What Intervention Elements Drive Weight Loss in Blended-Care Behavior Change Interventions? A Real-World Data Analysis with 25,706 Patients
Abstract
:1. Introduction
1.1. Background
1.2. Goal of This Study
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Application and Delivery of BBCI
2.4. Data Collection
2.5. Measures and Statistical Analysis
3. Results
3.1. Overall Weight Loss
3.2. Contribution of Intervention Elements to Weight Loss
3.2.1. HCP Element: Coaching
3.2.2. Digital Element: Self-Monitoring
3.2.3. Digital Element: Self-Management
3.2.4. Digital Element: Education
4. Conclusions
4.1. Principal Results and Comparison with Prior Work
4.2. Limitations
4.3. Conclusion and Future Research
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BBCI | blended-care behavior change interventions |
HCP | health care professionals |
CI | credibility interval |
References
- Dounavi, K.; Tsoumani, O. Mobile Health Applications in Weight Management: A Systematic Literature Review. Am. J. Prev. Med. 2019, 56, 894–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, M.P.; Sala, M.; Abber, S.R.; Forman, E.M. Incorporating Automated Digital Interventions into Coach-Delivered Weight Loss Treatment: A Meta-Analysis. Health Psychol. 2021, 40, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Haas, K.; Hayoz, S.; Maurer-Wiesner, S. Effectiveness and Feasibility of a Remote Lifestyle Intervention by Dietitians for Overweight and Obese Adults: Pilot Study. JMIR MHealth UHealth 2019, 7, e12289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willmott, T.J.; Pang, B.; Rundle-Thiele, S.; Badejo, A. Weight Management in Young Adults: Systematic Review of Electronic Health Intervention Components and Outcomes. J. Med. Internet Res. 2019, 21, e10265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavero-Redondo, I.; Martinez-Vizcaino, V.; Fernandez-Rodriguez, R.; Saz-Lara, A.; Pascual-Morena, C.; Álvarez-Bueno, C. Effect of Behavioral Weight Management Interventions Using Lifestyle MHealth Self-Monitoring on Weight Loss: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1977. [Google Scholar] [CrossRef] [PubMed]
- Villinger, K.; Wahl, D.R.; Boeing, H.; Schupp, H.T.; Renner, B. The Effectiveness of App-Based Mobile Interventions on Nutrition Behaviours and Nutrition-Related Health Outcomes: A Systematic Review and Meta-Analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2019, 20, 1465–1484. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Shang, B.; Liang, W.; Du, G.; Yang, M.; Rhodes, R.E. Effects of EHealth-Based Multiple Health Behavior Change Interventions on Physical Activity, Healthy Diet, and Weight in People with Noncommunicable Diseases: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2021, 23, e23786. [Google Scholar] [CrossRef]
- Wang, Y.; Min, J.; Khuri, J.; Xue, H.; Xie, B.; Kaminsky, L.A.; Cheskin, L.J. Effectiveness of Mobile Health Interventions on Diabetes and Obesity Treatment and Management: Systematic Review of Systematic Reviews. JMIR MHealth UHealth 2020, 8, e15400. [Google Scholar] [CrossRef]
- Chew, H.S.J.; Ang, W.H.D.; Lau, Y. The Potential of Artificial Intelligence in Enhancing Adult Weight Loss: A Scoping Review. Public Health Nutr. 2021, 24, 1993–2020. [Google Scholar] [CrossRef]
- World Health Organization, Regional Office for Europe. WHO European Regional Obesity Report 2022; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2022; ISBN 978-92-890-5773-8. [Google Scholar]
- Ashrafzadeh, S.; Hamdy, O. Patient-Driven Diabetes Care of the Future in the Technology Era. Cell Metab. 2019, 29, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Senecal, C.; Widmer, R.J.; Larrabee, B.R.; de Andrade, M.; Lerman, L.O.; Lerman, A.; Lopez-Jimenez, F. A Digital Health Weight Loss Program in 250,000 Individuals. J. Obes. 2020, 2020, e9497164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weishaupt, E.; Jent, S.; Zbären, E.; Haas, K. Online Nutritional Counselling on Weight Loss. Experiences of Overweight and Obese Adults. Ernahr. Umsch. 2020, 67, 108–114. [Google Scholar] [CrossRef]
- Metzendorf, M.-I.; Wieland, L.S.; Richter, B. Mobile Health (M-health) Smartphone Interventions for Overweight or Obese Adolescents and Adults. Cochrane Database Syst. Rev. 2020, 4, CD013591. [Google Scholar] [CrossRef]
- Chatterjee, A.; Prinz, A.; Gerdes, M.; Martinez, S. Digital Interventions on Healthy Lifestyle Management: Systematic Review. J. Med. Internet Res. 2021, 23, e26931. [Google Scholar] [CrossRef]
- Michie, S.; Richardson, M.; Johnston, M.; Abraham, C.; Francis, J.; Hardeman, W.; Eccles, M.P.; Cane, J.; Wood, C.E. The Behavior Change Technique Taxonomy (v1) of 93 Hierarchically Clustered Techniques: Building an International Consensus for the Reporting of Behavior Change Interventions. Ann. Behav. Med. Publ. Soc. Behav. Med. 2013, 46, 81–95. [Google Scholar] [CrossRef]
- Samdal, G.B.; Eide, G.E.; Barth, T.; Williams, G.; Meland, E. Effective Behaviour Change Techniques for Physical Activity and Healthy Eating in Overweight and Obese Adults; Systematic Review and Meta-Regression Analyses. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 42. [Google Scholar] [CrossRef] [Green Version]
- Van Rhoon, L.; Byrne, M.; Morrissey, E.; Murphy, J.; McSharry, J. A Systematic Review of the Behaviour Change Techniques and Digital Features in Technology-Driven Type 2 Diabetes Prevention Interventions. Digit. Health 2020, 6, 2055207620914427. [Google Scholar] [CrossRef]
- Martín-Martín, J.; Roldán-Jiménez, C.; De-Torres, I.; Muro-Culebras, A.; Escriche-Escuder, A.; Gonzalez-Sanchez, M.; Ruiz-Muñoz, M.; Mayoral-Cleries, F.; Biró, A.; Tang, W.; et al. Behavior Change Techniques and the Effects Associated with Digital Behavior Change Interventions in Sedentary Behavior in the Clinical Population: A Systematic Review. Front. Digit. Health 2021, 3, 56. [Google Scholar] [CrossRef]
- Santarossa, S.; Kane, D.; Senn, C.Y.; Woodruff, S.J. Exploring the Role of In-Person Components for Online Health Behavior Change Interventions: Can a Digital Person-to-Person Component Suffice? J. Med. Internet Res. 2018, 20, e144. [Google Scholar] [CrossRef]
- Antoun, J.; Itani, H.; Alarab, N.; Elsehmawy, A. The Effectiveness of Combining Nonmobile Interventions with the Use of Smartphone Apps With Various Features for Weight Loss: Systematic Review and Meta-Analysis. JMIR MHealth UHealth 2022, 10, e35479. [Google Scholar] [CrossRef]
- Makin, H.; Chisholm, A.; Fallon, V.; Goodwin, L. Use of Motivational Interviewing in Behavioural Interventions among Adults with Obesity: A Systematic Review and Meta-Analysis. Clin. Obes. 2021, 11, e12457. [Google Scholar] [CrossRef] [PubMed]
- Painter, S.L.; Lu, W.; Schneider, J.; James, R.; Shah, B. Drivers of Weight Loss in a CDC-Recognized Digital Diabetes Prevention Program. BMJ Open Diabetes Res. Care 2020, 8, e001132. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Clark, J.M.; Yeh, H.-C.; Wang, N.-Y.; Coughlin, J.W.; Daumit, G.; Miller, E.R.; Dalcin, A.; Jerome, G.J.; Geller, S.; et al. Comparative Effectiveness of Weight-Loss Interventions in Clinical Practice. N. Engl. J. Med. 2011, 365, 1959–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarado, M.M.; Kum, H.-C.; Gonzalez Coronado, K.; Foster, M.J.; Ortega, P.; Lawley, M.A. Barriers to Remote Health Interventions for Type 2 Diabetes: A Systematic Review and Proposed Classification Scheme. J. Med. Internet Res. 2017, 19, e28. [Google Scholar] [CrossRef]
- Heponiemi, T.; Kaihlanen, A.-M.; Kouvonen, A.; Leemann, L.; Taipale, S.; Gluschkoff, K. The Role of Age and Digital Competence on the Use of Online Health and Social Care Services: A Cross-Sectional Population-Based Survey. Digit. Health 2022, 8, 20552076221074484. [Google Scholar] [CrossRef]
- Western, M.J.; Armstrong, M.E.G.; Islam, I.; Morgan, K.; Jones, U.F.; Kelson, M.J. The Effectiveness of Digital Interventions for Increasing Physical Activity in Individuals of Low Socioeconomic Status: A Systematic Review and Meta-Analysis. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 148. [Google Scholar] [CrossRef]
- Tronieri, J.S.; Wadden, T.A.; Chao, A.M.; Pearl, R.L.; Alamuddin, N.; Berkowitz, R.I. Early Weight Loss in Behavioral Treatment Predicts Later Rate of Weight Loss and Response to Pharmacotherapy. Ann. Behav. Med. Publ. Soc. Behav. Med. 2018, 53, 290–295. [Google Scholar] [CrossRef]
- Valinskas, S.; Aleknavicius, K.; Jonusas, J. KetoCycle Mobile App for Ketogenic Diet: A Retrospective Study of Weight Loss and Engagement. BMC Nutr. 2022, 8, 40. [Google Scholar] [CrossRef]
- Burke, L.E.; Wang, J.; Sevick, M.A. Self-Monitoring in Weight Loss: A Systematic Review of the Literature. J. Am. Diet. Assoc. 2011, 111, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Raber, M.; Liao, Y.; Rara, A.; Schembre, S.M.; Krause, K.J.; Strong, L.; Daniel-MacDougall, C.; Basen-Engquist, K. A Systematic Review of the Use of Dietary Self-Monitoring in Behavioural Weight Loss Interventions: Delivery, Intensity and Effectiveness. Public Health Nutr. 2021, 24, 5885–5913. [Google Scholar] [CrossRef]
- Carpenter, C.A.; Ugwoaba, U.A.; Cardel, M.I.; Ross, K.M. Using Self-Monitoring Technology for Nutritional Counseling and Weight Management. Digit. Health 2022, 8, 20552076221102776. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.L.; Wakayama, L.N.; Bennett, G.G. Self-Monitoring via Digital Health in Weight Loss Interventions: A Systematic Review Among Adults with Overweight or Obesity. Obesity 2021, 29, 478–499. [Google Scholar] [CrossRef] [PubMed]
- Ben Neriah, D.; Geliebter, A. Weight Loss Following Use of a Smartphone Food Photo Feature: Retrospective Cohort Study. JMIR MHealth UHealth 2019, 7, e11917. [Google Scholar] [CrossRef] [PubMed]
- Dwibedi, C.; Mellergård, E.; Gyllensten, A.C.; Nilsson, K.; Axelsson, A.S.; Bäckman, M.; Sahlgren, M.; Friend, S.H.; Persson, S.; Franzén, S.; et al. Effect of Self-Managed Lifestyle Treatment on Glycemic Control in Patients with Type 2 Diabetes. NPJ Digit. Med. 2022, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Marteau, T.M.; Hollands, G.J.; Fletcher, P.C. Changing Human Behavior to Prevent Disease: The Importance of Targeting Automatic Processes. Science 2012, 337, 1492–1495. [Google Scholar] [CrossRef] [Green Version]
- Ratz, T.; Voelcker-Rehage, C.; Pischke, C.R.; Muellmann, S.; Peters, M.; Lippke, S. Health-Related Lifestyle and Dropout from a Web-Based Physical Activity Intervention Trial in Older Adults: A Latent Profile Analysis. Health Psychol. 2021, 40, 481–490. [Google Scholar] [CrossRef]
- Burnham, J.P.; Lu, C.; Yaeger, L.H.; Bailey, T.C.; Kollef, M.H. Using Wearable Technology to Predict Health Outcomes: A Literature Review. J. Am. Med. Inform. Assoc. JAMIA 2018, 25, 1221–1227. [Google Scholar] [CrossRef] [Green Version]
- Stern, A.D.; Brönneke, J.; Debatin, J.F.; Hagen, J.; Matthies, H.; Patel, S.; Clay, I.; Eskofier, B.; Herr, A.; Hoeller, K.; et al. Advancing Digital Health Applications: Priorities for Innovation in Real-World Evidence Generation. Lancet Digit. Health 2022, 4, e200–e206. [Google Scholar] [CrossRef]
- Kanehl, P.; Jones, L.; Schirmann, F. Digital Meal Logging: Meal, Composition of Breakfast, Lunch, and Dinner Predicts Weight Loss in 11758 Patients. In Proceedings of the ATTD Advanced Technologies & Treatments for Diabetes Conference, Barcelona, Spain, 27–30 April 2022; p. 193. [Google Scholar] [CrossRef]
- Ryan, K.; Dockray, S.; Linehan, C. A Systematic Review of Tailored EHealth Interventions for Weight Loss. Digit. Health 2019, 5, 2055207619826685. [Google Scholar] [CrossRef]
- Beleigoli, A.; Andrade, A.Q.; Diniz, M.D.F.; Ribeiro, A.L. Personalized web-based weight loss behavior change program with and without dietitian online coaching for adults with overweight and obesity: Randomized controlled trial. J. Med. Internet Res. 2020, 22, e17494. [Google Scholar] [CrossRef]
- Zmora, N.; Elinav, E. Harnessing SmartPhones to Personalize Nutrition in a Time of Global Pandemic. Nutrients 2021, 13, 422. [Google Scholar] [CrossRef]
- Wiechert, M.; Holzapfel, C. Nutrition Concepts for the Treatment of Obesity in Adults. Nutrients 2022, 14, 169. [Google Scholar] [CrossRef] [PubMed]
- Essén, A.; Stern, A.D.; Haase, C.B.; Car, J.; Greaves, F.; Paparova, D.; Vandeput, S.; Wehrens, R.; Bates, D.W. Health App Policy: International Comparison of Nine Countries’ Approaches. NPJ Digit. Med. 2022, 5, 31. [Google Scholar] [CrossRef] [PubMed]
Intervention Element | Covariate/Aspect of Intervention Element | Description | Unit |
---|---|---|---|
Coaching | Appointments | Number of live sessions with a coach, either via phone or face to face, within the period (0, τ). | 1 |
Coach messages | Number of messages sent to the patient by the coach via the Oviva app within the period (0, τ). | 1 | |
Self-Monitoring | Meal logs | Number of meals tracked via text and/or photo within the Oviva app and the period (0, τ). | 1 |
Other logs | Number of activities, symptoms or measurements (e.g., weight, blood glucose) tracked within the Oviva app and the period (0, τ). | 1 | |
Self- Management | Completed tasks | Number of completed tasks assigned by the coach or the patient, e.g., track your meal today, make 5000 steps, etc., within the period (0, τ). | 1 |
Education | Content diversity | Number of unique learn units that have been opened at least once within the period (0, τ). | 1 |
Learn time | Total time media content was open in the Oviva app and within the period (0, τ). | minutes |
Time Point | Average Baseline Weight (0 Month) ± Standard Deviation | Average Relative Weight Loss ± Standard Deviation | Average Weight Loss ± Standard Deviation | Number of Patients (n) |
---|---|---|---|---|
1 month | 106.7 ± 21.4 kg | −1.63 ± 5.94% | −1.89 ± 7.82 kg | 15,012 |
3 months | 106.6 ± 21.3 kg | −3.61 ± 5.82% | −4.02 ± 7.82 kg | 9526 |
6 months | 106.5 ± 21.1 kg | −5.28 ± 6.94% | −5.82 ± 9.10 kg | 4204 |
12 months | 106.5 ± 19.7 kg | −6.55 ± 8.22% | −7.22 ± 9.67 kg | 979 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirmann, F.; Kanehl, P.; Jones, L. What Intervention Elements Drive Weight Loss in Blended-Care Behavior Change Interventions? A Real-World Data Analysis with 25,706 Patients. Nutrients 2022, 14, 2999. https://doi.org/10.3390/nu14142999
Schirmann F, Kanehl P, Jones L. What Intervention Elements Drive Weight Loss in Blended-Care Behavior Change Interventions? A Real-World Data Analysis with 25,706 Patients. Nutrients. 2022; 14(14):2999. https://doi.org/10.3390/nu14142999
Chicago/Turabian StyleSchirmann, Felix, Philipp Kanehl, and Lucy Jones. 2022. "What Intervention Elements Drive Weight Loss in Blended-Care Behavior Change Interventions? A Real-World Data Analysis with 25,706 Patients" Nutrients 14, no. 14: 2999. https://doi.org/10.3390/nu14142999
APA StyleSchirmann, F., Kanehl, P., & Jones, L. (2022). What Intervention Elements Drive Weight Loss in Blended-Care Behavior Change Interventions? A Real-World Data Analysis with 25,706 Patients. Nutrients, 14(14), 2999. https://doi.org/10.3390/nu14142999