Reversing Type 2 Diabetes in a Primary Care-Anchored eHealth Lifestyle Coaching Programme in Denmark: A Randomised Controlled Trial
Abstract
:1. Introduction
1.1. Development of a New eHealth App and Its Effectiveness
1.2. Study Objectives
2. Materials and Methods
2.1. Study Design
2.2. Participants, Eligibility Criteria, and Recruitment Procedure
2.3. Baseline Meeting and Assessment
2.4. Randomisation and Blinding
2.5. Intervention Group
2.6. Control Group
2.7. Health Coaches
2.8. Six-Month Assessment
2.9. Outcomes
2.10. Lost to Follow-Up
2.11. Power
2.12. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Weight
3.3. HbA1c
3.4. Body Composition and Lipids
3.5. Medication Use
3.6. Exercise Habits
3.7. Dietary Habits
3.8. Quality of Life and Mental Well-Being
4. Discussion
4.1. Principal Findings
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Europe. Fact Sheets on Sustainable Development Goals: Health Targets: Noncommunicable Diseases. 2017. Available online: https://www.euro.who.int/en/health-topics/health-policy/sustainable-development-goals/publications/2017/fact-sheets-on-the-sustainable-development-goals-sdgs-health-targets (accessed on 7 June 2021).
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes–Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Johansen, M.Y.; MacDonald, C.S.; Hansen, K.B.; Karstoft, K.; Christensen, R.; Pedersen, M.; Hansen, L.S.; Zacho, M.; Wedell-Neergaard, A.-S.; Nielsen, S.T.; et al. Effect of an intensive lifestyle intervention on glycemic control in patients with type 2 diabetes: A randomized controlled trial. JAMA 2017, 318, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Saudek, C.D.; Brick, J.C. The clinical use of hemoglobin A1c. J. Diabetes Sci. Technol. 2009, 3, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Diabetes Prevention Program Research Group; Hamman, R.F.; Horton, E.; Barrett-Connor, E.; Bray, G.A.; Christophi, C.A.; Crandall, J.; Florez, J.C.; Fowler, S.; Goldberg, R.; et al. Factors affecting the decline in incidence of diabetes in the Diabetes Prevention Program Outcomes Study (DPPOS). Diabetes 2015, 64, 989–998. [Google Scholar] [CrossRef] [Green Version]
- Gong, Q.; Zhang, P.; Wang, J.; Ma, J.; An, Y.; Chen, Y.; Zhang, B.; Feng, X.; Li, H.; Chen, X.; et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019, 7, 452–461. [Google Scholar] [CrossRef]
- Afshin, A.; Babalola, D.; McLean, M.; Yu, Z.; Ma, W.; Chen, C.Y.; Arabi, M.; Mozaffarian, D. Information technology and lifestyle: A systematic evaluation of internet and mobile interventions for improving diet, physical activity, obesity, technology, and alcohol use. J. Am. Heart Assoc. 2016, 5, e003058. [Google Scholar] [CrossRef] [Green Version]
- Haste, A.; Adamson, A.J.; McColl, E.; Araujo-Soares, V.; Bell, R. Web-based weight loss intervention for men with type 2 diabetes: Pilot randomized controlled trial. JMIR Diabetes 2017, 2, e14. [Google Scholar] [CrossRef] [Green Version]
- Levine, D.M.; Savarimuthu, S.; Squires, A.; Nicholson, J.; Jay, M. Technology-assisted weight loss interventions in primary care: A systematic review. J. Gen. Intern. Med. 2015, 30, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Limaye, T.; Kumaran, K.; Joglekar, C.; Bhat, D.; Kulkarni, R.; Nanivadekar, A.; Yajnik, C. Efficacy of a virtual assistance-based lifestyle intervention in reducing risk factors for Type 2 diabetes in young employees in the information technology industry in India: LIMIT, a randomized controlled trial. Diabet Med. 2017, 34, 563–568. [Google Scholar] [CrossRef]
- Block, G.; Azar, K.M.; Romanelli, R.J.; Block, T.J.; Hopkins, D.; Carpenter, H.A.; Dolginsky, M.S.; Hudes, M.L.; Palaniappan, L.P.; Block, C.H. Diabetes prevention and weight loss with a fully automated behavioral intervention by email, web, and mobile phone: A randomized controlled trial among persons with prediabetes. J. Med. Internet Res. 2015, 17, e240. [Google Scholar] [CrossRef] [PubMed]
- Gong, E.; Baptista, S.; Russell, A.; Scuffham, P.; Riddell, M.; Speight, J.; Bird, D.; Williams, E.; Lotfaliany, M.; Oldenburg, B. My Diabetes Coach, a mobile app-based interactive conversational agent to support type 2 diabetes self-management: Randomized effectiveness-implementation trial. J. Med. Internet Res. 2020, 22, e20322. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Xu, Q.; Diao, S.; Hewitt, J.; Li, J.; Carter, B. Mobile phone applications and self-management of diabetes: A systematic review with meta-analysis, meta-regression of 21 randomized trials and GRADE. Diabetes Obes. Metab. 2018, 20, 2009–2013. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Min, J.; Khuri, J.; Xue, H.; Xie, B.; Kaminsky, L.A.; Cheskin, L.J. Effectiveness of Mobile Health Interventions on Diabetes and Obesity Treatment and Management: Systematic Review of Systematic Reviews. JMIR Mhealth Uhealth 2020, 8, e15400. [Google Scholar] [CrossRef]
- Brandt, C.J.; Christensen, J.R.; Lauridsen, J.T.; Nielsen, J.B.; Sondergaard, J.; Sortso, C. Evaluation of the clinical and economic effects of a primary care anchored, collaborative, electronic health lifestyle coaching program in Denmark: Protocol for a two-year randomized controlled trial. JMIR Res. Protoc. 2020, 9, e19172. [Google Scholar] [CrossRef]
- Komkova, A.; Brandt, C.J.; Pedersen, D.H.; Emneus, M.; Sortso, C. Electronic health lifestyle coaching among diabetes patients in a real-life municipality setting: Observational study. JMIR Diabetes 2019, 4, e12140. [Google Scholar] [CrossRef]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef] [Green Version]
- Brandt, V.; Brandt, C.J.; Glintborg, D.; Arendal, C.; Toubro, S.K.B. Sustained weight loss during 20 months using a personalized interactive internet based dietician advice program in a general practice setting. Int. J. Adv. Life Sci. Technol. 2011, 3, 23–28. [Google Scholar]
- Brandt, C.J.; Clemensen, J.; Nielsen, J.B.; Sondergaard, J. Drivers for successful long-term lifestyle change, the role of e-health: A qualitative interview study. BMJ Open 2018, 8, e017466. [Google Scholar] [CrossRef] [Green Version]
- Brandt, C.J.; Sogaard, G.I.; Clemensen, J.; Sndergaard, J.; Nielsen, J.B. General practitioners’ perspective on ehealth and lifestyle change: Qualitative interview study. JMIR Mhealth Uhealth 2018, 6, e88. [Google Scholar] [CrossRef] [Green Version]
- Brandt, C.J.; Sogaard, G.I.; Clemensen, J.; Sondergaard, J.; Nielsen, J.B. Determinants of successful ehealth coaching for consumer lifestyle changes: Qualitative interview study among health care professionals. J. Med. Internet Res. 2018, 20, e237. [Google Scholar] [CrossRef] [PubMed]
- Moyers, T.B.; Miller, W.R. Is low therapist empathy toxic? Psychol. Addict. Behav. 2013, 27, 878–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Copenhagen City Heart Study Group. The Copenhagen City Heart Study. Osterbroundersogelsen. A book of tables with data from the first examination (1976-78) and a five year follow-up (1981-83). Scand. J. Soc. Med. Suppl. 1989, 41, 1–160. [Google Scholar]
- American Diabetes Association. Understanding A1C Diagnosis. Available online: https://www.diabetes.org/a1c/diagnosis (accessed on 7 June 2021).
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tennant, R.; Hiller, L.; Fishwick, R.; Platt, S.; Joseph, S.; Weich, S.; Parkinson, J.; Secker, J.; Stewart-Brown, S. The Warwick-Edinburgh Mental Well-being Scale (WEMWBS): Development and UK validation. Health Qual. Life Outcomes 2007, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Danish Society for General Practice (DSAM). Guideline for Treatment of Type 2 Diabetes. Available online: https://vejledninger.dsam.dk/ (accessed on 7 June 2021).
- Ryan, P. Integrated theory of health behavior change: Background and intervention development. Clin. Nurse Spec. 2009, 23, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Jessen-Winge, C.; Ilvig, P.M.; Jonsson, H.; Fritz, H.; Lee, K.; Christensen, J.R. Obesity interventions: A role for occupational therapists? Scand. J. Occup. Ther. 2020, 0152. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Donato, K.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. Guidelines (2013) for managing overweight and obesity in adults. Obesity 2014, 22, S1–S410. [Google Scholar]
- Ryan, D.H.; Yockey, S.R. Weight loss and improvement in comorbidity: Differences at 5%, 10%, 15%, and over. Curr. Obes. Rep. 2017, 6, 187–194. [Google Scholar] [CrossRef]
- Juul, S. Epidemiologi og Evidens; Munksgaard: Copenhagen, Danmark, 2004; Volume 1. [Google Scholar]
- Joiner, K.L.; Nam, S.; Whittemore, R. Lifestyle interventions based on the diabetes prevention program delivered via eHealth: A systematic review and meta-analysis. Prev. Med. 2017, 100, 194–207. [Google Scholar] [CrossRef]
- Cai, X.; Qiu, S.; Luo, D.; Wang, L.; Lu, Y.; Li, M. Mobile Application Interventions and Weight Loss in Type 2 Diabetes: A Meta-Analysis. Obesity 2020, 28, 502–509. [Google Scholar] [CrossRef]
- Perri, M.G.; Shankar, M.N.; Daniels, M.J.; Durning, P.E.; Ross, K.M.; Limacher, M.C.; Janicke, D.M.; Martin, A.D.; Dhara, K.; Bobroff, L.B.; et al. Effect of telehealth extended care for maintenance of weight loss in rural US communities: A randomized controlled trial. JAMA Netw. Open 2020, 3, e206764. [Google Scholar] [CrossRef] [PubMed]
- Wayne, N.; Perez, D.F.; Kaplan, D.M.; Ritvo, P. Health Coaching Reduces HbA1c in Type 2 Diabetic Patients From a Lower-Socioeconomic Status Community: A Randomized Controlled Trial. J. Med. Internet Res. 2015, 17, e224. [Google Scholar] [CrossRef] [PubMed]
- Eberle, C.; Stichling, S. Clinical Improvements by Telemedicine Interventions Managing Type 1 and Type 2 Diabetes: Systematic Meta-review. J. Med. Internet Res. 2021, 23, e23244. [Google Scholar] [CrossRef]
- Wu, C.; Wu, Z.; Yang, L.; Zhu, W.; Zhang, M.; Zhu, Q.; Chen, X.; Pan, Y. Evaluation of the clinical outcomes of telehealth for managing diabetes. Medicine 2018, 97, e12962. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, S.T.; Bodegård, J.; Birkeland, K.I.; Furuseth, K.; Thuresson, M.; Lindh, A.; Nilsson, P.M.; Alvarsson, M.; Jørgensen, M.E.; Søndergaard, J.; et al. Risk factor management for type 2 diabetic patients in primary care in the Scandinavian countries between 2003 and 2015. Prim. Care Diabetes 2021, 15, 262–268. [Google Scholar] [CrossRef]
- Michaud, T.L.; Siahpush, M.; Estabrooks, P.; Schwab, R.J.; LeVan, T.D.; Grimm, B.; Ramos, A.K.; Johansson, P.; Scoggins, D.; Su, D. Association Between Weight Loss and Glycemic Outcomes: A Post Hoc Analysis of a Remote Patient Monitoring Program for Diabetes Management. Telemed. J. e-Health 2020, 26, 621–628. [Google Scholar] [CrossRef]
- Ke, J.F.; Wang, J.W.; Lu, J.X.; Zhang, Z.H.; Liu, Y.; Li, L.X. Waist-to-height ratio has a stronger association with cardiovascular risks than waist circumference, waist-hip ratio and body mass index in type 2 diabetes. Diabetes Res. Clin. Pract. 2021, 183, 109151. [Google Scholar] [CrossRef]
- Hamaya, R.; Fukuda, H.; Takebayashi, M.; Mori, M.; Matsushima, R.; Nakano, K.; Miyake, K.; Tani, Y.; Yokokawa, H. Effects of an mHealth App (Kencom) With Integrated Functions for Healthy Lifestyles on Physical Activity Levels and Cardiovascular Risk Biomarkers: Observational Study of 12,602 Users. J. Med. Internet Res. 2021, 23, e21622. [Google Scholar] [CrossRef]
- Bollyky, J.B.; Bravata, D.; Yang, J.; Williamson, M.; Schneider, J. Remote lifestyle coaching plus a connected glucose meter with certified diabetes educator support improves glucose and weight loss for people with type 2 diabetes. J. Diabetes Res. 2018, 2018, 3961730. [Google Scholar] [CrossRef]
Inclusion criteria
|
Four types of change in medicine were defined:
|
Intervention Group Digital Lifestyle | Control Group Standard Care | ||
---|---|---|---|
(n = 100) | (n = 70) | ||
Demographics | |||
Age at baseline, years | 56.12 (7.32) | 57.07 (9.94) | |
Female, n (%) | 49 (49.00) | 32 (45.71) | |
Glycaemic control | |||
HbA1c % | 7.39 (1.20) | 7.31 (1.27) | |
HbA1c < 6.5%, n (%) | 22 (22.00) | 19 (27.14) | |
Lipids, mmol/ml | |||
Total cholesterol | 4.66 (1.28) | 4.35 (1.13) | |
LDL, median (IQR a) | 2.04 (1.06) | 1.88 (0.97) | |
HDL, median (IQR a) | 1.28 (0.45) | 1.16 (0.38) | |
TG, median (IQR a) | 3.21 (1.54) | 3.04 (1.40) | |
Blood pressure, mmHg | |||
Systolic | 136.96 (15.24) | 137.10 (16.06) | |
Diastolic | 88.26 (8.99) | 86.91 (9.77) | |
Body composition | |||
Weight, kg | 104.24 (13.32) | 103.68 (14.73) | |
BMI, kg/m2 | 34.70 (3.29) | 35.03 (4.40) | |
Hip CF, cm | 119.69 (9.70) | 119.33 (10.92) | |
Waist CF, cm | 118.59 (9.91) | 120.74 (9.61) | |
Medication, yes, n (%) | |||
Glucose-lowering | 80 (80.00) | 57 (81.43) | |
Lipid-lowering | 62 (62.00) | 35 (50.00) | |
Blood pressure-lowering | 54 (54.00) | 33 (47.14) | |
Perception of life | |||
Quality of life b | 0.81 (0.13) | 0.77 (0.12) | |
Mental well-being c | 25.04 (3.16) | 24.64 (3.52) | |
Exercise, how often | |||
Moderate d | 2.41 (1.22) | 2.54 (1.34) | |
Everyday e | 4.20 (1.76) | 4.27 (1.67) | |
Diet, intake how often | |||
Vegetables f | 2.68 (0.93) | 2.71 (0.90) | |
Fruit f | 2.17 (0.96) | 2.68 (0.91) | |
Fish f | 1.67 (0.86) | 1.67 (0.86) | |
Sweets f | 2.89 (1.09 | 2.59 (1.16) |
N | Intervention Group Digital Lifestyle | N | Control Group Standard Care | Between Group Difference | p | ||
---|---|---|---|---|---|---|---|
(n = 75) | (n = 38) | 95% CI | |||||
Weight | |||||||
Mean change, kg (95% CI) | 69 | −4.24 (−5.49; −2.98) | 37 | −1.52 (−2.57; −0.48) | −2.71 (−4.56; −0.87) | 0.005 | |
Mean change, % of baseline BW (95% CI) | 69 | −4.14 (−5.38; −2.90) | 37 | −1.47 (−2.44; −0.50) | −2.67 (−4.47; −0.88) | 0.004 | |
Proportion of BW loss | |||||||
>3%, n (%) | 69 | 36 (52.20) | 37 | 8 (21.60) | 30.60 (12.81; 48.30) | 0.002 | |
>5%, n (%) | 69 | 23 (33.30) | 37 | 4 (10.80) | 22.50 (7.56; 37.48) | 0.011 | |
>10%, n (%) | 69 | 8 (11.60) | 37 | 0 (0.00) | 11.60 (4.04; 19.15) | 0.031 | |
HbA1c | |||||||
Mean change, % (95% CI) | 75 | −0.76 (−1.02; −0.49) | 37 | −0.61 (−0.85; −0.37) | −0.15 (−0.51; 0.22) | 0.435 | |
Mean change, %, percent of baseline (95% CI) | 75 | −8.92 (−12.00; −5.84) | 53 | −7.27 (−9.87; −4.68) | −1.65 (−5.84; −2.54) | 0.442 | |
Reduced from ≥6.5% to <6.5%, n (%) | 62 | 24 (38.70) | 40 | 8 (20.00) | 18.70 (1.37; 36.05) | 0.047 | |
Body composition | |||||||
BMI, kg/m2, mean change (95% CI) | 69 | −1.40 (−1.81; −0.98) | 37 | −0.51 (−0.85; −0.17) | −0.89 (−1.50; −0.28) | 0.005 | |
Hip CF, cm, mean change (95% CI) | 69 | −5.64 (−7.10; −4.17) | 37 | −2.84 (−4.37; −1.31) | −2.80 (−5.05; −0.55) | 0.016 | |
Waist CF, cm, mean change (95% CI) | 69 | −7.49 (−9.07; −5.91) | 37 | −4.06 (−5.84; −2.28) | −3.43 (−5.90; −0.96) | 0.008 | |
Lipids | |||||||
Total cholesterol, mmol/mL, mean change (95% CI) | 73 | −0.32 (−0.56; −0.08) | 49 | 0.06 (−0.24; 0.37) | −0.38 (−0.76; −0.01) | 0.048 | |
LDL, median (IQR), mean change (95% CI) | 56 | 0.23 (−0.01; 0.46) | 39 | 0.40 (0.14; 0.67) | −0.17 (−0.53; 0.18) | 0.330 | |
HDL, mmol/mL, mean change (95% CI) | 74 | −0.17 (−0.24; −0.10) | 49 | −0.05 (−0.13; 0.02) | −0.12 (−0.22; −0.02) | 0.024 | |
TG, median (IQR), mean change (95% CI) | 74 | −1.06 (−1.39; −0.73) | 49 | −0.65 (−1.02; −0.28) | −0.41 (−0.91; 0.08) | 0.105 | |
Blood pressure | |||||||
Systolic, mm Hg, mean change (95% CI) | 69 | −2.12 (−5.37; 1.14) | 37 | −3.49 (−7.89; 0.91) | 1.37 (−3.99; 6.73) | 0.617 | |
Diastolic, mm Hg, mean change (95% CI) | 69 | −2.26 (−3.92; −0.61) | 37 | −1.54 (−3.70; 0.62) | −0.72 (−3.42; 1.97) | 0.601 | |
Glucose-lowering medication use | |||||||
Decreased or stopped, n (%) | 74 | 11 (14.90) | 41 | 1 (2.40) | 12.40 a (3.05; 21.81) | 0.015 | |
Increased or started, n (%) | 74 | 2 (2.70) | 41 | 7 (17.10) | 14.4 a (2.27; 26.47) | 0.021 | |
Cholesterol-lowering medication use | |||||||
Decreased or stopped, n (%) | 74 | 1 (1.40) | 41 | 2 (4.90) | 3.50 a (−3.66; 10.71) | 0.260 | |
Increased or started, n (%) | 74 | 3 (4.10) | 41 | 3 (7.30) | 3.30 a (−6.08; 12.60) | 0.460 | |
Blood pressure-lowering medication use | |||||||
Decreased or stopped, n (%) | 74 | 0 (0.00) | 41 | 1 (2.44) | 2.44 a (−2.28; 7.16) | 0.180 | |
Increased or started, n (%) | 74 | 2 (2.70) | 41 | 0 (0.00) | 2.70 a (−1.30; 6.71) | 0.290 | |
Self-rated assessments | |||||||
Moderate exercise, mean change (95% CI) Everyday exercise, mean change (95% CI) Eating Sweets, mean change (95% CI) Eating fish, mean change (95% CI) Eating fruit, mean change (95% CI) Eating vegetables, mean change (95% CI) Quality of life, mean change (95% CI) | 75 75 75 75 75 75 75 | 0.62 (0.33; 0.90) 0.41 (−0.06; 0.88) 0.27 (0.05; 0.50) 0.37 (0.20; 0.54) 0.38 (0.15; 0.62) 0.49 (0.29; 0.69) 0.02 (−0.01; 0.05) | 41 41 41 41 41 41 41 | 0.49 (0.10; 0.87) −0.08 (−0.62; 0.46) 0.46 (0.19; 0.73) 0.18 (−0.03; 0.39) −0.03 (−0.30; 0.25) 0.18 (−0.11; 0.47) 0.01 (−0.03; 0.04) | −0.12 (−0.61; 0.35) −0.48 (−1.25; 0.27) 0.18 (−0.18; 0.55) −0.19 (−0.47; 0.09) −0.41 (−0.79; −0.02) −0.31 (−0.66; 0.34) 0.01 (−0.04; −0.06) | 0.600 0.210 0.310 0.180 0.040 0.080 0.553 | |
Mental well-being, mean change (95% CI) | 75 | −0.79 (−2.20; 0.62) | 41 | 1.04 (−0.80; 2.88) | −1.83 (−4.06; −0.41) | 0.115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christensen, J.R.; Laursen, D.H.; Lauridsen, J.T.; Hesseldal, L.; Jakobsen, P.R.; Nielsen, J.B.; Søndergaard, J.; Brandt, C.J. Reversing Type 2 Diabetes in a Primary Care-Anchored eHealth Lifestyle Coaching Programme in Denmark: A Randomised Controlled Trial. Nutrients 2022, 14, 3424. https://doi.org/10.3390/nu14163424
Christensen JR, Laursen DH, Lauridsen JT, Hesseldal L, Jakobsen PR, Nielsen JB, Søndergaard J, Brandt CJ. Reversing Type 2 Diabetes in a Primary Care-Anchored eHealth Lifestyle Coaching Programme in Denmark: A Randomised Controlled Trial. Nutrients. 2022; 14(16):3424. https://doi.org/10.3390/nu14163424
Chicago/Turabian StyleChristensen, Jeanette Reffstrup, Ditte Hjorth Laursen, Jørgen Trankjær Lauridsen, Laura Hesseldal, Pernille Ravn Jakobsen, Jesper Bo Nielsen, Jens Søndergaard, and Carl J. Brandt. 2022. "Reversing Type 2 Diabetes in a Primary Care-Anchored eHealth Lifestyle Coaching Programme in Denmark: A Randomised Controlled Trial" Nutrients 14, no. 16: 3424. https://doi.org/10.3390/nu14163424
APA StyleChristensen, J. R., Laursen, D. H., Lauridsen, J. T., Hesseldal, L., Jakobsen, P. R., Nielsen, J. B., Søndergaard, J., & Brandt, C. J. (2022). Reversing Type 2 Diabetes in a Primary Care-Anchored eHealth Lifestyle Coaching Programme in Denmark: A Randomised Controlled Trial. Nutrients, 14(16), 3424. https://doi.org/10.3390/nu14163424