Serum Vitamin D Concentrations, Time to Pregnancy, and Pregnancy Outcomes among Preconception Couples: A Cohort Study in Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Biochemistry
2.3. Covariates
2.4. Outcomes
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
3.1. Descriptive Analysis
3.2. Probability of Clinical Pregnancy within Six Months
3.3. Time to Pregnancy
3.4. 25(OH)D during Pregnancy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleet, J.C. Molecular actions of vitamin D contributing to cancer prevention. Mol. Aspects Med. 2008, 29, 388–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, C.E.; Nashold, F.E.; Spach, K.M.; Pedersen, L.B. The immunological functions of the vitamin D endo-crine system. Cell Mol. Biol. 2003, 49, 277–300. [Google Scholar]
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef] [Green Version]
- Dall’Ara, F.; Cutolo, M.; Andreoli, L.; Tincani, A.; Paolino, S. Vitamin D and systemic lupus erythematous: A review of immunological and clinical aspects. Clin. Exp. Rheumatol. 2018, 36, 153–162. [Google Scholar]
- Ghosn, J.; Viard, J.P. Vitamin D and infectious diseases. Presse Med. 2013, 42, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, J.; DeLuca, H.F. Where is the vitamin D receptor? Arch. Biochem. Biophys. 2012, 523, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, M.; Jeddi-Tehrani, M.; Zareie, M.; Salek-Moghaddam, A.; Akhondi, M.M.; Bahmanpoor, M.; Sadeghi, M.R.; Zarnani, A.H. Expression profiling of vitamin D receptor in placenta, decidua and ovary of pregnant mice. Placenta 2011, 32, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Zarnani, A.H.; Shahbazi, M.; Salek-Moghaddam, A.; Zareie, M.; Tavakoli, M.; Ghasemi, J.; Rezania, S.; Mo-ravej, A.; Torkabadi, E.; Rabbani, H.; et al. Vitamin D3 receptor is expressed in the endometrium of cycling mice throughout the estrous cycle. Fertil. Steril. 2010, 93, 2738–2743. [Google Scholar] [CrossRef]
- Blomberg, J.M.; Nielsen, J.E.; Jorgensen, A.; Rajpert-De, M.E.; Kristensen, D.M.; Jorgensen, N.; Skakkebaek, N.E.; Juul, A.; Leffers, H. Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum. Reprod. 2010, 25, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Fung, J.L.; Hartman, T.J.; Schleicher, R.L.; Goldman, M.B. Association of vitamin D intake and serum levels with fertility: Results from the Lifestyle and Fertility Study. Fertil. Steril. 2017, 108, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Jukic, A.; Harmon, Q.E. Accumulating evidence for vitamin D and conception. Fertil. Steril. 2020, 113, 330–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios, C.; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid. Biochem. Mol. Biol. 2014, 144 Pt A, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Perez-Lopez, F.R.; Pasupuleti, V.; Mezones-Holguin, E.; Benites-Zapata, V.A.; Thota, P.; Deshpande, A.; Her-nandez, A.V. Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: A systematic review and meta-analysis of randomized controlled trials. Fertil. Steril. 2015, 103, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Kovilam, O.; Agrawal, D.K. Vitamin D and its impact on maternal-fetal outcomes in pregnancy: A critical review. Crit. Rev. Food Sci. Nutr. 2018, 58, 755–769. [Google Scholar] [CrossRef]
- Roth, D.E.; Leung, M.; Mesfin, E.; Qamar, H.; Watterworth, J.; Papp, E. Vitamin D supplementation during pregnancy: State of the evidence from a systematic review of randomised trials. BMJ 2017, 359, j5237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baca, K.M.; Simhan, H.N.; Platt, R.W.; Bodnar, L.M. Low maternal 25-hydroxyvitamin D concentration in-creases the risk of severe and mild preeclampsia. Ann. Epidemiol. 2016, 26, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.L.; Enquobahrie, D.A.; Qiu, C.; Huang, J.; Grote, N.; VanderStoep, A.; Williams, M.A. Early preg-nancy maternal vitamin D concentrations and risk of gestational diabetes mellitus. Paediatr. Perinat. Epidemiol. 2015, 29, 200–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, C.E.; Guillet, R.; Queenan, R.A.; Cooper, E.M.; Kent, T.R.; Pressman, E.K.; Vermeylen, F.M.; Rob-erson, M.S.; O'Brien, K.O. Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am. J. Clin. Nutr. 2015, 102, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Eremkina, A.K.; Mokrysheva, N.G.; Pigarova, E.A.; Mirnaya, S.S. Vitamin D: Effects on pregnancy, maternal, fetal and postnatal outcomes. Ter. Arkh. 2018, 90, 115–127. [Google Scholar] [CrossRef]
- Quaresima, P.; Angeletti, M.; Luziatelli, D.; Luziatelli, S.; Venturella, R.; Di Carlo, C.; Bernardo, S. Pregnancy associated transient osteoporosis of the hip (PR-TOH): A non-obstetric indication to caesarean section. A case report with literature review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 262, 28–35. [Google Scholar] [CrossRef]
- Merewood, A.; Mehta, S.D.; Chen, T.C.; Bauchner, H.; Holick, M.F. Association between vitamin D deficiency and primary cesarean section. J. Clin. Endocrinol. Metab. 2009, 94, 940–945. [Google Scholar] [CrossRef] [Green Version]
- Halloran, B.P.; DeLuca, H.F. Effect of vitamin D deficiency on fertility and reproductive capacity in the fe-male rat. J. Nutr. 1980, 110, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Hickie, J.P.; Lavigne, D.M.; Woodward, W.D. Reduced fecundity of vitamin D deficient rats. Comp. Biochem. Physiol. A Comp. Physiol. 1983, 74, 923–925. [Google Scholar] [CrossRef]
- Johnson, L.E.; DeLuca, H.F. Reproductive defects are corrected in vitamin d-deficient female rats fed a high calcium, phosphorus and lactose diet. J. Nutr. 2002, 132, 2270–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, J.; Gallos, I.; Tobias, A.; Tan, B.; Eapen, A.; Coomarasamy, A. Vitamin D and assisted reproductive treatment outcome: A systematic review and meta-analysis. Hum. Reprod. 2018, 33, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Møller, U.K.; Streym, S.; Heickendorff, L.; Mosekilde, L.; Rejnmark, L. Effects of 25OHD concentrations on chances of pregnancy and pregnancy outcomes: A cohort study in healthy Danish women. Eur. J. Clin. Nutr. 2012, 66, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Jukic, A.; Baird, D.D.; Weinberg, C.R.; Wilcox, A.J.; McConnaughey, D.R.; Steiner, A.Z. Pre-conception 25-hydroxyvitamin D (25(OH)D) and fecundability. Hum. Reprod. 2019, 34, 2163–2172. [Google Scholar] [CrossRef]
- Mumford, S.L.; Garbose, R.A.; Kim, K.; Kissell, K.; Kuhr, D.L.; Omosigho, U.R.; Perkins, N.J.; Galai, N.; Silver, R.M.; Sjaarda, L.A.; et al. Association of preconception serum 25-hydroxyvitamin D concentrations with livebirth and pregnancy loss: A prospective cohort study. Lancet Diabetes Endo-Crin. 2018, 6, 725–732. [Google Scholar] [CrossRef]
- Yu, Z.; Hong, J.; Xiaoying, M.; Changqian, W.; Xuena, L.; Xu, Q. Review on preconception cohort studies in China. Chin. J. Epidemiol. 2019, 40, 859–863. [Google Scholar]
- Harville, E.W.; Mishra, G.D.; Yeung, E.; Mumford, S.L.; Schisterman, E.F.; Jukic, A.M.; Hatch, E.E.; Mikkelsen, E.M.; Jiang, H.; Ehrenthal, D.B.; et al. The Preconception Period analysis of Risks and Exposures Influencing health and Development (PrePARED) consortium. Paediatr. Perinat. Epidemiol. 2019, 33, 490–502. [Google Scholar] [CrossRef]
- Torrubia, B.; Alonso, I.; López-Ramiro, E.; Mahillo, I.; De la Piedra, C. Comparison between two automated chem-iluminescence immunoassays for quantifying 25 (OH) vitamin D. Rev. Osteoporos. Metab. Miner. 2016, 2, 70–74. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y. The Effect of SQA-V Sperm Quality Analyzer in Clinical Examination. China Med. Device Infor. Mation. 2021, 9, 157–159. [Google Scholar]
- Department of Disease Control of Ministry of Health of the People’s Republic of China. Chinese Adult Over-Weight and Obesity Prevention and Control Guidelines; People’s Medical Publishing House: Beijing, China, 2006. [Google Scholar]
- Rasmussen, K.M.; Abrams, B.; Bodnar, L.M.; Butte, N.F.; Catalano, P.M.; Maria, S.A. Recommendations for weight gain during pregnancy in the context of the obesity epidemic. Obstet. Gynecol. 2010, 116, 1191–1195. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Scheike, T.; Keiding, N.; Schaumburg, I.; Grandjean, P. Fecundability in relation to body mass and menstrual cycle patterns. Epidemiology 1999, 10, 422–428. [Google Scholar] [CrossRef]
- Wise, L.A.; Mikkelsen, E.M.; Rothman, K.J.; Riis, A.H.; Sorensen, H.T.; Huybrechts, K.F.; Hatch, E.E. A pro-spective cohort study of menstrual characteristics and time to pregnancy. Am. J. Epidemiol. 2011, 174, 701–709. [Google Scholar] [CrossRef]
- Olsen, J. Design options and sources of bias in time-to-pregnancy studies. Scand. J. Work Environ. Health 1999, 25 (Suppl. S1), 5–7, 76–78. [Google Scholar]
- Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A.; Hod, M.; Kitzmiler, J.L.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Wahed, F.; Latif, S.A.; Nessa, A.; Bhuiyan, M.R.; Hossain, M.B.; Akther, A.; Mahmud, M.M. Gestational ane-mia. Mymensingh. Med. J. 2010, 19, 462–468. [Google Scholar] [PubMed]
- Rohrer, F. Der Index der Körperfülle als Maß des Ernährungszustandes. Münchener Med. Woch-Enschrift 1921, 68, 580–582. [Google Scholar]
- Cooley, S.M.; Donnelly, J.C.; Walsh, T.; Kirkham, C.; Gillan, J.; Geary, M.P. Ponderal index (PI) vs birth weight centiles in the low-risk primigravid population: Which is the better predictor of fetal wellbeing? J. Obstet. Gy-Naecol. 2012, 32, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Xie, H.; Ji, J.; Zhou, X.; Goltzman, D.; Miao, D. Defective female reproductive function in 1,25(OH)2D-deficient mice results from indirect effect mediated by extracellular calcium and/or phosphorus. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E928–E935. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.S.; Wang, J.Y.; Wang, X.Q.; Wang, Y.; Xu, Y. Serum vitamin D status and in vitro fertilization outcomes: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2016, 293, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Rudick, B.; Ingles, S.; Chung, K.; Stanczyk, F.; Paulson, R.; Bendikson, K. Characterizing the influence of vit-amin D levels on IVF outcomes. Hum. Reprod. 2012, 27, 3321–3327. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Daftary, G.S.; Lalwani, S.I.; Taylor, H.S. Direct regulation of HOXA10 by 1,25-(OH)2D3 in human my-elomonocytic cells and human endometrial stromal cells. Mol. Endocrinol. 2005, 19, 2222–2233. [Google Scholar] [CrossRef] [Green Version]
- Blomberg, J.M.; Bjerrum, P.J.; Jessen, T.E.; Nielsen, J.E.; Joensen, U.N.; Olesen, I.A.; Petersen, J.H.; Juul, A.; Dissing, S.; Jorgensen, N. Vitamin D is positively associated with sperm motility and increases intracellular cal-cium in human spermatozoa. Hum. Reprod. 2011, 26, 1307–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiecinski, G.G.; Petrie, G.I.; DeLuca, H.F. Vitamin D is necessary for reproductive functions of the male rat. J. Nutr. 1989, 119, 741–744. [Google Scholar] [CrossRef]
- Tartagni, M.; Matteo, M.; Baldini, D.; Tartagni, M.V.; Alrasheed, H.; De Salvia, M.A.; Loverro, G.; Montagnani, M. Males with low serum levels of vitamin D have lower pregnancy rates when ovulation induction and timed intercourse are used as a treatment for infertile couples: Results from a pilot study. Reprod. Biol. Endocrinol. 2015, 13, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyden, E.L.; Wimalawansa, S.J. Vitamin D: Effects on human reproduction, pregnancy, and fetal well-being. J. Steroid. Biochem. Mol. Biol. 2018, 180, 41–50. [Google Scholar] [CrossRef]
- Dabrowski, F.A.; Grzechocinska, B.; Wielgos, M. The role of vitamin D in reproductive health—A Trojan Horse or the Golden Fleece? Nutrients 2015, 7, 4139–4153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Cai, Z.; Dai, Y.; Hong, Q.; Wang, X.; Zhu, L.; Xu, P.; You, L.; Wang, X.; Ji, C.; et al. Asso-ciation of Maternal Serum 25-Hydroxyvitamin D Concentrations with Risk of Gestational Anemia. Cell Physiol. Biochem. 2017, 43, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Molecular control of iron transport. J. Am. Soc. Nephrol. 2007, 18, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, C.; Isakova, T.; Collerone, G.; Olbina, G.; Wolf, M.; Westerman, M.; Gutierrez, O.M. Hepcidin and disordered mineral metabolism in chronic kidney disease. Clin. Nephrol. 2011, 76, 90–98. [Google Scholar] [CrossRef]
- Bacchetta, J.; Zaritsky, J.J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Zavala, K.; Nayak, A.; Wesseling-Perry, K.; Westerman, M.; Hollis, B.W.; et al. Suppression of iron-regulatory hepcidin by vitamin D. J. Am. Soc. Nephrol. 2014, 25, 564–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morley, R.; Carlin, J.B.; Pasco, J.A.; Wark, J.D. Maternal 25-hydroxyvitamin D and parathyroid hormone con-centrations and offspring birth size. J. Clin. Endocrinol. Metab. 2006, 91, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Leffelaar, E.R.; Vrijkotte, T.G.; van Eijsden, M. Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: Results of the multi-ethnic Amsterdam Born Children and their Development cohort. Br. J. Nutr. 2010, 104, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.M.; Haeri, S.; Camargo, C.J.; Stuebe, A.M.; Boggess, K.A. A nested case-control study of first-trimester maternal vitamin D status and risk for spontaneous preterm birth. Am. J. Perinatol. 2011, 28, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Aghajafari, F.; Nagulesapillai, T.; Ronksley, P.E.; Tough, S.C.; O’Beirne, M.; Rabi, D.M. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: Systematic review and meta-analysis of observational studies. BMJ 2013, 346, f1169. [Google Scholar] [CrossRef] [Green Version]
- De-Regil, L.M.; Palacios, C.; Lombardo, L.K.; Pena-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2016, 1, D8873. [Google Scholar]
- Tous, M.; Villalobos, M.; Iglesias, L.; Fernandez-Barres, S.; Arija, V. Vitamin D status during pregnancy and offspring outcomes: A systematic review and meta-analysis of observational studies. Eur. J. Clin. Nutr. 2020, 74, 36–53. [Google Scholar] [CrossRef]
- Swamy, G.K.; Garrett, M.E.; Miranda, M.L.; Ashley-Koch, A.E. Maternal vitamin D receptor genetic variation contributes to infant birthweight among black mothers. Am. J. Med. Genet. A 2011, 155A, 1264–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Kim, G.J.; Lee, D.; Ko, J.H.; Lim, I.; Bang, H.; Koes, B.W.; Seong, B.; Lee, D.C. Higher maternal vitamin D concentrations are associated with longer leukocyte telomeres in newborns. Matern. Child Nutr. 2018, 14, e12475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Female, n (%) or M (P25, P75) | Male, n (%) or M (P25, P75) | ||||
---|---|---|---|---|---|---|
Overall | 25(OH)D Groups | Overall | 25(OH)D Groups | |||
<30 ng/mL | ≥30 ng/mL | <30 ng/mL | ≥30 ng/mL | |||
Serum 25(OH)D concentrations(ng/mL) | 22.42 (19.22, 27.48) | 173 (86.5) | 27 (13.5) | 24.17 (21.08, 28.49) | 163 (81.5) | 37 (18.5) |
Age, years | ||||||
<28 (female)/29 (male) | 95 (47.5) | 88 (92.6) | 7 (7.4) | 95 (47.5) | 79 (83.2) | 16 (16.8) |
≥28 (female)/29 (male) | 105 (52.5) | 85 (81.0) | 20 (19.0) | 105 (52.5) | 84 (80.0) | 21 (20.0) |
Body mass index, kg/m2 | ||||||
<18.5 | 30 (15.0) | 22 (73.3) | 8 (26.7) | 11 (5.5) | 11 (100.0) | 0 (0.0) |
18.5–23.9 | 150 (75.0) | 132 (88.0) | 18 (12.0) | 94 (47.0) | 73 (77.7) | 21 (22.3) |
≥24.0 | 20 (10.0) | 19 (95.0) | 1 (5.0) | 95 (47.5) | 79 (83.2) | 16 (16.8) |
Education | ||||||
Completed college education or higher | 138 (69.0) | 117 (84.8) | 21 (15.2) | 185 (92.5) | 151 (81.6) | 34 (18.4) |
Completed high school education or lower | 62 (31.0) | 56 (90.3) | 6 (9.7) | 15 (7.5) | 12 (80.0) | 3 (20.0) |
Household annual income per capita | ||||||
≥¥100,000 | 119 (59.5) | 105 (88.2) | 14 (11.8) | 119 (59.5) | 98 (82.4) | 21 (17.6) |
<¥100,000 | 81 (30.5) | 68 (84.0) | 13 (16.0) | 81 (30.5) | 65 (80.2) | 16 (19.8) |
Gravidity | ||||||
≥1 | 64 (32.0) | 60 (93.8) | 4 (6.3) | - | - | - |
0 | 136 (68.0) | 113 (83.1) | 23 (16.9) | - | - | - |
Smoking | ||||||
Yes | 1 (0.5) | 1 (100) | 0 (0.0) | 48 (24.0) | 35 (72.9) | 13 (27.1) |
No | 199 (99.5) | 172 (86.4) | 27 (13.6) | 152 (76.0) | 128 (84.2) | 24 (15.8) |
Alcohol consumption | ||||||
Yes | 30 (15.0) | 28 (93.3) | 2 (6.7) | 121 (60.5) | 98 (81.0) | 23 (19.0) |
No | 170 (85.0) | 145 (85.3) | 25 (14.7) | 79 (39.5) | 65 (82.3) | 14 (17.7) |
Multivitamin use | ||||||
Yes | 54 (27.0) | 42 (77.8) | 12 (22.2) | 24 (12.0) | 17 (70.8) | 7 (29.2) |
No | 146 (73.0) | 131 (89.7) | 15 (10.3) | 176 (88.0) | 146 (83.0) | 30 (17.0) |
Calcium supplement use | ||||||
Yes | 43 (21.5) | 34 (79.1) | 9 (20.9) | 9 (4.5) | 6 (66.7) | 3 (33.3) |
No | 157 (78.5) | 139 (88.5) | 18 (11.5) | 191 (95.5) | 157 (82.2) | 34 (17.8) |
Folic acid use | ||||||
Yes | 83 (41.5) | 65 (78.3) | 18 (21.7) | 34 (17.0) | 26 (76.5) | 8 (23.5) |
No | 117 (58.5) | 108 (92.3) | 9 (7.7) | 166 (83.0) | 137 (82.5) | 29 (17.5) |
Milk intake frequency before pregnancy | ||||||
≥once a week | 130 (65.0) | 111 (85.4) | 19 (14.6) | 101 (50.5) | 78 (77.2) | 23 (22.8) |
<once a week | 70 (35.0) | 62 (88.6) | 8 (11.4) | 99 (49.5) | 85 (85.9) | 14 (14.1) |
Animal liver intake frequency before pregnancy | ||||||
≥once a week | 40 (20.0) | 36 (90.0) | 4 (10.0) | 36 (18.0) | 32 (88.9) | 4 (11.1) |
<once a week | 160 (80.0) | 137 (85.6) | 23 (14.4) | 164 (82.0) | 131 (79.9) | 33 (20.1) |
Deep-sea fish intake frequency before pregnancy | ||||||
≥once a week | 109 (54.5) | 96 (88.1) | 13 (11.9) | 99 (49.5) | 82 (82.8) | 17 (17.2) |
<once a week | 91 (45.5) | 77 (84.6) | 14 (15.4) | 101 (50.5) | 81 (80.2) | 20 (19.8) |
Season of blood sample collection | ||||||
Summer and autumn | 109 (54.5) | 88 (80.7) | 21 (19.3) | 109 (54.5) | 79 (72.5) | 30 (27.5) |
Spring and winter | 91 (45.5) | 85 (93.4) | 6 (6.6) | 91 (45.5) | 84 (92.3) | 7 (7.7) |
The total sperm count (×106) | 146 (81, 237) | 144 (80, 232) | 172 (88, 338) | |||
Sperm concentration (×106/mL) | 50.9 (31.1, 88.0) | 50.3 (31.2, 84.9) | 59.3 (35.3, 105.8) | |||
Progressive motile sperm count (×106) | 66 (35, 103) | 62 (33, 100) | 82 (47, 114) | |||
The percentage of normal morphology sperm (%) | 10.4 (8.3, 12.3) | 10.3 (8.2, 12.1) | 11.7 (9.3, 13.2) |
Vitamin D | Clinical Pregnancy | Time to Pregnancy | ||||
---|---|---|---|---|---|---|
cOR | Model 1 a aOR (95% CI) | Model 2 b aOR (95% CI) | cFR | Model 1 a aFR (95% CI) | Model 2 b aFR (95% CI) | |
Serum 25(OH)D concentrations among preconception women | ||||||
<30 ng/mL | Ref | Ref | Ref | Ref | Ref | Ref |
≥30 ng/mL | 0.92 | 1.02 (0.37~2.76) | 0.90 (0.32~2.54) | 1.08 | 1.07 (0.69~1.68) | 1.08 (0.70~1.69) |
Serum 25(OH)D concentrations among preconception men | ||||||
<30 ng/mL | Ref | Ref | Ref | Ref | Ref | Ref |
≥30 ng/mL | 3.15 | 3.29 (1.07~10.12) | 3.72 (1.16~11.86) | 1.32 | 1.37 (0.93~2.00) | 1.50 (1.01~2.23) |
Characteristics | In the 2nd Trimester, n (%)/Mean ± SD/M (P25, P75) | In the 3rd Trimester, n (%)/Mean ± SD/M (P25, P75) | ||||
---|---|---|---|---|---|---|
Overall | 25(OH)D Groups | Overall | 25(OH)D Groups | |||
<30 ng/mL | ≥30 ng/mL | <30 ng/mL | ≥30 ng/mL | |||
25(OH)D concentrations (ng/mL) | 21.64 (17.67, 26.34) | 170 (85.9) | 28 (14.1) | 19.08 (13.76, 25.49) | 172 (86.9) | 26 (13.1) |
Multivitamin use during pregnancy | ||||||
Yes | 146 (73.7) | 121 (82.9) | 25 (17.1) | 146 (73.7) | 124 (84.9) | 22 (15.1) |
No | 52 (26.3) | 49 (94.2) | 3 (5.8) | 52 (26.3) | 48 (92.3) | 4 (7.7) |
Calcium supplement use during the pregnancy | ||||||
Yes | 159 (80.3) | 134 (84.3) | 25 (15.7) | 159 (80.3) | 134 (84.3) | 25 (15.7) |
No | 39 (19.7) | 36 (92.3) | 3 (7.7) | 39 (19.7) | 38 (97.4) | 1 (2.6) |
Folic acid use during pregnancy | ||||||
Yes | 144 (72.7) | 118 (81.3) | 26 (18.1) | 144 (72.7) | 124 (86.1) | 20 (13.9) |
No | 54 (27.3) | 52 (96.3) | 2 (3.7) | 54 (27.3) | 48 (88.9) | 6 (11.1) |
Weight gain during pregnancy | ||||||
Inadequate | 59 (29.8) | 50 (84.7) | 9 (15.3) | 59 (29.8) | 50 (84.7) | 9 (15.3) |
Appropriate | 86 (43.4) | 72 (83.7) | 14 (16.3) | 86 (43.4) | 73 (84.9) | 13 (15.1) |
Overmuch | 53 (26.8) | 48 (90.6) | 5 (9.4) | 53 (26.8) | 49 (92.5) | 4 (7.5) |
Milk intake frequency during pregnancy | ||||||
≥once a week | 134 (67.7) | 112 (83.6) | 22 (16.4) | 134 (67.7) | 115 (85.8) | 19 (14.2) |
<once a week | 64 (32.3) | 58 (90.6) | 6 (9.4) | 64 (32.3) | 57 (89.1) | 7 (10.9) |
Animal liver intake frequency during pregnancy | ||||||
≥once a week | 47 (23.7) | 42 (89.4) | 5 (10.6) | 47 (23.7) | 35 (74.5) | 12 (25.5) |
<once a week | 151 (76.3) | 128 (84.8) | 23 (15.2) | 151 (76.3) | 137 (90.7) | 14 (9.3) |
Deep-sea fish food intake frequency during pregnancy | ||||||
≥once a week | 104 (52.5) | 90 (86.5) | 14 (13.5) | 104 (52.5) | 86 (82.7) | 18 (17.3) |
<once a week | 94 (47.5) | 80 (85.1) | 14 (14.9) | 94 (47.5) | 86 (91.5) | 8 (8.5) |
Gestational diabetes mellitus | ||||||
Yes | 24 (12.1) | 21 (12.4) | 3 (10.7) | 24 (12.1) | 18 (10.5) | 6 (23.1) |
No | 174 (87.9) | 149 (87.6) | 25 (89.3) | 174 (87.9) | 154 (89.5) | 20 (76.9) |
Gestational hypertension | ||||||
Yes | 9 (4.5) | 7 (4.1) | 2 (7.1) | 9 (4.5) | 8 (4.7) | 1 (3.8) |
No | 189 (95.5) | 163 (95.9) | 26 (92.9) | 189 (95.5) | 164 (95.3) | 25 (96.2) |
Gestational anemia | ||||||
Yes | 61 (30.8) | 52 (30.6) | 9 (32.1) | 61 (30.8) | 58 (33.7) | 3 (4.9) |
No | 137 (69.2) | 118 (69.4) | 19 (87.9) | 137 (69.2) | 114 (66.3) | 23 (95.1) |
Premature rupture of membranes | ||||||
Yes | 21 (10.6) | 20 (11.8) | 1 (3.6) | 21 (10.6) | 20 (11.6) | 1 (3.8) |
No | 177 (89.4) | 150 (88.2) | 27 (96.4) | 177 (89.4) | 152 (88.4) | 25 (96.2) |
Delivery mode | ||||||
Cesarean delivery | 60 (30.3) | 51 (30.0) | 9 (32.1) | 60 (30.3) | 53 (30.8) | 7 (26.9) |
Vaginal delivery | 138 (69.7) | 119 (70.0) | 19 (67.9) | 138 (69.7) | 119 (69.2) | 19 (73.1) |
Delivery gestational age | 39.7 (38.8, 40.3) | 39.7 (38.9, 40.3) | 39.7 (38.9, 40.3) | 39.7 (38.8, 40.3) | 39.6 (38.9, 40.3) | 39.9 (39.3,40.5) |
Birth weight | 3304 ± 405 | 3316 ± 407 | 3236 ± 391 | 3304 ± 405 | 3290 (±410) | 3401 (±362) |
Ponderal index | 2.68 ± 0.22 | 2.68 ± 0.22 | 2.66 ± 0.2 | 2.68 ± 0.22 | 2.67 ± 0.21 | 2.76 ± 0.21 |
Vitamin D | GDM * | Gestational Anemia * | PROM * | Delivery Gestational Age * | PI * |
---|---|---|---|---|---|
aOR (95% CI) | aOR (95%CI) | aOR (95% CI) | β (95% CI) | β (95% CI) | |
25(OH)D levels before pregnancy | |||||
<30 ng/mL | Ref | Ref | Ref | Ref | Ref |
≥30 ng/mL | 2.23 (0.60~8.37) | 1.23 (0.47~3.21) | 0.89 (0.17~4.67) | −0.06 (−0.54~0.41) | 0.01 (−0.08~0.10) |
25(OH)D levels during the second trimester of the pregnancy | |||||
<30 ng/mL | Ref | Ref | Ref | Ref | Ref |
≥30 ng/mL | 0.87 (0.21~3.55) | 1.28 (0.51~3.23) | 0.25 (0.03~2.10) | −0.07 (−0.54~0.40) | −0.01 (−0.10~0.08) |
25(OH)D levels during the third trimester of the pregnancy | |||||
<30 ng/mL | Ref | Ref | Ref | Ref | Ref |
≥30 ng/mL | 2.26 (0.72~8.88) | 0.22 (0.06~0.82) | 0.22 (0.02~1.99) | 0.53 (0.05~1.01) | 0.10 (0.01~0.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jukic, A.M.Z.; Song, H.; Zhang, L.; Yang, F.; Wu, S.; Yin, D.; Jiang, H. Serum Vitamin D Concentrations, Time to Pregnancy, and Pregnancy Outcomes among Preconception Couples: A Cohort Study in Shanghai, China. Nutrients 2022, 14, 3058. https://doi.org/10.3390/nu14153058
Zhang Y, Jukic AMZ, Song H, Zhang L, Yang F, Wu S, Yin D, Jiang H. Serum Vitamin D Concentrations, Time to Pregnancy, and Pregnancy Outcomes among Preconception Couples: A Cohort Study in Shanghai, China. Nutrients. 2022; 14(15):3058. https://doi.org/10.3390/nu14153058
Chicago/Turabian StyleZhang, Yu, Anne Marie Z. Jukic, Heqing Song, Lifeng Zhang, Fengyun Yang, Shoule Wu, Dongxiao Yin, and Hong Jiang. 2022. "Serum Vitamin D Concentrations, Time to Pregnancy, and Pregnancy Outcomes among Preconception Couples: A Cohort Study in Shanghai, China" Nutrients 14, no. 15: 3058. https://doi.org/10.3390/nu14153058
APA StyleZhang, Y., Jukic, A. M. Z., Song, H., Zhang, L., Yang, F., Wu, S., Yin, D., & Jiang, H. (2022). Serum Vitamin D Concentrations, Time to Pregnancy, and Pregnancy Outcomes among Preconception Couples: A Cohort Study in Shanghai, China. Nutrients, 14(15), 3058. https://doi.org/10.3390/nu14153058