 62, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Varraso, R.; Garcia-Aymerich, J.; Monier, F.; LeMoual, N.; De Batlle, J.; Miranda, G.; Maccario, J. Assessment of dietary patterns in nutritional epidemiology: Principal component analysis compared with confirmatory factor analysis. Am. J. Clin. Nutr. 2012, 96, 1079–1092. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; He, J.R.; Lin, Y.; Lu, M.; Zhou, Q.; Li, S.; Qiu, X. The influence of maternal dietary patterns on gestational weight gain: A large prospective cohort study in China. Nutrition 2019, 59, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.N.; Seddig, D.; Davidov, E.; Mørup, M.; Albers, K.J.; Bauer, J.M.; Glückstad, F.K. Latent profile analysis of human values: What is the optimal number of clusters? Methodology 2021, 17, 127–148. [Google Scholar] [CrossRef]
- Paul, P.; Pennell, M.L.; Lemeshow, S. Standardizing the power of the Hosmer–Lemeshow goodness of fit test in large data sets. Stat. Med. 2013, 32, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Gete, D.G.; Waller, M.; Mishra, G.D. Effects of maternal diets on preterm birth and low birth weight: A systematic review. Br. J. Nutr. 2020, 123, 446–461. [Google Scholar] [CrossRef] [PubMed]
- Goran, M.I.; Plows, J.F.; Ventura, E.E. Effects of consuming sugars and alternative sweeteners during pregnancy on maternal and child health: Evidence for a secondhand sugar effect. Proc. Nutr. Soc. 2019, 78, 262–271. [Google Scholar] [CrossRef]
- Belliveau, R.; Horton, S.; Hereford, C.; Ridpath, L.; Foster, R.; Boothe, E. Pro-inflammatory diet and depressive symptoms in the healthcare setting. BMC Psychiatry 2022, 22, 1–7. [Google Scholar] [CrossRef]
- Pereira, R.D.; de Long, N.E.; Wang, R.C.; Yazdi, F.T.; Holloway, A.C.; Raha, S. Angiogenesis in the placenta: The role of reactive oxygen species signaling. Biomed Res. Int. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Englund-Ögge, L.; Brantsæter, A.L.; Juodakis, J.; Haugen, M.; Meltzer, H.M.; Jacobsson, B.; Sengpiel, V. Associations between maternal dietary patterns and infant birth weight, small and large for gestational age in the Norwegian mother and child cohort study. Eur. J. Clin. Nutr. 2019, 73, 1270–1282. [Google Scholar] [CrossRef]
- Tarín, J.J.; García-Pérez, M.A.; Cano, A. Note of clarification: Potential risks to offspring of intrauterine exposure to maternal age-related obstetric complications. Reprod. Fertil. Dev. 2017, 29, 1653. [Google Scholar] [CrossRef]
- Tamura, N.; Hanaoka, T.; Ito, K.; Araki, A.; Miyashita, C.; Ito, S.; Kishi, R. Different risk factors for very low birth weight, term-small-for-gestational-age, or preterm birth in Japan. Int. J. Environ. Res. Public Health 2018, 15, 369. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Li, L.; Chen, W.; Liu, Z.B.; Ma, L.; Gao, X.X.; Xu, D.X. Pre-pregnancy underweight and obesity are positively associated with small-for-gestational-age infants in a Chinese population. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taiwan Health Promotion Administration. Maternal Medical Instruction Booklet; Taiwan Ministry of Health and Welfare: Taipei, Taiwan, 2021. Available online: https://www.hpa.gov.tw/File/Attach/13814/File_16073.pdf (accessed on 2 January 2022).
- Waits, A.; Guo, C.Y.; Chien, L.Y. Inadequate gestational weight gain contributes to increasing rates of low birth weight in Taiwan: 2011–2016 nationwide surveys. Taiwan. J. Obstet. Gynecol. 2021, 60, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Teshome, A.A.; Li, Q.; Garoma, W.; Chen, X.; Wu, M.; Zhang, Y.; Yang, N. Gestational diabetes mellitus, pre-pregnancy body mass index and gestational weight gain predicts fetal growth and neonatal outcomes. Clin. Nutr. ESPEN 2021, 42, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Itani, L.; Radwan, H.; Hashim, M.; Hasan, H.; Obaid, R.S.; Ghazal, H.A.; Naja, F. Dietary patterns and their associations with gestational weight gain in the United Arab Emirates: Results from the MISC cohort. Nutr. J. 2020, 19, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Xu, L.; Wu, M.L.; Huang, S.H.; Cao, X.J. Maternal pre-pregnancy body mass index, gestational weight gain influence birth weight. Women Birth 2018, 31, e20–e25. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.R.; Chao, Y.M.; Kenney, N.J. I am a woman and I’m pregnant: Body image of women in Taiwan during the third trimester of pregnancy. Birth 2006, 33, 147–153. [Google Scholar] [CrossRef]
- Takimoto, H.; Mitsuishi, C.; Kato, N. Attitudes toward pregnancy related changes and self-judged dieting behavior. Asia Pac. J. Clin. Nutr. 2011, 20, 212–219. [Google Scholar]
- Ogawa, K.; Morisaki, N.; Sago, H.; Fujiwara, T.; Horikawa, R. Association between women’s perceived ideal gestational weight gain during pregnancy and pregnancy outcomes. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Lee, Y.Q.; Loh, J.; Ang, R.S.E.; Chong, M.F.F. Tracking of maternal diet from pregnancy to postpregnancy: A systematic review of observational studies. Curr. Dev. Nutr. 2020, 4, nzaa118. [Google Scholar] [CrossRef]
- Hillier, S.E.; Olander, E.K. Women’s dietary changes before and during pregnancy: A systematic review. Midwifery 2017, 49, 19–31. [Google Scholar] [CrossRef] [Green Version]
Variables | Healthy | Processed |
---|---|---|
% of variance explained | 25.28% | 18.59% |
Rice/noodles | 0.71 | |
Bread and pasta/cereals | 0.63 | |
Eggs | 0.71 | |
Beef | 0.59 | |
Mutton | 0.45 | |
Pork | 0.80 | |
Poultry | 0.83 | |
Fresh fish | 0.63 | |
Fresh seafood | 0.66 | |
Beans/tofu | 0.58 | |
Milk/dairy products | 0.60 | |
Vegetables | 0.69 | |
Pickled vegetables | 0.68 | |
fresh fruit | 0.56 | |
Juice | 0.50 | |
Sugary drink | 0.70 | |
Tea with sugar | 0.72 | |
Soft drink | 0.48 | |
Chocolate products | 0.60 | |
Dessert | 0.49 | |
Pickled plum/sour plum | 0.60 | |
Fried chick/pried cutlet/French fries | 0.79 | |
Stir-fry and baste food | 0.68 | |
Fast food | 0.77 | |
Snacks/cakes/biscuits | 0.68 | |
Pickled food | 0.70 |
Overall Sample | Non-Advanced n = 151 n (%) | Advanced Age n = 176 n (%) | χ2 | p-Value | |
---|---|---|---|---|---|
Family socioeconomic status | 5.00 | 0.08 | |||
High | 153 | 61 (40.4) | 92 (52.3) | ||
Middle | 146 | 74 (49.0) | 72 (40.9) | ||
Low | 28 | 16 (10.6) | 12 (6.8) | ||
Education level | 3.57 | 0.17 | |||
High school or below | 16 | 9 (6.0) | 7 (4.0) | ||
University school | 238 | 115 (76.2) | 123 (69.9) | ||
Graduate school | 73 | 27 (17.9) | 46 (26.1) | ||
Work status | 7.57 | 0.02 * | |||
Full-time | 180 | 73 (48.3) | 107 (60.8) | ||
Part-time | 38 | 16 (10.6) | 22 (12.5) | ||
Housewife | 109 | 62 (41.1) | 47 (26.7) | ||
Pre-pregnancy BMI (kg/m2) | 3.55 | 0.31 | |||
Underweight | 45 | 25 (16.6) | 20 (11.4) | ||
Normal | 233 | 100 (66.2) | 133 (75.6) | ||
Overweight | 40 | 21 (13.9) | 19 (10.8) | ||
Obesity | 9 | 5 (3.3) | 4 (2.3) | ||
Childbirth method | 1.62 | 0.23 a | |||
Vaginal birth | 229 | 111 (73.5) | 118 (67.0) | ||
Cesarean birth | 98 | 40 (26.5) | 58 (33.0) | ||
GWG | 2.02 | 0.37 | |||
Adequate | 137 | 63 (41.7) | 74 (42.0) | ||
Insufficient | 151 | 66 (43.7) | 85 (48.3) | ||
Excessive | 39 | 22 (14.6) | 17 (9.7) | ||
Pregnancy dietary pattern | 0.45 | 0.50 | |||
Healthy | 265 | 120 (79.5) | 146 (82.4) | ||
Processed | 62 | 31 (20.5) | 31 (17.6) | ||
Infant sex | 1.75 | 0.22 a | |||
Male | 171 | 73 (48.3) | 98 (55.7) | ||
Female | 156 | 78 (23.9) | 78 (23.9) | ||
Low infant birth weight | 8.32 | 0.001 a * | |||
No | 298 | 145 (96.0) | 153 (86.9) | ||
Yes | 29 | 6 (4.0) | 23 (13.1) |
Healthy Pattern (n = 265) | Processed Pattern (n = 62) | χ2 | p-Value | |
---|---|---|---|---|
Family socioeconomic status | 2.22 | 0.33 | ||
High | 129 (48.7) | 24 (38.7) | ||
Middle | 115 (43.4) | 31 (50.0) | ||
Low | 21 (7.9) | 7 (11.3) | ||
Education level | 1.70 | 0.43 | ||
High school or below | 11 (4.2) | 5 (8.1) | ||
University school | 195 (73.6) | 43 (69.4) | ||
Graduate school | 59 (22.3) | 14 (22.6) | ||
Work status | 5.40 | 0.07 | ||
Full-time | 152 (57.4) | 28 (45.2) | ||
Part-time | 26 (9.8) | 12 (19.4) | ||
Housewife | 87 (32.8) | 22 (35.5) | ||
Pre-pregnancy BMI (kg/m2) | 3.43 | 0.33 | ||
Underweight | 36 (13.6) | 9 (14.5) | ||
Normal | 187 (70.6) | 46 (74.2) | ||
Overweight | 36 (13.6) | 4 (6.5) | ||
Obesity | 6 (2.3) | 3 (4.8) | ||
Childbirth method | 0.03 | 1.00 a | ||
Vaginal birth | 185 (69.8) | 44 (71.0) | ||
Cesarean birth | 80 (30.2) | 18 (29.0) | ||
GWG | 5.40 | 0.07 | ||
Adequate | 119 (44.9) | 18 (29.0) | ||
Insufficient | 117 (44.2) | 34 (54.8) | ||
Excessive | 29 (10.9) | 10 (16.1) | ||
Low infant birth weight | 17.16 | <0.001 a ** | ||
No | 252 (95.1) | 46 (74.2) | ||
Yes | 13 (4.9) | 16 (25.8) |
Variable | Crudes OR | 95% CI | p-Values | Adjust OR | 95% CI | p-Values |
---|---|---|---|---|---|---|
Maternal age | ||||||
<34 years | 1 | 1 | ||||
≥35 years | 3.6 | 1.4–9.2 | 0.01 * | 5.8 | 2.0–16.6 | 0.001 * |
Pre-pregnancy BMI | ||||||
Normal | 1 | 1 | ||||
Underweight | 3.3 | 1.4–8.1 | 0.01 * | 6.8 | 2.3–20.1 | 0.001 * |
Overweight/obese | 1.1 | 0.4–3.5 | 0.85 | 2.1 | 0.6V7.9 | 0.28 |
GWG | ||||||
Adequate | 1 | 1 | ||||
Insufficient | 3.5 | 1.4–9.0 | 0.01 * | 4.0 | 1.4–11.6 | 0.01 * |
Excessive | 1.2 | 0.2–6.1 | 0.84 | 0.9 | 0.1–5.5 | 0.88 |
Dietary pattern | ||||||
Healthy | 1 | 1 | ||||
Processed | 6.7 | 3.0–15.0 | <0.001 ** | 9.4 | 3.7–23.6 | < 0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-L.; Cheng, S.-F.; Gau, M.-L.; Lin, L.-L. Processed Dietary Patterns during Pregnancy Are Associated with Low Birth Weight at Term among Women of Advanced and Non-Advanced Age. Nutrients 2022, 14, 3429. https://doi.org/10.3390/nu14163429
Chen T-L, Cheng S-F, Gau M-L, Lin L-L. Processed Dietary Patterns during Pregnancy Are Associated with Low Birth Weight at Term among Women of Advanced and Non-Advanced Age. Nutrients. 2022; 14(16):3429. https://doi.org/10.3390/nu14163429
Chicago/Turabian StyleChen, Tzu-Ling, Su-Fen Cheng, Meei-Ling Gau, and Li-Li Lin. 2022. "Processed Dietary Patterns during Pregnancy Are Associated with Low Birth Weight at Term among Women of Advanced and Non-Advanced Age" Nutrients 14, no. 16: 3429. https://doi.org/10.3390/nu14163429
APA StyleChen, T. -L., Cheng, S. -F., Gau, M. -L., & Lin, L. -L. (2022). Processed Dietary Patterns during Pregnancy Are Associated with Low Birth Weight at Term among Women of Advanced and Non-Advanced Age. Nutrients, 14(16), 3429. https://doi.org/10.3390/nu14163429