Associations between the Nutrient Profiling System Underlying the Nutri-Score Nutrition Label and Biomarkers of Chronic Low-Grade Inflammation: A Cross-Sectional Analysis of a Middle- to Older-Aged Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Setting
2.2. Laboratory Procedures
2.3. Data Collection
2.4. Dietary Intake Assessment
2.5. FSAm-NPS Dietary Index Computation
2.6. Classifcation and Scoring of Variables
2.7. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Correlation Analysis
3.3. Linear Regression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millar, S.R.; Perry, I.J.; Phillips, C.M. HbA1c Alone Is a Poor Indicator of Cardiometabolic Risk in Middle-Aged Subjects with Pre-Diabetes but Is Suitable for Type 2 Diabetes Diagnosis: A Cross-Sectional Study. PLoS ONE 2015, 10, e0134154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M.; Shivappa, N.; Hébert, J.R.; Perry, I.J. Dietary inflammatory index and mental health: A cross-sectional analysis of the relationship with depressive symptoms, anxiety and well-being in adults. Clin. Nutr. 2018, 37, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, T.K.; Campisi, J.; Louis, G.B.; Smith, M.T.; Wise, B.; Wyss-Coray, T.; Augustine, A.D.; McElhaney, J.E.; Kohanski, R.; Sierra, F. The role of inflammation in age-related disease. Aging 2013, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.M.; Perry, I.J. Does Inflammation Determine Metabolic Health Status in Obese and Nonobese Adults? J. Clin. Endocrinol. Metab. 2013, 98, E1610–E1619. [Google Scholar] [CrossRef]
- Calle, M.C.; Andersen, C.J. Assessment of Dietary Patterns Represents a Potential, Yet Variable, Measure of Inflammatory Status: A Review and Update. Dis. Markers 2019, 2019, 3102870. [Google Scholar] [CrossRef] [PubMed]
- Millar, S.R.; Navarro, P.; Harrington, J.M.; Shivappa, N.; Hébert, J.R.; Perry, I.J.; Phillips, C.M. Dietary score associations with markers of chronic low-grade inflammation: A cross-sectional comparative analysis of a middle-to older-aged population. Eur. J. Nutr. 2022, 1–14. [Google Scholar] [CrossRef]
- Ahluwalia, N.; Andreeva, V.; Kesse-Guyot, E.; Hercberg, S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab. 2013, 39, 99–110. [Google Scholar] [CrossRef]
- Andersen, C.J.; Fernandez, M.L. Dietary strategies to reduce metabolic syndrome. Rev. Endocr. Metab. Disord. 2013, 14, 241–254. [Google Scholar] [CrossRef]
- Kirwan, A.M.; Lenighan, Y.M.; O’Reilly, M.E.; McGillicuddy, F.C.; Roche, H.M. Nutritional modulation of metabolic inflammation. Biochem. Soc. Trans. 2017, 45, 979–985. [Google Scholar] [CrossRef]
- Phillips, C.M.; Chen, L.-W.; Heude, B.; Bernard, J.Y.; Harvey, N.C.; Duijts, L.; Mensink-Bout, S.M.; Polanska, K.; Mancano, G.; Suderman, M. Dietary inflammatory index and non-communicable disease risk: A narrative review. Nutrients 2019, 11, 1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Diet and lifestyle influences on risk of coronary heart disease. Curr. Atheroscler. Rep. 2009, 11, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Stuckler, D.; Nestle, M. Big food, food systems, and global health. PLoS Med. 2012, 9, e1001242. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Donoso, C.; Martínez-González, M.Á.; Perez-Cornago, A.; Sayón-Orea, C.; Martínez, J.A.; Bes-Rastrollo, M. Association between the nutrient profile system underpinning the Nutri-Score front-of-pack nutrition label and mortality in the SUN Project: A prospective cohort study. Clin. Nutr. 2021, 40, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Hawley, K.L.; Roberto, C.A.; Bragg, M.A.; Liu, P.J.; Schwartz, M.B.; Brownell, K.D. The science on front-of-package food labels. Public Health Nutr. 2013, 16, 430–439. [Google Scholar] [CrossRef]
- Hersey, J.C.; Wohlgenant, K.C.; Arsenault, J.E.; Kosa, K.M.; Muth, M.K. Effects of front-of-package and shelf nutrition labeling systems on consumers. Nutr. Rev. 2013, 71, 1–14. [Google Scholar] [CrossRef]
- Hercberg, S.; Touvier, M.; Salas-Salvado, J.; Group of European scientists supporting the implementation of Nutri-Score in Europe. The Nutri-Score Nutrition Label: A Public Health Tool Based on Rigorous Scientific Evidence Aiming to Improve the Nutritional Status of the Population; Hogrefe AG: Boston, MA, USA, 2021. [Google Scholar] [CrossRef]
- Rayner, M.; Scarborough, P.; Boxer, A.; Stockley, L. Nutrient Profiles: Development of Final Model; Food Standards Agency: London, UK, 2005. [Google Scholar]
- Rayner, M.; Scarborough, P.; Lobstein, T. The UK OfCom Nutrient Profiling Model: Defining ‘Healthy’ and ‘Unhealthy’ foods and Drinks for TV Advertising to Children; OfCom: London, UK, 2009. [Google Scholar]
- Deschasaux, M.; Huybrechts, I.; Julia, C.; Hercberg, S.; Egnell, M.; Srour, B.; Kesse-Guyot, E.; Latino-Martel, P.; Biessy, C.; Casagrande, C. Association between nutritional profiles of foods underlying Nutri-Score front-of-pack labels and mortality: EPIC cohort study in 10 European countries. BMJ 2020, 370, m3173. [Google Scholar] [CrossRef]
- Alkerwi, A.A.; Vernier, C.; Crichton, G.E.; Sauvageot, N.; Shivappa, N.; Hébert, J.R. Cross-comparison of diet quality indices for predicting chronic disease risk: Findings from the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study. Br. J. Nutr. 2015, 113, 259–269. [Google Scholar] [CrossRef]
- Millar, S.R.; Navarro, P.; Harrington, J.M.; Shivappa, N.; Hébert, J.R.; Perry, I.J.; Phillips, C.M. Comparing dietary score associations with lipoprotein particle subclass profiles: A cross-sectional analysis of a middle-to older-aged population. Clin. Nutr. 2021, 40, 4720–4729. [Google Scholar] [CrossRef]
- Hart, M.J.; Torres, S.J.; McNaughton, S.A.; Milte, C.M. Dietary patterns and associations with biomarkers of inflammation in adults: A systematic review of observational studies. Nutr. J. 2021, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kearney, P.M.; Harrington, J.M.; Mc Carthy, V.J.; Fitzgerald, A.P.; Perry, I.J. Cohort Profile: The Cork and Kerry Diabetes and Heart Disease Study. Int. J. Epidemiol. 2013, 42, 1253–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riboli, E.; Elmståhl, S.; Saracci, R.; Gullberg, B.; Lindgärde, F. The Malmö Food Study: Validity of two dietary assessment methods for measuring nutrient intake. Int. J. Epidemiol. 1997, 26, S161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrington, J. Validation of a Food Frequency Questionnaire as a Tool for Assessing Nutrient Intake; NUI: Galway, Ireland, 1997. [Google Scholar]
- Murrin, C. Maternal Factors during Pregnancy Contributing to Early Life Risk of Childhood Obesity; University College Dublin: Dublin, Ireland, 2010. [Google Scholar]
- Sokol, A.; Wirth, M.D.; Manczuk, M.; Shivappa, N.; Zatonska, K.; Hurley, T.G.; Hébert, J.R. Association between the dietary inflammatory index, waist-to-hip ratio and metabolic syndrome. Nutr. Res. 2016, 36, 1298–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julia, C.; Kesse-Guyot, E.; Touvier, M.; Méjean, C.; Fezeu, L.; Hercberg, S. Application of the British Food Standards Agency nutrient profiling system in a French food composition database. Br. J. Nutr. 2014, 112, 1699–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julia, C.; Touvier, M.; Méjean, C.; Ducrot, P.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Development and validation of an individual dietary index based on the British Food Standard Agency nutrient profiling system in a French context. J. Nutr. 2014, 144, 2009–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julia, C.; Fézeu, L.K.; Ducrot, P.; Méjean, C.; Péneau, S.; Touvier, M.; Hercberg, S.; Kesse-Guyot, E. The nutrient profile of foods consumed using the British Food Standards Agency nutrient profiling system is associated with metabolic syndrome in the SU. VI. MAX cohort. J. Nutr. 2015, 145, 2355–2361. [Google Scholar] [CrossRef] [PubMed]
- Donnenfeld, M.; Julia, C.; Kesse-Guyot, E.; Méjean, C.; Ducrot, P.; Péneau, S.; Deschasaux, M.; Latino-Martel, P.; Fezeu, L.; Hercberg, S. Prospective association between cancer risk and an individual dietary index based on the British Food Standards Agency Nutrient Profiling System. Br. J. Nutr. 2015, 114, 1702–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adriouch, S.; Julia, C.; Kesse-Guyot, E.; Méjean, C.; Ducrot, P.; Péneau, S.; Donnenfeld, M.; Deschasaux, M.; Menai, M.; Hercberg, S. Prospective association between a dietary quality index based on a nutrient profiling system and cardiovascular disease risk. Eur. J. Prev. Cardiol. 2016, 23, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Deschasaux, M.; Julia, C.; Kesse-Guyot, E.; Lécuyer, L.; Adriouch, S.; Méjean, C.; Ducrot, P.; Péneau, S.; Latino-Martel, P.; Fezeu, L.K. Are self-reported unhealthy food choices associated with an increased risk of breast cancer? Prospective cohort study using the British Food Standards Agency nutrient profiling system. BMJ Open 2017, 7, e013718. [Google Scholar] [CrossRef]
- Deschasaux, M.; Huybrechts, I.; Murphy, N.; Julia, C.; Hercberg, S.; Srour, B.; Kesse-Guyot, E.; Latino-Martel, P.; Biessy, C.; Casagrande, C. Nutritional quality of food as represented by the FSAm-NPS nutrient profiling system underlying the Nutri-Score label and cancer risk in Europe: Results from the EPIC prospective cohort study. PLoS Med. 2018, 15, e1002651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013, 36, S67–S74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, S.R.; Navarro, P.; Harrington, J.M.; Perry, I.J.; Phillips, C.M. Dietary Quality Determined by the Healthy Eating Index-2015 and Biomarkers of Chronic Low-Grade Inflammation: A Cross-Sectional Analysis in Middle-to-Older Aged Adults. Nutrients 2021, 13, 222. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.; Shivappa, N.; Hébert, J.; Perry, I. Dietary inflammatory index and biomarkers of lipoprotein metabolism, inflammation and glucose homeostasis in adults. Nutrients 2018, 10, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankinen, M.; Uusitupa, M.; Schwab, U. Nordic diet and inflammation—A review of observational and intervention studies. Nutrients 2019, 11, 1369. [Google Scholar] [CrossRef] [Green Version]
- Barbaresko, J.; Koch, M.; Schulze, M.B.; Nöthlings, U. Dietary pattern analysis and biomarkers of low-grade inflammation: A systematic literature review. Nutr. Rev. 2013, 71, 511–527. [Google Scholar] [CrossRef]
- Wirth, M.D.; Hébert, J.R.; Shivappa, N.; Hand, G.A.; Hurley, T.G.; Drenowatz, C.; McMahon, D.; Shook, R.P.; Blair, S.N. Anti-inflammatory Dietary Inflammatory Index scores are associated with healthier scores on other dietary indices. Nutr. Res. 2016, 36, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Godos, J.; Hebert, J.R.; Wirth, M.D.; Piuri, G.; Speciani, A.F.; Grosso, G. Dietary inflammatory index and cardiovascular risk and mortality—A meta-analysis. Nutrients 2018, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, C.; Couture, P.; Desroches, S.; Lamarche, B. Effect of the Mediterranean diet with and without weight loss on markers of inflammation in men with metabolic syndrome. Obesity 2013, 21, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Donat-Vargas, C.; Sandoval-Insausti, H.; Rey-García, J.; Ramón Banegas, J.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Five-color Nutri-Score labeling and mortality risk in a nationwide, population-based cohort in Spain: The Study on Nutrition and Cardiovascular Risk in Spain (ENRICA). Am. J. Clin. Nutr. 2021, 113, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Flynn, M.A.; O’Brien, C.M.; Faulkner, G.; Flynn, C.A.; Gajownik, M.; Burke, S.J. Revision of food-based dietary guidelines for Ireland, Phase 1: Evaluation of Ireland’s food guide. Public Health Nutr. 2012, 15, 518–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Temmerman, J.; Heeremans, E.; Slabbinck, H.; Vermeir, I. The impact of the Nutri-Score nutrition label on perceived healthiness and purchase intentions. Appetite 2021, 157, 104995. [Google Scholar] [CrossRef]
- World Health Organization. Global Health and Aging; World Health Organization: Geneva, Switzerland, 2011; pp. 1–32. [Google Scholar]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.R.; Ma, Y.; Clemow, L.; Ockene, I.S.; Saperia, G.; Stanek, E.J., III; Merriam, P.A.; Ockene, J.K. Gender differences in social desirability and social approval bias in dietary self-report. Am. J. Epidemiol. 1997, 146, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.R.; Ebbeling, C.B.; Matthews, C.E.; Hurley, T.G.; Yunsheng, M.; Druker, S.; Clemow, L. Systematic errors in middle-aged women’s estimates of energy intake: Comparing three self-report measures to total energy expenditure from doubly labeled water. Ann. Epidemiol. 2002, 12, 577–586. [Google Scholar] [CrossRef]
- Cronin, S.; Berger, S.; Ding, J.; Schymick, J.C.; Washecka, N.; Hernandez, D.G.; Greenway, M.J.; Bradley, D.G.; Traynor, B.J.; Hardiman, O. A genome-wide association study of sporadic ALS in a homogenous Irish population. Human Mol. Genet. 2008, 17, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinchion, R.; Sheehan, J.; Perry, I. Primary care research: Patient registration. Ir. Med. J. 2002, 95, 249. [Google Scholar] [PubMed]
Variable | FSAm-NPS Dietary Index Quartiles (n = 2006) | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p trend | |
Age (median) | 59.6 (55.0–64.0) | 59.2 (54.0–63.5) | 59.0 (54.0–63.5) | 59.0 (54.0–64.0) | 0.053 |
Male (%) | 198 (39.4) | 221 (44.1) | 261 (52.1) | 303 (60.4) | <0.001 |
Primary education only (%) | 126 (26.9) | 131 (27.6) | 122 (26.1) | 148 (31.2) | 0.219 |
On anti-inflammatory medications (%) | 96 (19.5) | 86 (17.6) | 86 (17.6) | 67 (13.6) | 0.019 |
Type 2 diabetes (%) | 53 (10.6) | 44 (8.8) | 44 (8.8) | 39 (7.8) | 0.143 |
Current smoker (%) | 63 (12.8) | 64 (13.0) | 85 (17.1) | 77 (15.4) | 0.091 |
Low-level physical activity (%) | 191 (40.4) | 225 (46.1) | 244 (51.6) | 257 (55.4) | <0.001 |
BMI, kg/m2 (mean) | 28.3 ± 4.6 | 28.7 ± 4.8 | 28.7 ± 4.7 | 28.6 ± 4.8 | 0.329 |
C3, mg/dL (mean) | 133.43 ± 25.4 | 136.53 ± 23.5 | 137.18 ± 24.5 | 136.20 ± 25.2 | 0.073 |
CRP, ng/mL (median) | 1.26 (0.93–2.13) | 1.36 (0.98–2.32) | 1.38 (0.98–2.33) | 1.41 (0.99–2.36) | 0.01 |
IL-6, pg/mL (median) | 1.61 (1.14–2.72) | 1.77 (1.17–2.85) | 1.82 (1.18–2.95) | 1.96 (1.30–3.09) | <0.001 |
TNF-α, pg/mL (median) | 4.78 (4.74–7.22) | 5.91 (4.80–7.29) | 6.03 (4.95–7.32) | 6.22 (5.11–7.36) | 0.003 |
Adiponectin, ng/mL (median) | 5.42 (3.15–8.31) | 4.83 (3.00–7.70) | 4.73 (2.93–7.50) | 4.00 (2.73–6.63) | <0.001 |
Leptin, ng/mL (median) | 2.00 (1.12–3.21) | 2.00 (1.03–3.35) | 1.98 (1.19–3.31) | 1.71 (1.00–2.83) | 0.46 |
Resistin, ng/mL (median) | 5.06 (3.90–6.66) | 5.00 (3.95–6.65) | 4.92 (3.90–6.70) | 5.20 (3.92–6.92) | 0.377 |
PAI-1, ng/mL (mean) | 27.17 ± 13.8 | 26.66 ± 11.2 | 27.87 ± 12.5 | 27.98 ± 12.6 | 0.153 |
WBC, 109/L (median) | 5.40 (4.70–6.50) | 5.70 (4.70–6.70) | 5.70 (4.90–7.00) | 5.90 (5.00–7.00) | <0.001 |
Neutrophils, 10⁹/L (median) | 2.97 (2.39–3.76) | 3.09 (2.46–3.87) | 3.18 (2.53–4.00) | 3.26 (2.70–4.17) | <0.001 |
Lymphocytes, 10⁹/L (median) | 1.73 (1.42–2.12) | 1.74 (1.44–2.15) | 1.76 (1.41–2.14) | 1.75 (1.43–2.17) | 0.32 |
NLR (median) | 1.73 (1.32–2.24) | 1.74 (1.36–2.23) | 1.76 (1.41–2.31) | 1.86 (1.48–2.38) | <0.001 |
Monocytes, 10⁹/L (median) | 0.48 (0.38–0.59) | 0.49 (0.39–0.60) | 0.50 (0.41–0.63) | 0.52 (0.43–0.65) | <0.001 |
Eosinophils, 10⁹/L (median) | 0.16 (0.11–0.25) | 0.17 (0.10–0.25) | 0.18 (0.12–0.27) | 0.18 (0.12–0.27) | 0.005 |
Basophils, 10⁹/L (median) | 0.031 (0.02–0.04) | 0.032 (0.02–0.04) | 0.033 (0.02–0.04) | 0.033 (0.02–0.04) | 0.129 |
Variable | FSAm-NPS Dietary Index Quartiles (n = 2006) | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p trend | |
Dietary composition | |||||
Energy intake, kcal (mean) | 1808.8 ± 740.0 | 1975.4 ± 752.7 | 2133.7 ± 835.7 | 2211.3 ± 874.4 | <0.001 |
Fat, g/d (mean) | 60.1 ± 29.6 | 72.5 ± 32.7 | 82.5 ± 37.5 | 93.8 ± 42.4 | <0.001 |
SFA, g/d (mean) | 18.1 ± 8.7 | 23.3 ± 11.1 | 28.6 ± 13.0 | 38.0 ± 17.1 | <0.001 |
PUFA, g/d (mean) | 13.6 ± 9.4 | 15.5 ± 8.4 | 16.7 ± 9.7 | 16.1 ± 9.7 | <0.001 |
MUFA, g/d (mean) | 19.3 ± 9.9 | 23.2 ± 10.8 | 26.1 ± 12.3 | 28.6 ± 13.3 | <0.001 |
Carbohydrate, g/d (mean) | 232.5 ± 106.9 | 246.1 ± 104.5 | 259.3 ± 112.0 | 260.2 ± 115.7 | <0.001 |
Protein, g/d (mean) | 90.6 ± 41.0 | 90.8 ± 33.1 | 95.1 ± 37.3 | 90.6 ± 38.8 | 0.556 |
Sugar, g/d (mean) | 101.7 ± 64.8 | 105.3 ± 56.1 | 106.4 ± 53.4 | 108.1 ± 61.8 | 0.086 |
Alcohol, ml/d (mean) | 5.3 ± 11.7 | 5.8 ± 10.9 | 6.0 ± 12.7 | 4.7 ± 10.0 | 0.483 |
Fibre, g/d (mean) | 28.2 ± 13.9 | 26.6 ± 12.2 | 25.8 ± 11.8 | 23.6 ± 10.3 | <0.001 |
Daily food pyramid shelf servings | |||||
Bread, cereal, potatoes, grains and rice (mean) | 5.1 ± 3.0 | 5.2 ± 2.7 | 5.5 ± 3.3 | 5.4 ± 2.9 | 0.026 |
Fruit and vegetables (mean) | 9.2 ± 6.9 | 7.7 ± 4.9 | 6.5 ± 4.0 | 5.2 ± 3.1 | <0.001 |
Dairy (mean) | 1.7 ± 1.4 | 1.9 ± 1.4 | 2.1 ± 1.5 | 2.0 ± 1.6 | <0.001 |
Meat, fish, poultry and eggs (mean) | 2.3 ± 1.3 | 2.4 ± 1.2 | 2.5 ± 1.3 | 2.4 ± 1.4 | 0.026 |
Fats, high fat/sugar foods and drinks (mean) | 4.6 ± 2.9 | 7.1 ± 4.0 | 8.4 ± 4.5 | 11.5 ± 5.7 | <0.001 |
Biomarker | Correlation Coefficients | p |
---|---|---|
C3, mg/dL | 0.047 | 0.039 |
CRP, ng/mL | 0.060 | 0.008 |
IL-6, pg/mL | 0.074 | 0.001 |
TNF-α, pg/mL | 0.078 | 0.001 |
Adiponectin, ng/mL | −0.115 | <0.001 |
Leptin, ng/mL | −0.037 | 0.099 |
Resistin, ng/mL | 0.032 | 0.162 |
PAI-1, ng/mL | 0.039 | 0.086 |
WBC, 109/L | 0.104 | <0.001 |
Neutrophils, 10⁹/L | 0.116 | <0.001 |
Lymphocytes, 10⁹/L | 0.014 | 0.525 |
NLR | 0.088 | <0.001 |
Monocytes, 10⁹/L | 0.107 | <0.001 |
Eosinophils, 10⁹/L | 0.069 | 0.002 |
Basophils, 10⁹/L | 0.036 | 0.115 |
Biomarker | Model 1 | Model 2 | Model 3 | Model 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | S.E. | p | β | S.E. | p | β | S.E. | p | β | S.E. | p | |
C3 | 1.330 | 0.558 | 0.017 | 1.654 | 0.564 | 0.003 | 1.666 | 0.591 | 0.005 | 1.767 | 0.571 | 0.002 |
Log CRP | 0.045 | 0.016 | 0.004 | 0.055 | 0.016 | 0.001 | 0.048 | 0.017 | 0.004 | 0.047 | 0.016 | 0.004 |
Log IL-6 | 0.051 | 0.017 | 0.003 | 0.045 | 0.017 | 0.007 | 0.043 | 0.018 | 0.013 | 0.042 | 0.017 | 0.016 |
Log TNF-α | 0.023 | 0.008 | 0.004 | 0.021 | 0.008 | 0.008 | 0.021 | 0.009 | 0.012 | 0.023 | 0.009 | 0.009 |
Log Adiponectin | −0.083 | 0.016 | <0.001 | −0.026 | 0.014 | 0.06 | −0.025 | 0.015 | 0.082 | −0.025 | 0.015 | 0.081 |
Log Leptin | −0.026 | 0.021 | 0.215 | 0.013 | 0.020 | 0.532 | 0.015 | 0.021 | 0.476 | 0.017 | 0.018 | 0.354 |
Log Resistin | 0.020 | 0.010 | 0.045 | 0.026 | 0.010 | 0.01 | 0.027 | 0.010 | 0.008 | 0.029 | 0.010 | 0.005 |
PAI-1 | 0.417 | 0.284 | 0.142 | 0.158 | 0.286 | 0.582 | 0.089 | 0.302 | 0.768 | 0.055 | 0.307 | 0.857 |
Log WBC | 0.028 | 0.006 | <0.001 | 0.022 | 0.006 | 0.001 | 0.017 | 0.007 | 0.007 | 0.016 | 0.006 | 0.01 |
Log Neutrophils | 0.037 | 0.008 | <0.001 | 0.030 | 0.008 | <0.001 | 0.025 | 0.008 | 0.002 | 0.024 | 0.008 | 0.002 |
Log Lymphocytes | 0.006 | 0.007 | 0.421 | 0.006 | 0.007 | 0.462 | 0.002 | 0.008 | 0.757 | 0.002 | 0.008 | 0.775 |
Log NLR | 0.031 | 0.009 | <0.001 | 0.024 | 0.009 | 0.006 | 0.023 | 0.009 | 0.016 | 0.021 | 0.010 | 0.028 |
Log Monocytes | 0.038 | 0.007 | <0.001 | 0.024 | 0.007 | <0.001 | 0.017 | 0.008 | 0.021 | 0.014 | 0.007 | 0.067 |
Log Eosinophils | 0.046 | 0.014 | 0.001 | 0.033 | 0.014 | 0.017 | 0.035 | 0.015 | 0.019 | 0.037 | 0.015 | 0.015 |
Log Basophils | 0.018 | 0.013 | 0.163 | 0.019 | 0.013 | 0.145 | 0.019 | 0.014 | 0.163 | 0.013 | 0.014 | 0.341 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millar, S.R.; Navarro, P.; Harrington, J.M.; Perry, I.J.; Phillips, C.M. Associations between the Nutrient Profiling System Underlying the Nutri-Score Nutrition Label and Biomarkers of Chronic Low-Grade Inflammation: A Cross-Sectional Analysis of a Middle- to Older-Aged Population. Nutrients 2022, 14, 3122. https://doi.org/10.3390/nu14153122
Millar SR, Navarro P, Harrington JM, Perry IJ, Phillips CM. Associations between the Nutrient Profiling System Underlying the Nutri-Score Nutrition Label and Biomarkers of Chronic Low-Grade Inflammation: A Cross-Sectional Analysis of a Middle- to Older-Aged Population. Nutrients. 2022; 14(15):3122. https://doi.org/10.3390/nu14153122
Chicago/Turabian StyleMillar, Seán R., Pilar Navarro, Janas M. Harrington, Ivan J. Perry, and Catherine M. Phillips. 2022. "Associations between the Nutrient Profiling System Underlying the Nutri-Score Nutrition Label and Biomarkers of Chronic Low-Grade Inflammation: A Cross-Sectional Analysis of a Middle- to Older-Aged Population" Nutrients 14, no. 15: 3122. https://doi.org/10.3390/nu14153122
APA StyleMillar, S. R., Navarro, P., Harrington, J. M., Perry, I. J., & Phillips, C. M. (2022). Associations between the Nutrient Profiling System Underlying the Nutri-Score Nutrition Label and Biomarkers of Chronic Low-Grade Inflammation: A Cross-Sectional Analysis of a Middle- to Older-Aged Population. Nutrients, 14(15), 3122. https://doi.org/10.3390/nu14153122